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Abstract. This paper investigates the use of symmetric monoidal closed
(sMc) structure for representing syntax with variable binding, in partic-
ular for languages with linear aspects. In this setting, one first specifies
an SMC theory 7, which may express binding operations, in a way remi-
niscent from higher-order abstract syntax (HOAS). This theory generates
an SMC category S(7) whose morphisms are, in a sense, terms in the
desired syntax. We apply our approach to Jensen and Milner’s (abstract
binding) bigraphs, in which processes behave linearly, but names do not.
This leads to an alternative category of bigraphs, which we compare to
the original.

1 Introduction

How to rigorously handle variable binding? The recent amount of research on
this issue attests its delicacy [10} [0 15]. A main difficulty is perhaps to reconcile
a-conversion with initial algebra semantics: a-conversion equates terms up to
renaming of bound variables; initial algebra semantics requires that terms form
the free, or initial, model specified by a given signature.

We here investigate an approach sketched by Coccia et al. [4], based on sMc
theories, which they called GS-A theories. In this setting, one first specifies an
SMC theory 7T, which may express binding operations, in a way reminiscent
from HOAS [27], [8] [I7]. This theory freely generates an sMC category S(7°) whose
morphisms are, in a sense, terms in the desired syntax. The known presentations
of S(7) mainly fall into two classes: syntactic or graphical. Our emphasis in this
paper is on a graphical presentation of S(7) and example applications.

We start in Section [ with an expository account of SMC theories and our
construction of S(7). This construction yields a monadic adjunction, and hence
provides an initial algebra semantics for variable binding. The morphisms of
S(T) look like abstract syntax, e.g., in the sense of Wadsworth’s A-graphs [33].
Technically, they are a variant of proof nets in intuitionistic multiplicative linear
logic [I3] (IMLL): they are equivalence classes of special graphs called linkings,
which must satisfy a certain correctness condition. Linkings compose by “glue-
ing” the graphs together, and correctness is stable under composition. Finally, a
standard issue in variable binding is induction. We propose a general induction
principle derived from Girard’s sequentialisation theorem [I3] [G].
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We continue with a few examples in Section[B] to demonstrate the use of S(7)
as a representation for syntax with variable binding. In languages with variable
binding, there is a standard notion of term with a hole, or contezt, and an asso-
ciated operation of hole-filling, or substitution with capture. Morphisms of S(7)
and their composition are very close to contexts and hole-filling, except that
hole-filling is generally total, while composition only concerns, well, composable
morphisms. And moreover, contexts are here generalised to be multi-hole and
higher-order (holes with holes, and so on). This kind of substitution would show
up with any closed structure, e.g., cartesian closed categories, but is not di-
rectly available in more traditional approaches [9, [T5] [10]. Conversely, non-linear
capture-avoiding substitution requires a bit more work in our setting. We only
sketch it here, and briefly discuss alternatives to the general induction principle
of Section Bl Along the way, we prove a decomposition result showing the flexi-
bility of our approach, and we observe that the use of SMC structure facilitates
the cohabitation of linear and non-linear aspects in a common language.

To further support this latter claim, Section M studies Jensen and Milner’s
bigraphs [20] in our setting, in which processes behave linearly, but names do
not. We translate each bigraphical signature K into an SMcC theory 7x, and
show that bigraphs over K essentially embed into S(7x), the free sMC category
generated by 7x. Furthermore, although S(7x) is much richer than the original,
the embedding is surjective on whole programs.

2 Symmetric Monoidal Closed Theories

In this section, we provide an overview of the construction of S(7). A more
technical presentation may be found in our work [IT], which itself owes much to
Trimble [32] and Hughes [19].

2.1 Signatures

Roughly, an SMC category is a category with a tensor product ® on objects and
morphisms, symmetric in the sense that A ® B and B ® A are isomorphic, and
such that (— ® A) has a right adjoint (A — —), for each object A. We do not
give further details, since we are interested in describing the free such category,
which is easier. Knowing that there is a category SMCCat of SMC categories and
strictly structure-preserving functors should be enough to grasp the following.

An sMc signature X consists of a set X of sorts, equipped with a (directed)
graph whose vertices are IMLL formulae over X, as defined by:

AB,..e F(X)u:=2|I|A®B|A—-B rz€e X,
where ® is tensor and —o is (linear) implication.

Ezample 1. Consider the m-calculus: we will see in Section Blthat the correspond-
ing signature has one sort v for names and one sort ¢ for processes, and among
others two operations send and get of types:

9

wovet) "t (v® (v —t)) - t.
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A morphism of signatures (X, ) » (Y, X’) is a function X U Y, equipped
with a morphism of graphs, whose vertex component is “F(f)”, i.e., the func-
tion sending any formula A(zq,...,z,) to A(f(z1),..., f(zs)). This defines a
category SMCSig of signatures.

There is a forgetful functor SMCCat v, SMCSig sending each SMC category
C to the graph with as vertices formulae in F(ob(C)), and as edges A » B
the morphisms [A] » [B] in C, where [A] is defined inductively to send each
syntactic connective to the corresponding function on ob(C).

We will now construct an SMC category S(X) from any signature X', and

extend this to a functor SMCSig 5. SMCCat, left adjoint to U. How does S(X)
look like? Under the Curry-Howard-Lambek correspondence, an SMC signature
amounts to a set of IMLL axioms, and the free SMC category S(X) over a signature
X has as morphisms IMLL proofs under the corresponding axioms, modulo cut
elimination. Or, equivalently, morphisms are a variant of proof nets, which we
introduce gradually in the next sections.

2.2 The Free Symmetric Monoidal Closed Category over a Set

In the absence of axioms, i.e., given only a set of sorts, or propositional variables,
say X, Hughes [19] has devised a simple presentation of S(X). Consider for a
guiding example the two endomorphisms of ((a — I) — I) —o I

((a—oI)—I)—1 ((a—I)—I)—1

== 1]l
-’

((a—T)—I)—1 ((a—T)—I)—1

(domain on top for the whole paper, the right-hand morphism is the identity).

First, the ports of a formula, i.e., occurrences of sorts or of I, are given po-
larities: a port is positive when it lies to the left of an even number of —o’s in
the abstract syntax tree, and negative otherwisdl. For example, in the above for-
mula, a and the middle I are negative, the other occurrences of I being positive.
When constructing morphisms A » B, the ports in A and B will be assigned a
global polarity, or a polarity in the morphism: the ports of B have their polarity
in B, while those of A have the opposite polarity. For example, in the above
examples, the occurrence of a in the domain is positive.

A linking is a partial function f from negative ports to positive ports, such
that for each sort a, f maps negative a ports to positive a ports, bijectively. We
observe that this allows to connect I ports to ports of any type. This last bit
does not appear in the above example; it does in (I]) below. Clearly from the
example, linkings are kind of graphs, and we call their edges wires.

A linking is then correct when (i) it is a total function, and (ii) it satisfies the
Danos-Regnier (DR) criterion [6]. The latter roughly goes as follows. An IMLL
formula may be translated to a classical formula, as defined by the grammar:

! The sign of a port in A is directly apparent viewing A is a classical LL formula, see
the next paragraph.
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3 3
®
/\ \ /®\ \
((a—ol)—TI)—1I ((a—I)—I)—1
=
((a\wI)wIQ' ((a\—ol)—ol)—ol
| v/
N N
3 3.

Fig. 1. Example switching

AB,....=2 | I | A®B
| 2t | L | A®B.

The de Morgan dual At of A is defined as usual (by swapping connectives,
vertically in the above grammar). We have removed A — B, now encoded as
AL % B; some classical formulae are not expressible in IMLL, such as L, or % z.
The classical formulation of our above example is ((at X 1)@ 1) % I.

Then, a switching of a classical formula is its abstract syntax tree, minus

exactly one argument edge of each %. A switching of a linking A Iy Bisa
graph obtained by glueing (in the sense of pushouts in the category of undirected
graphs) along ports the (undirected) wires of f with switchings of A and B.
The linking then satisfies DR iff all its switchings are acyclic and connected. On
our above examples, sample switchings are depicted in Fig. [l

Correct linkings compose by glueing along ports in the middle formula, which
yields a category Sp(X). For example, pre and postcomposing the structural
isomorphism p with its obvious candidate inverse yields:

a®l a®1 a a
a = and a® I = (1)
a® I a® T a a.

The former is not an identity. And indeed, correct linkings do not form an sMcC
category. Instead, they form the free split SMC category over X [I9]. A split sMC
category is like an SMC category, where A and p are only required to have left
inverses, as exemplified with p in ().

Here is the final step: let a rewiring of some correct linking f be any link-
ing obtained by changing the target of exactly one wire from some occurrence
of I in f, without breaking correctness. A first example is that the left-hand



Variable Binding, Symmetric Monoidal Closed Theories, and Bigraphs 325

morphism of () rewires to the identity; a hopefully more intuitive example is
in Section Bl Then S(X) is the result of quotienting So(X) by the equivalence
relation generated by rewiring.

2.3 The Free Symmetric Monoidal Closed Category over a
Signature

We now extend S to SMC signatures Y: we have a set of sorts X, plus a set

of operations. We enrich linkings with, for each operation A “» B, a formal
morphism, pictured by a cell, in the style of interaction nets [21].

Ezample 2. The m-calculus send and get operations yield cells

vRURL v®(v—ot)

and

t t.

We then extend linkings A » B to include cells in a suitable way — a glance at
Fig. [2 might help. We consider linking equivalent modulo the choice of support,
i.e., the choice of cells. Linkings compose as before. The question is then: what
is a switching in the extended setting? The answer is that taking a switching of
acell A “» B is replacing the cell with a switching of A ® B*. For example,
consider the send and get operations, and a contraction operation v “ro®w.
Their respective switchings are:

VRURL vR(v—ot) v@(v—ot)

v v
N\ / / \ \ \ / \ \
® %
e ®\/ and Q\g Q\@
% %
® ® ®
\ \ \
t t t VRV VRU.

To understand why this is right, observe that SMC categories have a functional
completeness property, in the sense of Lambek and Scott [22]. Roughly, this

means that any morphism C' » D using a cell A ‘> B may be parameterised
over it, i.e., be decomposed as

o~ (| C
C cize %% Luamec b, )
where "¢ is the currying of ¢. An example such decomposition is pictured (left)

in Fig. @ below. This rightly suggests that an operation A “+ B should have
the same switchings as A — B in the domain, i.e., A ® B*. Quotienting under
rewiring as before yields the expected functor S:
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Theorem 1. The functors S and U yield a monadic adjunction

S
SMCSig |  SMCCat.
U

2.4 The Free Symmetric Monoidal Closed Category over a Theory

That gives the construction for signatures. We now extend it to SMC theories:
define a theory 7 to be given by a signature X, together with a set E4 p of
equations between morphisms in S(X)(A, B), for all A, B. The free sMC category
S(T) generated by such a theory is then the quotient of S(X) by the equations.
Constructing S(7) graphically is more direct than could have been feared: we

first define the binary predicate f; ~ fs relating two morphisms C fl’h: D in
S(X) as soon as each f; decomposes (remember (2) and the left-hand part of
Fig. M) as

o~ [

c % .rec 99C
with a common f, with (g1,92) € Ea,p. The smallest equivalence relation by
this relation ~ is stable under composition, and we define S(7°) by quotienting
S(X) under it.

Finally, S(7) is initial in the following sense. Let the category of representa-
tions of T be the full subcategory of the comma category X' |U whose objects are
the morphisms X' » U(C), for which C is an sMC category satisfying the equa-

T usw) Y- US(T), where

f

»(A—-B)®C "»D

tions in E. Now consider the morphism X
q is the quotient by the equations in F.

Theorem 2. This morphism is initial in the category of representations of T .

2.5 Commutative Monoid Objects

We finally slightly tune the above construction to better handle the special case
of commutative monoids. In a given theory 7 = (X, E), assume that a sort

t is equipped with two operations t ® t "wtand I »t, with equations
making it into a commutative monoid (m is associative and commutative, e is
its unit). Further assume that m and e do not occur in other equations. In this
case, we sketch (for lack of space) an alternative, more economic description of
morphisms in S(7).

Start from the original definition, relax the bijection condition on linkings,
i.e., allow them to map negative ¢t ports to positive ¢ ports non-bijectively, and
then replace m and e as follows:

tRt I TRt I

@ and ? become and
t t
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For a commutative comonoid (¢, w), the dual trick does not work so easily,
because of problems with weakening (weakening has an output I port, which
cannot be left unattached, as opposed to the input I port of e). But still, a non-
empty tree of ¢’s may be represented by several arrows leaving its root. Observe
that while m has as only switching the complete graph, ¢ has two switchings
(the formula is v ® (vt Z vt)).

2.6 Modularity and Sequentialisation as Induction

Mellies [24] convincingly explains the need for modular models of programming
languages and calculi. In a slightly different sense, we argue that SMC categories
provide a modular model of syntax. Namely, we obtain, for any theory 7:

Proposition 1. For any (representative of a) proof net A ' Bin S(T) with
a set C of cells, and any partition of C into Cy and Cs, f decomposes as fo0 f1,
where each f; contains exactly the cells in C;.

The proof is by inductively applying the decomposition (2]). Intuitively, Propo-
sition [I] says that, thinking of operations in X as atomic building blocks, each
morphism may be obtained by plugging such blocks together by composition
(see the left-hand part of Fig. M). In a sense, this is an induction principle (a
morphism only has finitely many cells). But it does not prevent wires to have a
complex structure in the obtained components. We thus need a more powerful
induction principle.

Let us fix a theory 7 = (X, E) for the rest of this section. A first, gen-
eral induction principle on S(7) is given by sequentialisation, in the sense of
Girard [I3], 6], as follows. Pick your preferred syntactic presentation of IMLL,
e.g., the original sequent calculus [I3] for concreteness. There is a well-known
mapping from axiom-free proofs to proof nets, say p — [p]. Observe that by

understanding the operations A “» Bin ¥ as axioms c: A+ B, this mapping
extends to proofs with axioms in X', by mapping any such ¢ to a corresponding
cell. We then have:

Theorem 3. Any morphism A ' Bin S(T) has an antecedent proof p in

IMLL plus azioms in X, such that [p] = f.

This provides an easy induction scheme over the morphisms of S(7). However,
this scheme has deficiencies: for example, the antecedent proofs it provides do not
have to be cut-free; moreover, morphisms may not be decomposed downwards
as with standard induction schemes. For an example of the latter, assume you
have a A-term starting with a A-abstraction; the induction scheme might reveal
this only after a few decompositions.

3 First Examples

In this section, we explain how to build the A-calculus in stages, starting from the
linear A-calculus, and passing through a kind of A-calculus with sharing of terms.
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(t—t)Dt t@(t—ot) t®...0t t®...0t

Fig. 2. Examples: linearity and sharing

We briefly discuss induction principles in this particular case. We then proceed
with a m-calculus example, which we will use as our main example in Section [l
We end by a few example uses of higher order and modularity (Proposition [IJ),
notably related to reduction and labelled transition rules.

3.1 Lambda-Calculus, Linearity, Induction

We start with the easiest application: the untyped A-calculus. If we naively
mimick HOAS to guess a signature for the A-calculus, we obtain one sort ¢ and

. : A
operations t ® t »tand (t —ot) » t. However, the free SMC category on
this signature is the linear A-calculus, as shown by the following standard result:

Proposition 2. Morphisms I ~ » t are in bijection with closed linear \-terms.

Composition in our category is like context application in A-calculus. A context
is a term with (possibly several, numbered) holes, and context application is re-
placement of the hole with a term (or another context), possibly capturing some
variables. The correspondence is tedious to formalise though, because contexts
do not have enough information. For example, consider the context A\z.(0o - 01)
with two holes Oy and O;. Exactly one of Oy and O; may use z, but this infor-
mation is not contained in the context, which makes context application partial.
In our setting, each possibility corresponds to one of the two morphisms on the
left of Fig. 2l

A first attempt to recover the full A-calculus is to add a contraction and a

weakening t “»t@tandt “» Itoour signature, with the equations making
(¢, w) into a commutative comonoid. The free sMC category on this theory is
close to Wadsworth’s A-graphs [33], which are a kind of A-terms with a fine
representation of sharing. For example, the two morphisms on the right of Fig.
are different, because contraction is not natural.

To obtain the standard A-calculus without sharing, we now consider two sorts:
a sort t for terms, and a sort v for variables, an idea that has been explored
independently in weak HOAS and tile logic 8], 17, 18], 2]. The theory then contains:

. A c w d
tet »t  (v—ot) -t v VRV W -1 v - t,
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where the latter is instantiation of a variable as a term, plus the equations making
(¢, w) into a commutative comonoid. We obtain:

Proposition 3. Morphisms I = t are in bijection with closed \-terms. Mor-
phisms not using ¢ nor w are in bijection with closed linear \-terms.

The commutative comonoid structure on v, and Trimble rewiring are crucial to
this result. Intuitively, the latter allows a weakened variable to be indifferently
linked anywhere under its scope. For example, the term Az.Ay.y has linkings

fv VA,
v S/

¢ ¢
t,

which all equivalent under Trimble rewiring.

Beyond Proposition [3, we also may recover open terms as follows. Mimicking
the standard construction of a monad from an operad using coends [23], for
any set X, let T'(X) contain triples of a natural number n, a function from the
ordinal n to X, and a morphism t®"  » t, where t®° = I and t®"1 = ¥ @ t.
Two such triples (n,u, f) and (n,v, g) are considered equivalent when there is a
permutation o: n > n such that g = f oo and v = w o o (finite ordinals and
permutations form a subcategory of S(7) through the embedding n — t®").

Theorem 4. The function T extends to a monad on Set, isomorphic to the
monad sending each set X to the set of \-terms with variables in X modulo
Q-CONVErsLon.

Multiplication for this monad, i.e., substitution, works as follows: for any triple

of a number n, a morphism t®" I t, and a function n > T(X), let each
u; = (ng, vi, fi), and m = Y'n;. Multiplication maps (n, u, f) to m, the morphism

t®2ni ® fi . t®n f

[UO7 s 7’UTL—1}

-1

and the coproduct function Xn; - X.

We may derive from Theorem [ an analogue of the standard induction scheme
on A-terms. We also expect to derive it directly, but for now defer a full treatment
for further work. Also, it seems worth investigating sufficient conditions on the
signature for such a general induction scheme to be derived. For instance, it is
not at all obvious which induction scheme should be derived from the signature
we choose in the next section for the w-calculus.
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t) ® (v—ot))

ps
NV,

v —o t.

Fig. 3. A m-calculus example

3.2 Pi-Calculus Example

A reasonable theory 7 for the m-calculus could have at least the operations s
and g specified above, plus commutative comonoid structure (¢, w) on v, plus
commutative monoid structure (|,0) on ¢. Consider furthermore a name restric-

tion operation [ S v, with the equation w o v = id;. We do not claim that
this theory 7 is the right one for the m-calculus, but it is relevant for bigraphs.
(An alternative type for vis (v —t) » ¢ [2,[I8].)

Consider the m-calculus term with holes (a(z).(Qo | Z(x))) | vb.(a(b).0O1). This
term may have many different interpretations as a morphism in S(7). A first
possibility is depicted in Fig. [Bl Recall: several arrows leaving a v port mean
a tree of contractions; several arrows entering a ¢ port mean a tree of parallel
compositions; a positive ¢ port with no input arrow means a 0.

The holes Op and O; are represented by the occurrences of ¢ in the domain
formula, in order. The free variable a of the term is represented by the occurrence
of v in the codomain. It is used three times: twice following the term, and once
more for transmitting it to O and 0.

But the language of sMC categories allows additional flexibility w.r.t. syntax.
For example, we could choose to impose that Oy and 0; may not use a. That
would mean changing the domain for (v — ¢) ® (v —o ¢), and removing the
leftmost wire. Or, we could, e.g., only allow Og to use a, and not O;. That
would only mean change the domain to ((v ® v) — t) ® (v —o t) (the leaves do
not change, so the wires may remain the same).

3.3 Higher Order and Modularity

We now give an example decomposition as in Proposition [I} in the A-calculus.
Consider the context with numbered holes (g - O1) - O2. The decomposition
obtained by Proposition [[] for Cy containing exactly the outermost application
is depicted left in Fig.[dl Such a decomposition is not possible in bigraphs, mainly
because it makes use of a higher-order formula, namely (t ® ¢) —o t.
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tRtR1L
tRtR1L
% ‘ ‘ ‘ (veat) —o t
tRtR1L

(t@t) — H)®

(v@tet) — t.
t.

Fig. 4. Examples: modularity and higher order

A possible use of such decompositions and higher order is in specifying reduc-
tion rules parametrically, as opposed to ground reduction rules. For example,
the m-calculus rule a(z). Og |a{z). 01 » [o |01 may be represented as a rule
between morphisms looking like Fig. Bl which we omit for lack of space. Another
possible use is in specifying transitions using second-order contexts, in the style
of [28,[12]. An example, using Cardelli and Gordon’s Mobile Ambients [3], is the

AQ.(a O
transition rule ina.P @-(elQ] D) » a[P|Q], whereby the process ina.P, in
the presence of a process of the shape a[Q], migrates inside the location a, to
yield a[P|Q]. A possible representation using SMC theories would take as states

of the labelled transition system morphisms I 7+ Ain the free sMC category
generated by the obvious SMC theory for Mobile Ambients, with as transitions

f e g certain morphisms A ‘+ B such that o f = g. In the above exam-
ple, ina.P is represented a morphism I » (v ®t) —o ¢ obtained by currying

the operation v ® ¢ ™, ¢ from the signature, and the label is the morphism
depicted right in Fig. [l

4 Binding Bigraphs

In this section, we consider (abstract binding) bigraphs [20]. They are a frame-
work for reasoning about distributed and concurrent programming languages,
designed to encompass both the w-calculus [26] and the Mobile Ambients cal-
culus [3]. We are here only concerned with bigraphical syntax: any so-called
bigraphical signature K generates a pre-category, and then a category M (KC),
whose objects are bigraphical interfaces, and whose morphisms are bigraphs.

Its main features are (i) the presence of relative pushouts (RPOs) in the
pre-category, which makes it well-behaved w.r.t. bisimulations, and that (ii) in
both the pre-category and the category, the so-called structural equations be-
come equalities. Also, bigraphs follow a scoping discipline ensuring that, roughly,
bound variables are only used below their binder.
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We now recall bigraphs and sketch our interpretation in terms of SMC theories,
which we compare to the original (see our preprint [I6] for a more technical
account).

4.1 Bigraphs

We work with a slightly twisted definition of bigraphs, in two respects. First, we
restrict Jensen and Milner’s scope rule by adding a binding rule to be respected
by bigraphs. This rule rectifies a deficiency of the scope rule, which prevented
bigraphs to be stable under composition in the original paper [QOE. It was added
in later work [25]. Our second twist is to take names in a fixed, infinite, and
totally ordered set, say X'. This helps relating our approach with the original.

A bigraphical signature is a set of operations, or controls k € IC, with arity
given by a pair of natural numbers ar, = (B, Fy) = (n,m), where By, = n
is the number of binding ports of k, F, = m being its number of free ports.
Additionally, a signature specifies a set A C K of atomic controls, whose binding
arity has to be 0.

Typically, send and get have arities: as = (0,2) and a, = (1,1). They are
not atomic (send would be atomic in the asynchronous m-calculus). The other
operations of the m-calculus are all kind of built into bigraphical structure, as
we will see shortly.

Bigraphs form a category, whose objects are interfaces. An interface is a triple
U = (n, X, ¢), where n is a natural number, X C X is a finite set of names, and

X ‘et {1} is a locality map (n is identified with the set {0,...,n—1}, i.e.,
the ordinal n). Names = with ¢(x) = ¢ € n are located at i; others are global.

Introducing the morphisms, i.e., bigraphs, themselves seems easier by exam-
ple. We thus continue with an example bigraph in Fig. Bl which will correspond
to the proof net in Fig. Bl The codomain of this bigraph, which is graphically
its upper, outer face, is W = (1,{a},{a — L}): the element 0 € 1 represents
the (only) outer box, which we accordingly marked 0. The global name a is the
common end of the group of three wires reaching the top side of the box.

The domain of our example bigraph, which is graphically its inner face when
the grey parts are thought of as holes (plus @), is U = (2,{a, z,b},{z — 0,b —
1,a’ — 1}). Comparing this to the domain of our morphism in Fig.[] we observe
that the elements 0 and 1 of 2 correspond to Oy and ;. Furthermore, the name
a’ being global corresponds to the domain v — ((v — t) ® (v —o t)) of Fig. Bl
having both t’s under the scope of the first v (i.e., there is an implication with
the t’s on its right, v on its left, and no other implication on the paths from it
to them). Finally, the locality map sending x to 0 corresponds to the second v
having only the first ¢ under its scope, and similarly for b being sent to 1.

The morphism itself is a compound of two graphical structures. The first
structure, the place graph, is a forest (here a tree), whose leaves are the inner

2 Being peers only involves inner names or ports by definition, not outer names. Thus,
binding ports may be linked to them. It is then easy to show that the scope rule is
not stable under composition. The binding rule [25] is the straightforward fix.
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a

i
/ ]
g

Fig. 5. An example bigraph

=),

0 and 1, the sites, and whose root is the outer 0. (Atomic controls would have
to be leaves.) Following Milner and Jensen, we represent nodes by regions in
the plane, the parent of a region being the immediately enclosing region. The
second structure, the link graph, is a bit more complicated to formalise. First,
each internal (i.e., non leaf, non root) node v is labelled with an operation &, € K.
We then compute the set of ports P: it is the set of pairs (v,i), where v is a
node, and i € By, + F}, is in either component of the arity of v. The link graph
is then a function P+ X "% B+ Y, where X = {da’,z,b} is the set of inner
names, Y = {a} is the set of outer names, and E is the set of edges. In our
morphism, a’ and both occurrences of a (i.e., the black dots connected to a in
the picture) are mapped to the outer name a by the link map. Furthermore, £
is a two-element set, say {2’,b'}. The edge 2’ acts as a link from the name x
received by the get node g to its three occurrences (the three dots connected to
it in the picture). Formally, the three involved ports and the name x are all sent
to x’ by the link map. The edge b’ represents the vb in the term; formally, both
b and the involved port of the right-hand s node are sent to b’ by the link map.

Until now, there is not much difference between the edge representing the
bound name x received on @ and the bound name b created by vb. The difference
comes in when we check the scope and binding rules. The binding rule requires
that each binding port (such as the one marked with a circle in Fig. ) be sent to
an edge, as opposed to a name in the codomain. The scope rule further requires
that its peers, i.e., the ports and names connected to the same edge, lie strictly
below it in the place graph. For ports, this should be clear. For inner names, this
means that they should be located at some site below it. In our example, the
inner 0 node indeed lies below the get node, for instance. This all ensures that
bound names are only used below their binder.

Remark 1. An edge is connected to at most one binding port, by acyclicity of
the place graph. An edge connected to one binding port is called bound.

Composition gof in the category of bigraphs M (K) is by plugging the outer boxes
of f into the inner boxes of g, in order, and connecting names straightforwardly.
This only works if we quotient out bigraphs by the natural notion of isomorphism,
i.e., modulo choice of nodes and edges. We actually consider a further quotient:
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removing an edge from F which was outside the image of link. The whole is
called lean support equivalence by Jensen and Milner.

4.2 Bigraphs as Symmetric Monoidal Closed Theories

We now describe our intepretation for bigraphs, starting with signatures. Con-
sider any signature (IC, B, F, A). We translate it into the following SMC signature
Ti, which has two sorts {t, v}, standing for terms and variables (or names), and
whose operations consist of structural operations and equations, plus logical op-
erations. The structural part, accounting for the built-in structure of bigraphs, is
as in Section B2 i.e., it consists of: a commutative monoid structure (|,0) on ¢,

a commutative comonoid structure (¢, w) on v, and a name restriction I s v,
such that wo v = idj.
The logical part consists, for each control k € K with ax = (n,m), of an

k k
operation v®™ " » t if k is atomic (and n = 0), and (v¥" —o t) ® V™ -t
otherwise. For example, recall send and get, defined above to have arities (1,1)
and (0,2), this gives (up to isomorphism) the operations (v @ v ®t) ° » t and

(v® (v —t) 7>t from Section An asynchronous send operation in the
style of the asynchronous m-calculus, would have bigraphical arity (0,2), which

’

would be translated into v @ v ° » ¢ because of atomicity.
Now, on objects, we define our functor T by:

T(n, X, £) = 0% — Qv — 1), 3)

1EN

where n, = [¢~(L)| and for all i € n, n; = [¢71(i)|. The ordering on X induces
a bijection between X and v leaves in the formula, which the translation of
morphisms exploits. On our main example, this indeed maps the domain and
codomain of Fig. { to those of Fig. Bl

We will here only describe the translation of morphisms on Fig. Bl for read-
ability. The full translation is available in the companion preprint [16]. Starting
from Fig. Bl a first step is to represent the place graph more traditionally, i.e.,
as usual with trees. But in order to avoid confusion between the place and link
graphs, we represent each node as a cell, and adopt the convention that edges
from the place graph relate a principal port (i.e., the vertex of a cell) to a right-
most auxiliary port (i.e., a rightmost point in the opposed segment). Wires from
the link graph thus leave from other auxiliary ports.

Finally, edges in E in the bigraph are pointed to by ports and inner names.
We now represent them as (nullary) v cells with pointers to their principal port.
We obtain the hybrid picture in Fig. [ where we have drawn the connectives
to emphasise the relationship with Fig. Bl And indeed we have almost obtained
the desired proof net. A first small problem is the direction of wires in the link
graph which, intuitively, go from occurrences of names to their creator (be it a v
or an outer name). So we start by reversing the flow of the link graph (implicitly
introducing trees of contractions).
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a— ((z —o 0) ® (b—l))

Fig. 6. A hybrid picture between bigraphs and proof nets

This does not completely correct the mismatch, however, because in the case
of bound edges like 2’ in our example bigraph, the v cell is absent from Fig. Bl
But by Remark[ the name in question has a unique binding occurrence, and the
v cell may be understood as an indirection between this binding occurrence and
the others. Contracting this indirection (and fixing the orientation accordingly)
yields exactly the desired proof net in Fig. Bl

The procedure sketched on our example generalises, up to some subtleties
with unused names (where should the weakenings point to?), and we have

Theorem 5. The function T extends to a functor M (K) je S(7x), faithful,
essentially injective on objects, and neither full nor surjective on objects.

The functor is not strictly injective on objects, because any two interfaces equal
up to their (ordered) choice of names have the same image. A counterexample
to fullness is the canonical morphism (v — I —ot) = (I —o v —o t): it amounts
to making a global variable local, which is forbidden in bigraphs.

Despite non-fullness, the overall scoping discipline of bigraphs is maintained,
in the sense that T is full on whole programs, i.e., bigraphs with neither sites
nor names in their interfaces. More generally, it is full on ground bigraphs, i.e.,
bigraphs in M (K)((0,0,0),U), for some interface U:

Theorem 6. For any such U, we have S(Tc)(I, T(U)) = M(K)((0,0,0),U).

So, S(7x) has as many whole programs as M (K), but more program fragments.

5 Conclusions

Related work. Various flavours of closed categories have long been known to be
closely related to particular calculi with variable binding [22| [T]. As mentioned
in the introduction, our approach may be considered as an update and further
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investigation of Coccia et al. [4]. Also, the relation between our approach and
Tanaka’s work on variable binding in a linear setting [31] remains unclear to us.

A number of papers have been devoted to better understanding (various kinds
of) bigraphs, be it as sortings [7], as cospans over graphs [30], through directed
bigraphs [14], or as a language with variable binding [5]. We appear to be the first
to reconcile a full treatment of scope (Theorem[]) with initial algebra semantics.

Future work. We should further investigate induction principles in our setting
(see Section [B]). We should also try to use our approach in an actual imple-
mentation.

On the bigraphical side, it might be useful to understand the scope rule in-
duced by our functor T in bigraphical terms. Also, we should study RPOs in our
approach, possibly by investigating (any form of) concrete bigraphs [20 [29)].

Another natural research direction from this paper concerns the dynamics of
bigraphs. Our hope is that Bruni et al.’s [2] very modular approach to dynamics
may be revived, and work better with SMC structure than with cartesian closed
structure. Specifically, with SMC structure, there is no duplication at the static
level, which might simplify matters.
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