WHEN COPRODUCTS ARE BIPRODUCTS
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ABSTRACT. Among right-closed monoidal categories with finite coproducts, we charac-
terise those with finite biproducts as being precisely those in which the initial object
and the coproduct of the unit with itself admit right duals. This generalises Houston’s
result that any compact closed category with finite coproducts admits biproducts.

1. BACKGROUND AND STATEMENT OF RESULTS

Recall that a monoidal category is compact closed (also autonomous) when every object
has both a left and right dual; key examples include the categories of finite dimensional
vector spaces, and of sets and relations. In [2], Houston proves that in a compact closed
category, finite products and coproducts coincide; more precisely, they are biproducts:

Definition 1. Let ¥ be a category with a zero object: an object 0 € € which is both
initial and terminal. A coproduct ¥;c;A; in % is called a biproduct if the cone

(1) (ﬂ‘ki Eie]Ai — Ak-)k-e]

is a product cone, where 7, is the unique morphism with 7, = 14, and with 7, = 0 for
1 # k; here, for any X, Y € €, 0: X — Y is the composite of unique maps X — 0 — Y.

Houston’s proof does not adapt to give a characterisation of categories with biproducts
among the (different) class of symmetric monoidal closed categories; in a question on
MathOverflow [1], Barton asked whether such a characterisation could be given as the two
requirements that finite coproducts exist, and that the initial object and the coproduct of
the unit with itself have duals. After helpful conversations with Mike Shulman, the second
author was able to answer this question affirmatively; some time later, the first author,
inspired by discussions with James Dolan, found a simpler version of the proof which
generalises to the non-symmetric monoidal case (and thus recovers Houston’s result). The
goal of this note, then, is to give a streamlined proof of:

Theorem 2. If € = (¢, ®, 1) is a monoidal category possessing finite coproducts preserved
by each A® (-), then € has a zero object and finite biproducts if and only if the initial
object 0 and coproduct I + I have right duals.

In fact, we prove something slightly more general. When % has finite coproducts, the
existence of biproducts is equivalent to semi-additivity: the existence of commutative
monoid structures on the hom-sets which are preserved by composition in each variable.

Theorem 3. If € is a monoidal category with nullary and binary coproducts of I, preserved
by each A® (-), then € is semi-additive if and only if 0 and I + I have right duals.
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A key ingredient in the proof of these theorems is the “terminal object lemma”:

Lemma 4. An object T of a category € is terminal if and only if there is a cocone
e:idg = AT under the identity functor on € for which ep =1p: T — T.

Proof. The “only if” follows as the unique morphisms C' — T" are natural in C. Conversely,
given ¢, there is the map e¢: C — T from each C' € €; to show unicity, we use er = 1
and naturality of € to conclude that for any f: C'— T we have f =epf = ec. O

From this we recover the following well-known result, which provides the link between
Theorems 2 and 3.

Proposition 5. If € is semi-additive with an initial object 0, then the initial object is a
zero object and any finite coproduct that exists in € is a biproduct.

Proof. The neutral elements of the monoids € (C, 0) give a cocone idy = A0, so that 0 is
terminal by Lemma 4. Suppose now that (1;: A; — A);er is a finite coproduct cocone.
We will use Lemma 4 to show that the cone 7 = (mp: A — Ag)rer of (1) is terminal
among all such cones. Given a cone f = (fi: B = Ag)rer, let ef = Siertifi: B — A.
Then ey = ¥imju; fi = fj, so €p: f — 7 is a map of cones; moreover, €. is natural as
composition in ¢ is bilinear. Finally, we have e;t; = Yji;mit; = 1; and so e, = 14. 0O

2. PROOFS AND EXAMPLES

Our main result is a consequence of the following necessary and sufficient condition for
a reasonable category € to be semi-additive. We say that 4 has 2-fold copowers if all
coproducts A + A exist, and that it has binary copowers if, for each n € N, all 2"-fold
coproducts A + --- + A exist; which is so just when % has 2-fold copowers and an initial
object 0. In a category with binary copowers, the coproducts 0 + A and A + 0 always
exist (since they can be taken to be A), and so we can talk about counital comagmas:
objects A endowed with a comultiplication §: A - A + A and a counit €: A — 0 such
that (e +14)0 =14 = (14 +¢€)d.

Proposition 6. Let € be a category with binary copowers. The following are equivalent:
(i) The category € is semi-additive;
(i) The initial object 0 is a zero object and the 2-fold copowers A+ A are biproducts;
(iii) The identity functor has a counital comagma structure in the functor category [€,€].

Proof. The implication (i) = (ii) follows from Proposition 5; while (ii) = (iii) follows
since the diagonal morphism and the zero morphism are natural.

For (iii) = (i), suppose that e4: A — 0 and 04: A — A+ A are natural families with
(14 +€4)04 = 14 = (64 + 14)04. Naturality at coproduct injections ¢;: A — A+ A
implies that any triangle as on the left in

A+ A A— " 444
da+d4 da+A
5AJ JfSA-&-A
A+ A+ A+ A—— A+ A+ A+ A A+ A A+ A+ A+ A

1+(e2,e1)+1 da+da

commutes in %, while naturality at d4 says that each square as to the right commutes.
By combining these two diagrams we find that the unital magma (A4,54,€4) in €°P is
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medial; here, a magma m: M x M — M is said to be medial if for all generalised elements
a,b,c,d: X — M we have m(m(a,b), m(c,d)) = m(m(a,c), m(b,d)).

The Eckmann—Hilton argument shows that any unital medial magma in a category
with finite products' is a commutative monoid. Thus for each pair of objects A, B € € we
get a commutative monoid structure (¢’ (A, B),¢ (64, B), € (¢4, B)), which by naturality
of § and ¢ gives the desired semi-additive structure on % . O

We now prove our main theorems. First we recall:

Definition 7. Let (¢, ®, ) be a monoidal category. A right dual for X € € comprises an
object Y € € and amap n: I — Y ® X such that each map f: A - B® X is of the form

A2 Aoy x 22X Bex

for a unique g: A®Y — B. Note that Y is right dual to X if and only if there are natural
isomorphisms 04 p: € (A, B® X) — € (A ®Y, B) which are stable under tensor, in the
sense that (A’ ®—) o004 p =0aga a0 (A ®-): €(A,BeX) - C(ARARY,A'®B).

Proof of Theorem 3. If € is semi-additive, then by Proposition 5, the initial object is
terminal and the coproduct B® (I 4+ I) = B + B is a product. Thus there are natural
bijections between maps A ® 0 — B and A — B ® 0 on the one hand and maps
A®@ (I +1I)— Band A— B® (I +I) on the other; these isomorphisms are easily seen
to be stable under tensor, whence both 0 and I + I are self-dual.

In the converse direction, the assumption that A ® (-) preserves the 2-fold copower
I + I implies that ¢ has binary copowers, and so Proposition 6 is applicable. Since
there are natural isomorphisms A ® (I + 1) 2 A+ A and A ® 0 = 0, we may verify
Proposition 6(iii) by constructing a counital comagma structure on the object I € €.

Suppose, then, that e: I — Z ® 0 = 0 exhibits Z as right dual to 0, and that
n: I — D ® (I 4 I) exhibits D as right dual to I 4+ I. Lemma 4 applied to the natural
family e4 = A®e: A — 0 shows that 0 is a terminal object; in particular, ¢f = g for
any two maps f,g: X = I. Now let my,7m9: D — I be the unique maps such that

u=I5DoI+I) Z2L 147,

Writing 77 for the composite I - D @ (I 4+ 1) = D + D, it follows that

u=ID+D T 1T,

Now take 0: I — I + I to be the composite (71 + m2)7: I — D+ D — I + I and observe
that (1[ + 5)5 = (1[ + 6)(7T1 + 7T2)’I7 = (71'1 + €7T2>17 = (7T1 + €7T1)’l7 = (1] + E)Ll = 1; and
dually (e +17)0 = 1;. It follows that the identity functor on & bears a counital comagma
structure, and so by Proposition 6 that € is semi-additive. ]

Proof of Theorem 2. Propositions 5 and 6 show that a category with finite coproducts
is semi-additive if and only if it has finite biproducts. The claim therefore follows from
Theorem 3. g

We conclude the paper with some examples showing that our result is, in a certain
sense, the best possible: the assumptions in Theorem 3 that A ® (—) preserves the initial
object 0 and the coproduct I + I cannot be relaxed.

11t suffices to assume that the 3-fold product M x M x M exists; but this is necessary in order to
express the associativity axiom of a monoid internally.
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Example 8. Let ¢ be the category of endofunctors of the category 2 = {0 < 1}, with
tensor product given by composition. The category € is isomorphic to the ordered set
{0 < id < 1}, so the coproduct id + id is equal to id and is therefore both self-dual and
also preserved by each A ® (). The initial object 0 has as right dual the terminal object
1, but 0 is not preserved by 1 ® (—). The category % is not semi-additive since 0 is not
isomorphic to 1.

Example 9. Let FinSet, be the category of finite pointed sets, and % the category of
zero-object-preserving endofunctors of FinSet,, with tensor product given by composition.
The constant functor at 0 is self-dual, and id + id has id x id as right dual (here: right
adjoint). Every A ® (—) preserves the initial object by assumption, but need not preserve
the coproduct id + id. The category % is not semi-additive since the canonical morphism
id 4+ id — id x id is not invertible.

Note that in the above two examples, the functors () ® A preserve all finite coproducts
because these are computed pointwise in functor categories. By passing to the monoidal
categories with the reverse tensor product, we obtain examples satisfying all the conditions
of Theorem 3 except that one of 0 and I + I merely has a left dual. This shows that,
in the situation of Theorem 3, such left duals need not imply the semi-additivity of the
underlying category.
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