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Abstract

The Catalan numbers are well known to be the answer to many different counting prob-
lems, and so there are many different families of sets whose cardinalities are the Catalan
numbers. We show how such a family can be given the structure of a simplicial set. We
show how the low-dimensional parts of this simplicial set classify, in a precise sense, the
structures of monoid and of monoidal category. This involves aspects of combinatorics, al-
gebraic topology, quantum groups, logic, and category theory.

1. Introduction

The nth Catalan number Cn , given explicitly by
(2n

n

)
/(n + 1), is well known to be the

answer to many different counting problems; for example, it is the number of bracketings of
an (n + 1)-fold product. Thus there are many N-indexed families of sets whose cardinalities
are the Catalan numbers; Stanley [16, 17] describes at least 205 such.

A Catalan family of sets may bear extra structure that is invisible in the mere sequence
of Catalan numbers. For example, one presentation of the nth Catalan set is as the set of
functions f : {1, . . . , n} → {1, . . . , n} which preserve order and satisfy f (k) ! k for each
k. The set of such functions is a monoid under composition and in this way we obtain
the Catalan monoids [15] which are of importance to combinatorial semigroup theory. For
another example, a result due to Tamari [19] makes each Catalan set into a lattice, whose
ordering is most clearly understood in terms of bracketings of words, as the order generated
by the basic inequality (xy)z ! x(yz) under substitution.

The first objective of this paper is to describe another kind of structure borne by Catalan
families of sets. We shall show how to define functions between them in such a way as to
produce a simplicial set C, which is the “Catalan simplicial set” of the title. The simplicial
structure can be defined in various ways, but the most elegant makes use of what seems to
be a new presentation of the Catalan sets that relies heavily on the Boolean algebra 2.
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Simplicial sets are abstract, combinatorial entities, most often used as models of spaces in
homotopy theory, but flexible enough to also serve as models of higher categories [12, 20].
Therefore, we might hope that the Catalan simplicial set had some natural role to play in
homotopy theory or higher category theory. Our second objective in this paper is to affirm
this hope, by showing that the Catalan simplicial set has a classifying property with respect
to certain kinds of categorical structure. More precisely, we will consider simplicial maps
from C into the nerves of various kinds of higher category (the nerve of such a structure is a
simplicial set which encodes its cellular data). We will see that:

(a) maps from C to the nerve of a monoidal category V are the same thing as monoids in
V ;

(b) maps from C to the nerve of a bicategory B are the same thing as monads in B;
(c) maps from C to the pseudo nerve of the monoidal bicategory Cat of categories and

functors are the same thing as monoidal categories;
(d) maps from C to the lax nerve of the monoidal bicategory Cat are the same thing as

skew-monoidal categories.

Skew-monoidal categories generalise Mac Lane’s notion of monoidal category [14] by
dropping the requirement of invertibility of the associativity and unit constraints; they were
introduced recently by Szlachányi [18] in his study of bialgebroids, which are themselves an
extension of the notion of quantum group. The result in (d) can be seen as a coherence result
for the notion of skew-monoidal category, providing an abstract justification for the axioms.
Thus the work presented here lies at the interface of several mathematical disciplines:

(i) combinatorics, in the form of the Catalan numbers;
(ii) algebraic topology, via simplicial sets and nerves;

(iii) quantum groups, through recent work on bialgebroids;
(iv) logic, through the distinguished role of the Boolean algebra 2; and
(v) category theory.

Nor is this the end of the story. Monoidal categories and skew-monoidal categories can be
generalised to notions of monoidale and skew monoidale in a monoidal bicategory; this has
further relevance for quantum algebra, since Lack and Street showed in [11] that quantum
categories in the sense of [3] can be described using skew monoidales. In a sequel to this
paper we will generalise (c) and (d) to prove that:

(e) maps from C to the pseudo nerve of a monoidal bicategory W are the same thing as
monoidales in W ; and

(f) maps from C to the lax nerve of a monoidal bicategory W are the same thing as skew
monoidales in W .

The results (a)–(f) use only the lower dimensions of the Catalan simplicial set and we expect
that its higher dimensions in fact encode all of the coherence that a higher-dimensional
monoidal object should satisfy. We therefore hope also to show that:

(g) maps from C to the pseudo nerve of the monoidal tricategory Bicat of bicategories are
the same thing as monoidal bicategories;

(h) maps from C to the homotopy-coherent nerve of the monoidal simplicial category
∞-Cat of ∞-categories are the same thing as monoidal ∞-categories in the sense
of [13];

together with appropriate skew analogues of these results.
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Finally, a note on the genesis of this work. We have chosen to present the Catalan sim-

plicial set as basic, and its classifying properties as derived. This belies the method of its
discovery, which was to look for a simplicial set with the classifying property (d); the link
with the Catalan numbers only came to light later. The notion that a classifying object as
in (d) might exist is based on an old idea of Michael Johnson’s on how to capture not only
associativity but also unitality constraints simplicially. He reminded us of this in a recent
talk [9] to the Australian Category Seminar.

2. The Catalan simplicial set

In this section we define and investigate the Catalan simplicial set. We begin by recalling
some basic definitions. We write ! for the simplicial category, whose objects are non-empty
finite ordinals [n] = {0, . . . , n} and whose morphisms are order-preserving functions, and
write SSet for the category of presheaves on !. Objects X of SSet are called simplicial sets;
we think of them as glueings-together of discs, with the n-dimensional discs in that glueing
labelled by the set Xn := X ([n]) of n-simplices of X . We write δi : [n − 1] → [n] and
σi : [n + 1] → [n] for the maps of ! defined by

δi(x) =
{

x if x < i

x + 1 otherwise
and σi(x) =

{
x if x ! i

x − 1 otherwise.

The action of these morphisms on a simplicial set X yields functions di : Xn → Xn−1 and
si : Xn → Xn+1, which we call face and degeneracy maps. An (n + 1)-simplex x is called
degenerate when it is in the image of some si , and non-degenerate otherwise. The face and
degeneracy maps of a simplicial set satisfy the following simplicial identities:

di d j = d j−1di for i < j

si s j = s j+1si for i ! j
di s j =

⎧
⎪⎨

⎪⎩

s j−1di for i < j

id for i = j, j + 1

s j di−1 for i > j + 1;

and in fact, a simplicial set may be completely specified by giving its sets of n-simplices,
together with face and degeneracy maps satisfying the simplicial identities.

Definition 2·1. The Catalan simplicial set C has its n-simplices given by Dyck words of
length 2n + 2; these are strings comprised of (n + 1) U ’s and (n + 1) D’s such that the i th
U precedes the i th D for each 1 ! i ! n + 1. The face maps di : Cn → Cn−1 act on a Dyck
word by deleting the i th U and i th D; the degeneracy maps si : Cn−1 → Cn act on a Dyck
word by repeating the i th U and i th D.

The sets of Dyck words of length 2n are a Catalan family of sets—corresponding to (i) or
(r) in Stanley’s enumeration [16, exercise 6·19]—and so |Cn| = Cn+1, the (n + 1)st Catalan
number.

Remark 2·2. The sets of n-simplices of C are not quite a Catalan family, due to the di-
mension shift causing us to omit the 0th Catalan number. We may rectify this by viewing
C as an augmented simplicial set. An augmented simplicial set is a presheaf on !+, the
category of all finite ordinals and order-preserving maps; it is equally given by a simplicial
set X together with a set X−1 of (−1)-simplices and an “augmentation” map d0 : X0 → X−1

satisfying d0d0 = d0d1 : X1 → X−1. By allowing n to range over {−1} ! N in the definition
of the Catalan simplicial set C, it becomes an augmented simplicial set with the property
that its sets of (n − 1)-simplices (for n ∈ N) are a Catalan family.
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In order to understand the Catalan simplicial set as a simplicial set, we must understand
the face and degeneracy relations between its simplices. In low dimensions, we see directly
that C has:

(i) a unique 0-simplex U D, which we write as ⋆;
(ii) two 1-simplices UU DD and U DU D, the first of which is s0(⋆) and the second of

which is non-degenerate; we write these as e = s0(⋆) : ⋆ → ⋆ and c : ⋆ → ⋆;
(iii) five 2-simplices: three degenerate ones UUU DDD, UU DDU D and U DUU DD,

and two non-degenerate ones UU DU DD and U DU DU D. We depict these, and
their faces, by:

⋆
e

!!!
!!

!!
!!

s0(e)
=s1(e)

⋆ e
""

e
##"""""""

⋆

⋆
c

!!!
!!

!!
!!

s0(c)

⋆ c
""

e
##"""""""

⋆

⋆
e

!!!
!!

!!
!!

s1(c)

⋆ c
""

c
##"""""""

⋆

⋆
c

!!!
!!

!!
!!

t

⋆ c
""

c
##"""""""

⋆

⋆
e

!!!
!!

!!
!!

i

⋆ c
""

e
##"""""""

⋆ .

(2·1)

In higher dimensions, the simplices of C will be determined by coskeletality. A simplicial
set is called r-coskeletal when every n-boundary with n > r has a unique filler; here, an
n-boundary in a simplicial set is a collection of (n − 1)-simplices (x0, . . . , xn) satisfying
d j (xi ) = di(x j+1) for all 0 ! i ! j < n; a filler for such a boundary is an n-simplex x with
di(x) = xi for i = 0, . . . , n.

PROPOSITION 2·3. The Catalan simplicial set is 2-coskeletal.

Proof. For each natural number n, let Kn be the set of binary relations R ⊂ {0, . . . , n}2

such that (i) i R j implies i < j ; and (ii) i < j < k and i R k implies i R j and j R k.
For each n " 0, there is a bijection Cn → Kn which sends a Dyck word W to the set of
those pairs i < j such that the ( j + 1)st D precedes the (i + 1)st U in W . Transporting the
simplicial structure of C along these bijections yields an isomorphic simplicial set K and it
suffices to prove that this is 2-coskeletal.

We may identify the faces of an n-simplex R ∈ Kn with the restrictions of R to the
(n + 1) distinct n-element subsets of {0, . . . , n}. An arbitrary collection (R0, . . . , Rn) of
such relations, seen as elements of Kn−1, comprises an n-boundary just when each Ri and
R j agree on the intersections of their domains. In this situation, there is a a unique relation
R ⊂ {0, . . . , n}2 restricting back to the given Ri ’s, and satisfying (i) since each Ri does. If
n > 2, then each triple 0 ! i < j < k ! n will lie entirely inside the domain of some Rℓ,
and so the relation R will satisfy (ii) since each Rℓ does, and thus constitute an element of
Kn . Thus for n > 2, each n-boundary of K!C has a unique filler.

We now give one further description of the Catalan simplicial set, perhaps the most ap-
pealing: we will exhibit it as the monoidal nerve of a particularly simple monoidal category,
namely the poset 2 = ⊥ ! ⊤, seen as a monoidal category with tensor product given by
disjunction. We first explain what we mean by this. Recall that if A is a category, then its
nerve N(A ) is the simplicial set whose 0-simplices are objects of A , and whose n-simplices
for n > 0 are strings of n composable morphisms. Since the face and degeneracy maps are
obtained from identities and composition in A , the nerve in fact encodes the entire category
structure of A .



The Catalan simplicial set 215
Suppose now that A is a monoidal category in the sense of [14]—thus, equipped with

a tensor product functor ⊗ : A × A → A , a unit object I ∈ A , and families of natural
isomorphisms αABC : (A ⊗ B) ⊗ C ! A ⊗ (B ⊗ C), λA : I ⊗ A ! A and ρA : A !
A ⊗ I , satisfying certain coherence axioms which we recall in detail in Section 4 below.
In this situation, the nerve of A as a category fails to encode any information concerning
the monoidal structure. However, by viewing A as a one-object bicategory (= weak 2-
category), we may form a different nerve which does encode this extra information.

Definition 2·4. Let A be a monoidal category. The monoidal nerve of A is the simplicial
set N⊗(A ) defined as follows:

(i) there is a unique 0-simplex, denoted ⋆;
(ii) a 1-simplex is an object A ∈ A ; its two faces are necessarily ⋆;

(iii) a 2-simplex is a map A12 ⊗ A01 → A02 in A ; its three faces are A12, A02 and A01;
(iv) a 3-simplex is a commuting diagram

(A23 ⊗ A12) ⊗ A01
α ""

A123⊗1
$$

A23 ⊗ (A12 ⊗ A01)

1⊗A012

$$
A13 ⊗ A01 A013

"" A03 A23 ⊗ A02A023

%%

(2·2)

in A ; its four faces are A123, A023, A013 and A012;
(v) higher-dimensional simplices are determined by 3-coskeletality.

The degeneracy of the unique 0-simplex is the unit object I ∈ A ; the two degeneracies
s0(A), s1(A) of a 1-simplex are the respective coherence constraints ρ−1

A : A ⊗ I → A and
λA : I ⊗ A → A; the three degeneracies of a 2-simplex are simply the assertions that certain
diagrams commute, which is so by the axioms for a monoidal category. Higher degeneracies
are determined by coskeletality.

Note that, because the monoidal nerve arises from viewing a monoidal category as a one-
object bicategory, we have a dimension shift: objects and morphisms of A become 1- and
2-simplices of the nerve, rather than 0- and 1-simplices.

PROPOSITION 2·5. The simplicial set C is uniquely isomorphic to the monoidal nerve of
the poset 2 = ⊥ ! ⊤, seen as a monoidal category under disjunction.

Proof. In any monoidal nerve N⊗(A ), each 3-dimensional boundary has at most one
filler, existing just when the diagram (2·2) associated to the boundary commutes. Since
every diagram in a poset commutes, the nerve N⊗(2), like C, is 2-coskeletal. It remains to
show that C ! N⊗(2) in dimensions 0, 1, 2. In dimension 0 this is trivial. In dimension 1,
any isomorphism must send s0(⋆) = e ∈ C1 to s0(⋆) = ⊥ ∈ N⊗(2)1 and hence must send c
to ⊤. In dimension 2, the 2-simplices of N⊗(2) are of the form

⋆
x12

!!!
!!

!!
!!

⋆ x02
""

x01

##"""""""
⋆

where x12 ∨ x01 ! x02 in N⊗(2). Thus in N⊗(2), as in C, there is at most one 2-simplex with
a given boundary, and by examination of (2·1), we see that the same possibilities arise on
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both sides; thus there is a unique isomorphism C2 !N⊗(2)2 compatible with the face maps,
as required.

We conclude this section by investigating the non-degenerate simplices of the Catalan
simplicial set; these will be of importance in the following sections, where they will play
the role of basic coherence data in higher-dimensional monoidal structures. We will see that
these non-degenerate simplices form a Motzkin family of sets. The Motzkin numbers [5]
1, 1, 2, 4, 9, . . . are defined by the recurrence relations

M0 = 1 and Mn+1 = Mn + ∑n−1
k=0 Mk Mn−1−k,

and an N-indexed family of sets is a Motzkin family of sets if there are a Motzkin number of
elements in each dimension. For example, if we define a Motzkin word to be a string in the
alphabet {U, C, D} which, on striking out every C , becomes a Dyck word, then the sets Mn

of Motzkin words of length n are a Motzkin family of sets—corresponding to Stanley [16,
Exercise 6·38 item (b) or (d)].

PROPOSITION 2·6. The family (nd Cn : n ∈ N) of non-degenerate simplices of C is a
Motzkin family of sets.

Proof. It suffices to construct a bijection nd Cn ! Mn for each n. In one direction, we
have a map nd Cn → Mn sending a non-degenerate Dyck word W to the Motzkin word
M1 . . . Mn defined as follows: if the i th and (i +1)st U ’s are adjacent in W , then Mi = U ; if
the i th and (i + 1)st D’s are adjacent in W , then Mi = D; otherwise Mi = C . (Note that the
first two cases are disjoint; a Dyck word W satisfying both would have to be in the image of
the i th degeneracy map.)

In the other direction, suppose given a Motzkin word M = M1 . . . Mn . Let a1 < · · · < ak

enumerate all i for which Mi is D or C , and let b1 < · · · < bk enumerate all i for which Mi

is U or C . The inverse mapping Mn → nd Cn now sends M to the Dyck word

U a1 Db1U a2−a1 Db2−b1 · · · U ak−ak−1 Dbk−bk−1U n+1−ak Dn+1−bk .

That these two mappings are mutually inverse is the content of the equivalence between the
Motzkin families (M1) and (M4) of [5].

Using this result, we may re-derive a well-known combinatorial identity relating the Catalan
and Motzkin numbers.

COROLLARY 2·7. For each n " 0, we have Cn+1 = ∑
k

(n
k

)
Mk.

Proof. Recall that the Eilenberg–Zilber lemma [6, Section II·3] states that every simplex
x ∈ Xn of a simplicial set X is the image under a unique surjection φ : [n] # [k] in ! of
a unique non-degenerate simplex y ∈ Xk . Since there are

(n
k

)
order-preserving surjections

[n] # [k],
Cn+1 = |Cn| = ∑

φ : [n]![k] |nd Ck | = ∑
k

(n
k

) |nd Ck | = ∑
k

(n
k

)
Mk

as required.

3. First classifying properties

We now begin to investigate the classifying properties of the Catalan simplicial set, by
looking at the structure picked out by maps from C into the nerves of certain kinds of
categorical structure. For our first classifying property, recall that a monoid in a monoidal
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category A is given by an object A ∈ A and morphisms µ : A ⊗ A → A and η : I → A
rendering commutative the three diagrams

(A ⊗ A) ⊗ A α ""

µ⊗1

$$

A ⊗ (A ⊗ A)

1⊗µ

$$
A ⊗ A µ

"" A A ⊗ Aµ
%%

A
ρA "" A ⊗ I

1⊗η

$$
A A ⊗ Aµ

%%

I ⊗ A
λA ""

η⊗1
$$

A

A ⊗ A

µ

&&#########

.

PROPOSITION 3·1. If A is a monoidal category, then to give a map f : C → N⊗(A ) of
simplicial sets is equally to give a monoid in A .

Proof. Since N⊗(A ) is 3-coskeletal, a simplicial map f : C → N⊗(A ) is uniquely de-
termined by where it sends non-degenerate simplices of dimension ! 3. We have already
described the non-degenerate simplices in dimensions ! 2, while in dimension 3, there are
four such, given by

a = (t, t, t, t) ℓ = (i, s1(c), t, s1(c))

r = (s0(c), t, s0(c), i) k = (i, s1(c), s0(c), i) .

Here, we take advantage of 2-coskeletality of C to identify a 3-simplex x with its tuple
(d0(x), d1(x), d2(x), d3(x)) of 2-dimensional faces. Thus to give f : C → N⊗(A ) is to
give:

(i) in dimension 0, no data: f must send ⋆ to ⋆;
(ii) in dimension 1, an object A ∈ A , the image of the non-degenerate simplex c ∈ C1;

(iii) in dimension 2, morphisms µ : A ⊗ A → A and η′ : I ⊗ I → A, the images of the
non-degenerate simplices t, i ∈ C2;

(iv) in dimension 3, commutative diagrams

f (a) =
(A ⊗ A) ⊗ A α ""

µ⊗1

$$

A ⊗ (A ⊗ A)

1⊗µ

$$
A ⊗ A µ

"" A A ⊗ Aµ
%%

f (ℓ) =
(I ⊗ I ) ⊗ A α ""

η′⊗1

$$

I ⊗ (I ⊗ A)

1⊗λA

$$
A ⊗ A µ

"" A I ⊗ A
λA

%%

f (r) =

(A ⊗ I ) ⊗ I α ""

ρ−1
A ⊗1

$$

A ⊗ (I ⊗ I )

1⊗η′

$$
A ⊗ I

ρ−1
A

"" A A ⊗ Aµ
%%

f (k) =

(I ⊗ I ) ⊗ I α ""

η′⊗1

$$

I ⊗ (I ⊗ I )

1⊗η′

$$
A ⊗ I

ρ−1
A

"" A I ⊗ A
λA

%%

the images as displayed of the non-degenerate 3-simplices of C.
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On defining η = η′ ◦ ρA : I → I ⊗ I → A, we obtain a bijective correspondence
between the data (A, µ, η′) for a simplicial map C → N⊗(A ) and the data (A, µ, η) for
a monoid in A . Under this correspondence, the axiom f (a) for (A, µ, η′) is clearly the
same as the associativity axiom for (A, µ, η); a short calculation with the axioms for a
monoidal category shows that f (ℓ) and f (r) correspond likewise with the unit axioms for
a monoid. This leaves only f (k); but it is easy to show that this is automatically satisfied
in any monoidal category. Thus monoids in A correspond bijectively with simplicial maps
C → N⊗(A ) as claimed.

Remark 3·2. A generalisation of this classifying property concerns maps from C into
the nerve of a bicategory B in the sense of [1]. Bicategories are “many object” versions
of monoidal categories, and the nerve of a bicategory is a “many object” version of the
monoidal nerve of Definition 2·4. An easy modification of the preceding argument shows
that simplicial maps C → N(B) classify monads in the bicategory B.

4. Higher classifying properties

The category Cat of small categories and functors bears a monoidal structure given by
cartesian product, and monoids with respect to this are precisely small strict monoidal
categories—those for which the associativity and unit constraints α, λ and ρ are all identit-
ies. It follows by Proposition 3·1 that simplicial maps C → N⊗(Cat) classify small strict
monoidal categories. The purpose of this section is to show that, in fact, we may also classify
both:

(i) not-necessarily-strict monoidal categories; and
(ii) skew-monoidal categories in the sense of [18];

by simplicial maps from C into suitably modified nerves of Cat, where the modifications
at issue involve changing the simplices from dimension 3 upwards. The 3-simplices will
no longer be commutative diagrams as in (2·2), but rather diagrams commuting up to a
natural transformation, invertible in the case of (i) but not necessarily so for (ii). The 4-
simplices will be, in both cases, suitably commuting diagrams of natural transformations,
while higher simplices will be determined by coskeletality as before. Note that, to obtain
these new classification results, we do not need to change C itself, only what we map it into.
The change is from something 3-coskeletal to something 4-coskeletal, which means that the
non-degenerate 4-simplices of C come into play. As we will see, these encode precisely the
coherence axioms for monoidal or skew-monoidal structure.

Before continuing, let us make precise the definition of skew-monoidal category. As ex-
plained in the introduction, this notion was introduced by Szlachányi in [18] to describe
structures arising in quantum algebra, and generalises Mac Lane’s notion of monoidal cat-
egory by dropping the requirement that the coherence constraints be invertible.

Definition 4·1. A skew-monoidal category is a category A equipped with a unit element
I ∈ A , a tensor product ⊗ : A × A → A , and natural families of (not neccesarily
invertible) constraint maps

αABC : (A ⊗ B) ⊗ C −→ A ⊗ (B ⊗ C)

λA : I ⊗ A −→ A and ρA : A −→ A ⊗ I
(4·1)

subject to the commutativity of the following diagrams—wherein tensor is denoted by
juxtaposition—for all A, B, C, D ∈ A :
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(AB)(C D)

((AB)C)D

(A(BC))D A((BC)D)

A(B(C D))

(S1)

α
$$$

''$$$

α1
%%
%%

((
%%
%%

α
""

1α&&&&

))
&&&&

α'''

**'''
(AI )B α "" A(I B)

1λ

$$
(S2)

AB

ρ1

++

id
"" AB

I (AB)

λ

,,(
((

((
((

(S3)

(I A)B

α

--)))))))

λ1
"" AB

(AB)I
α

!!!
!!

!!
!!

(S4)

AB

ρ
##""""""""

1ρ
"" A(B I )

I I
λ

,,*
**

**
**

*

(S5)

I

ρ

--++++++++

id
"" I .

A skew-monoidal category in which α, λ and ρ are invertible is exactly a monoidal category;
the axioms (S1)–(S5) are then Mac Lane’s original five axioms [14], justified by the fact that
they imply the commutativity of all diagrams of constraint maps. In the skew case, this
justification no longer applies, as the axioms no longer force every diagram of constraint
maps to commute; for example, we need not have 1I⊗I = ρI ◦ λI : I ⊗ I → I ⊗ I . The
classification of skew-monoidal structure by maps out of the Catalan simplicial set can thus
be seen as an alternative justification of the axioms in the absence of such a result.

Before giving our classification result, we describe the modified nerves of Cat which will
be involved. The possibility of taking natural transformations as 2-cells makes Cat not just a
monoidal category, but a monoidal bicategory in the sense of [7]. Just as one can form a nerve
of a monoidal category by viewing it as a one-object bicategory, so one can form a nerve
of a monoidal bicategory by viewing it as a one-object tricategory (= weak 3-category),
and in fact, various nerve constructions are possible—see [4]. The following definitions are
specialisations of some of these nerves to the case of Cat.

Definition 4·2. The lax nerve Nℓ(Cat) of the monoidal bicategory Cat is the simplicial set
defined as follows:

(i) there is a unique 0-simplex, denoted ⋆;
(ii) a 1-simplex is a (small) category A01;

(iii) a 2-simplex is a functor A012 : A12 × A01 → A02;
(iv) a 3-simplex is a natural transformation

(A23 × A12) × A01
! ""

A0123..A123×1
$$

A23 × (A12 × A01)

1×A012

$$
A13 × A01 A013

"" A03 A23 × A02A023

%%

with 1-cell components

(A0123)a23,a12,a01 : A013(A123(a23, a12), a01) → A023(a23, A012(a12, a01)) ;

(v) a 4-simplex is a quintuple (A1234, A0234, A0134, A0124, A0123) of appropriately-formed
natural transformations making the pentagon
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A024(A234(a34, a23), A012(a12, a01))

A0234

//,,,,,,,,,,,,,,,

A014(A124(A234(a34, a23), a12), a01)

A0124

00$$$$$$$$

A014(A1234,1)

$$

A034(a34, A023(a23, A012(a12, a01)))

A014(A134(a34, A123(a23, a12)), a01)

A0134 11''''''''

A034(a34, A013(A123(a23, a12), a01))

A034(1,A0123)

&&---------------

commute in A04 for all (a01, a12, a23, a34) ∈ A01 × A12 × A23 × A34;
(vi) higher-dimensional simplices are determined by 4-coskeletality, and face and degen-

eracy maps are defined as before.

The pseudo nerve Np(Cat) is defined identically except that the natural transformations oc-
curring in dimensions 3 and 4 are required to be invertible.

We are now ready to give our higher classifying property of the Catalan simplicial set.

PROPOSITION 4·3. To give a simplicial map f : C → Np(Cat) is equally to give a small
monoidal category; to give a simplicial map f : C → Nℓ(Cat) is equally to give a small
skew-monoidal category.

Proof. First we prove the second statement. Since Nℓ(Cat) is 4-coskeletal, a simplicial
map into it is uniquely determined by where it sends non-degenerate simplices of dimension
at most four. In dimensions ! 3, to give f : C → Nℓ(Cat) is to give:

(i) in dimension 0, no data: f must send ⋆ to ⋆;
(ii) in dimension 1, a small category A = f (c);

(iii) in dimension 2, a functor ⊗ = f (t) : A × A → A and an object I ∈ A picked
out by the functor f (i) : 1 × 1 → A ;

(iv) in dimension 3, natural transformations

f (a) =
(A × A ) × A

! ""

α ..⊗×1
$$

A × (A × A )

1×⊗
$$

A × A ⊗
"" A A × A⊗

%%

f (ℓ) =
(1 × 1) × A

! ""

λ ..f (i)×1

$$

1 × (1 × A )

1×!
$$

A × A ⊗
"" A 1 × A!

%%

f (r) =
(A × 1) × 1 ! ""

ρ ..!×1
$$

A × (1 × 1)

1× f (i)

$$
A × 1 !

"" A A × A⊗
%%
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f (k) =
(1 × 1) × 1 ! ""

κ ..f (i)×1

$$

1 × (1 × 1)

1× f (i)

$$
A × 1 !

"" A 1 × A!
%%

which are equally well natural families α, λ and ρ as in (4·1) together with a map
κ⋆ : I → I .

So the data in dimensions ! 3 for a simplicial map C → Nℓ(Cat) is the data
(A , ⊗, I, α, λ, ρ) for a small skew-monoidal category augmented with a map κ⋆ : I → I
in A . It remains to consider the action on non-degenerate 4-simplices of C. There are nine
such, given by:

A1 = (a, a, a, a, a) A6 = (s0(i), ℓ, k, r, s2(i))
A2 = (r, s1(t), a, s1(t), ℓ) A7 = (k, ℓ, s0s1(c), r, k)

A3 = (ℓ, ℓ, s2(t), a, s2(t)) A8 = (r, s1(t), s0(t), r, k)

A4 = (s0(t), a, s0(t), r, r) A9 = (k, ℓ, s2(t), s1(t), ℓ),
A5 = (s1(i), s2(i), k, s0(i), s1(i))

where, as before, we take advantage of coskeletality of C to identify a 4-simplex with its
tuple of 3-dimensional faces. The images of these simplices each assert the commutativity
of a pentagon of natural transformations involving α, ρ, λ or κ; explicitly, they assert that
for any A, B, C, D ∈ A , the following pentagons commute in A :

(AB)(C D)

((AB)C)D

(A(BC))D A((BC)D)

A(B(C D))

(A1)

α
$$$

''$$$

α1
%%
%%

((
%%
%%

α
""

1α&&&&

))
&&&&

α'''

**'''
AB

AB

(AI )B A(I B)

AB
(A2)

1
$$$

''$$$

ρ1
%%

%%

((
%%
%%

α
""

1λ&&&&

))
&&&&

1''
'

**''
'

I (AB)

(I A)B

AB AB

AB
(A3)

α
$$$

''$$$

λ1
%%
%%

((
%%

%%

1
""

1&&&&

))
&&&&

λ'''

**''
'

(AB)I

AB

AB AB

A(B I )
(A4)

ρ
$$$

''$$$

1
%%

%%

((
%%

%%

1
""

1ρ&&&&

))
&&&&

α'''

**'''
I

I

I I

I
(A5)

1
$$$$

''$$$$

1
%%

%%

((
%%

%%

κ⋆

""

1&&&&

))
&&&&

1''
''

**''
''

I I

I

I I

I
(A6)

ρI
$$$$

''$$$

1
%%

%%

((
%%

%%

κ⋆

""

1&&&&

))
&&&&

λI''
'

**''
''

I I

I

I I

I
(A7)

ρI
$$$$

''$$$

κ⋆

%%
%%

((
%%

%%

1
""

κ⋆&&&&

))
&&&&

λI''
'

**''
''

AI

A

AI AI

AI
(A8)

ρ
$$$$

''$$$

ρ
%%

%%

((
%%

%%

1
""

1κ&&&&

))
&&&&

1''
'

**''
'

I A

I A

I A I A

A .
(A9)

1
$$$

''$$$

κ1
%%

%%

((
%%

%%

1
""

λ&&&&

))
&&&&

λ''
'

**'''
'
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Note first that (A5) forces κ⋆ = 1I : I → I . Now (A1)–(A4) express the axioms (S1)–(S4),
both (A6) and (A7) express axiom (S5), whilst (A8) and (A9) are trivially satisfied. Thus
the 4-simplex data of a simplicial map C → Nℓ(Cat) exactly express the skew-monoidal
axioms and the fact that the additional datum κ⋆ : I → I is trivial; whence a simplicial map
C → Nℓ(Cat) is precisely a small skew-monoidal category.

The same proof now shows that a simplicial map C → Np(Cat) is precisely a small
monoidal category, under the identification of monoidal categories with skew-monoidal cat-
egories whose constraint maps are invertible.
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