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We give an account of the basic combinatorial structure underlying the notion of 
type dependency. We do so by considering the category of generalised algebraic 
theories in the sense of Cartmell, and exhibiting it as the category of algebras for 
a monad on a presheaf category. The objects of the presheaf category encode the 
basic judgements of a dependent sequent calculus, while the action of the monad 
encodes the deduction rules; so by giving an explicit description of the monad, 
we obtain an explicit account of the combinatorics of type dependency. We find 
that this combinatorics is controlled by a particular kind of decorated ordered tree, 
familiar from computer science and from innocent game semantics. Furthermore, 
we find that the monad at issue is of a particularly well-behaved kind: it is local 
right adjoint in the sense of Street–Weber. In future work, we will use this fact to 
describe nerves for dependent type theories, and to study the coherence problem 
for dependent type theory using the tools of two-dimensional monad theory.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There has been much recent interest in Martin–Löf’s type theory, spurred on by the discovery of re-
markable links to algebraic topology and the theory of (∞, 1)-categories. Homotopy type theory [23] extends 
Martin–Löf type theory with Voevoedsky’s univalence axiom and a new collection of type-formers, the 
higher inductive types; the resultant system is capable of deriving key results of homotopy theory—such as 
calculations of homotopy groups of spheres—in a synthetic, axiomatic manner. Models of the axioms include 
not only classical homotopy theory, but also “non-standard homotopy theories” described by (∞, 1)-toposes 
(homotopical analogues of categories of sheaves); in fact, it is believed that we can view homotopy type 
theory as providing an internal language for (∞, 1)-toposes, just as first-order geometric logic does for 
Grothendieck toposes.

The suitability of Martin–Löf type theory as a language for abstract homotopy theory is due to the 
presence of identity types which can be validly interpreted by the homotopy relation. The existence of identity 
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types relies in turn on the possibility of type dependency: type families indexed by elements of other types. 
While the intuitive meaning of type dependency is clear, its syntactic expression is rather involved; a desire 
to understand its mathematical essence has led diverse authors [5,7,8,10,13,14,20] to describe notions of 
categorical model for dependent type theory which abstract away from the complexities of the syntax.

One aspect that remains implicit in both the syntactic and the categorical accounts is the combinatorial 
structure of type dependency: the structure imposed on the judgements of a dependent sequent calculus by 
the basic rules of weakening, projection and substitution. On the syntactic side, this combinatorics is hidden 
in the recursive clauses which generate the calculus; while on the categorical side, the essential role it plays 
in constructing models from the syntax is no longer visible in the finished product. In short, the syntactic 
approach fails to detect this structure by being insufficiently abstract, while the categorical approach fails 
to see it by being too abstract.

The objective of this paper is to elucidate the combinatorics of type dependency by adopting a viewpoint 
which is intermediate between the concrete syntactic one and the fully abstract categorical one. We will 
model dependent sequent calculi as algebras for a monad on a presheaf category (we assume the reader 
is familiar with the basic concepts of category theory as set out in [19]). Objects of the presheaf category 
will encode the basic judgement-forms of a sequent calculus; the algebraic structure imposed on them by 
the monad will encode the deduction rules. Now the combinatorial structure we wish to describe inheres 
in the action of the monad, and so by giving an explicit description of this action, we obtain an explicit 
account of the structure. More precisely, the underlying endofunctor of the monad describes the derivable 
judgements of a freely-generated sequent calculus; while the monad multiplication encodes the process of 
proof-tree normalisation by which such derivations are combined.

For the dependent sequent calculi to be studied in this paper, we will not consider rules for type-formers 
such as Π-types, Σ-types and identity types, but rather concentrate on the core structural rules of weakening, 
projection and substitution. The combinatorics arising from just these rules is particularly elegant; we will 
see that in a freely-generated theory of this kind, the shape of derivable judgements is controlled by suitably 
decorated heaps. A heap is a finite tree with a total order on its nodes refining the tree order. This structure 
is common throughout logic and computer science, and the manner in which it appears here is highly 
reminiscent of its role in the study of (logical) game semantics and innocent strategies [9]. We hope to 
explore this link further in future work.

Beyond elucidating a structure which we believe to be interesting in its own right, the approach taken in 
this paper will also enable the analysis of dependent type theory using the tools of combinatorial category 
theory. This is a particular strand of category theory, growing out of Joyal’s work [15], which has found 
recent applications [16,18,25,26] in taming some of the complexities of higher-dimensional category theory. 
A central theme in combinatorial category theory is the study of monads possessing abstract categorical 
properties that allow them to be seen as fundamentally combinatorial in nature. It turns out that the monad 
for dependent type theories is of this kind. More precisely, it is local right adjoint or familially representable
in the sense of [4,17,21]: and this permits the application of a rich body of theory [2,18,24,25] concerning 
such monads to the study of dependent type theories. It is beyond the scope of this paper to investigate 
these connections in detail but let us mention two applications we intend to pursue in future work; see 
Section 8 below for a more detailed sketch of these applications.

Firstly, we will apply the results of [25] to describe a nerve functor for dependent sequent calculi: thus, 
a fully faithful embedding of the category of dependent sequent calculi into a presheaf category, together 
with a characterisation of the objects in the image. Nerve functors commonly serve to embed algebraic 
objects into geometric settings, so that in this case we may reasonably hope to find an implicit geometry of 
dependent sequent calculi.

Secondly, we will provide a new take on the coherence problem [11] for dependent type theory. We 
will do so by lifting the monad for dependent type theories to a 2-monad on a presheaf 2-category, and 
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studying its pseudoalgebras, which are abstract presentations of Curien’s “syntax with substitution up to 
isomorphism” [6].

We now give an overview of the contents of the paper. We begin in Section 2 with a description of the 
syntax of the dependent sequent calculi of interest to us, which are the generalised algebraic theories of [5]; 
we also describe the interpretations between two such theories, so yielding the objects and morphisms of 
the category GAT of generalised algebraic theories.

In Section 3, we begin our combinatorial analysis of the category GAT by describing a presheaf category 
[Hop, Set] whose objects encode the basic judgements of a generalised algebraic theory. We define a forgetful 
functor GAT → [Hop, Set], and show that this has a left adjoint and is monadic. The main goal of the 
paper will be to give an explicit description of the induced monad.

In fact it will be convenient—and illuminating—to split this task up. Writing w, p, and s for the weak-
ening, projection and substitution rules, we consider for each D ⊂ {w, p, s} the category D-GAT of “gener-
alised algebraic theories with structural rules from D”. Again, each forgetful functor D-GAT → [Hop, Set]
has a left adjoint and is monadic, and by studying the induced monads for various choices of D, we may 
understand the structure induced by various combinations of the three rules.

In Section 4, we consider the structure imposed on [Hop, Set] by the rule of weakening alone, without 
projection or substitution; thus, we characterise the monad W induced by the forgetful functor {w}-GAT →
[Hop, Set]. Then in Section 5, we consider the structure imposed by the projection rule. As this rule in fact 
relies on the weakening rule for its well-formedness, we are forced to consider both together: we thus describe 
the monad P induced by the functor {w, p}-GAT → [Hop, Set]. In Section 6, we go on to consider the 
structure imposed by substitution alone, which involves describing the monad S induced by the forgetful 
functor {s}-GAT → [Hop, Set]; and then in Section 7, we combine together the monads for weakening and 
projection and for substitution into a compound monad T = PS for generalised algebraic theories. The 
extra datum required to do so is a distributive law in the sense of [1] between the two monads P and S; 
this distributive law describes the process by which instances of weakening or projection may be commuted 
past instances of substitution in a derivation tree.

We conclude in Section 8 by showing that each of the monads constructed in the preceding sections 
has the good property of being local right adjoint. We show that the monads W , P and S for weakening, 
weakening and projection, and substitution, have the additional property of being cartesian, meaning that 
the naturality squares of their unit and multiplication are all pullbacks. We also discuss in more detail the 
further applications outlined above.

2. Syntax of type theory

2.1. Generalised algebraic theories

In this section, we give a careful exposition of the syntax of dependent type theory. As explained in 
the introduction, our concern is not with the type constructors of Martin–Löf type theory—identity types, 
Π-types, Σ-types, and so on—but rather with the basic structure of type dependency itself. It is thus a 
natural choice to work in the setting of Cartmell’s generalised algebraic theories [5]; these are dependent 
sequent calculi without type constructors, but with the possibility of adding arbitrary (possibly dependent) 
type and term constants. To give such a theory is to give its type and term constants together with a list 
of axioms specifying the formation rules for the constants as well as any equational constraints they should 
satisfy.

Example 1. The generalised algebraic theory of categories is given over the language with two type-constants 
O and A, two term-constants c and i, and the following axioms:
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• � O type;
• x :O, y :O � A(x, y) type;
• x :O � i(x) :A(x, x);
• x :O, y :O, z :O, g :A(y, z), f :A(x, y) � c(x, y, z, g, f) : A(x, z);
• x :O, y :O, f :A(x, y) � c(x, y, y, i(y), f) = f : A(x, y);
• x :O, y :O, f :A(x, y) � c(x, x, y, f, i(x)) = f : A(x, y);
• x :O, y :O, z :O, w :O, h :A(z, w), g :A(y, z), f :A(x, y) 

� c(x, y, w, c(y, z, w, h, g), f) = c(x, z, w, h, c(x, y, z, g, f)) : A(x, w).

We now give the formal definition; here, and throughout the paper, V denotes a fixed denumerable set of 
variables.

Definition 2.

(a) Given an alphabet W , the collection W ∗ of expressions over W is the smallest collection of strings 
closed under the rules:
• If x ∈ V then x ∈ W ∗;
• If n ∈ N, e1, . . . , en ∈ W ∗ and w ∈ W then w(e1, . . . , en) ∈ W ∗.
For the second clause, in the case n = 0, we abbreviate w() simply to w. We now define in the usual 
manner the free variables fv(e) of an expression, and the substitution e′[e/x] of an expression for a 
variable in an expression.

(b) A context over the alphabet W is a (possibly empty) string x1 : T1, . . . , xn : Tn, where each xi is a 
distinct element of V and each Ti is in W ∗. A judgement over W is a string taking one of the following 
four forms:
• A type judgement Γ � T type;
• A term judgement Γ � t : T ;
• A type equality judgement Γ � T = T ′ type;
• A term equality judgement Γ � t = t′ : T ,
where in each case Γ is a context over W and t, t′, T, T ′ ∈ W ∗. The degree of a judgement is defined to 
be one greater than the length of its context.

(c) The boundary ∂(J ) of a judgement J over W is a list of judgements of length 0, 1, or 2, defined as 
follows:
• ∂(� T type) = ();
• ∂(Γ, x : T � T ′ type) = (Γ � T type);
• ∂(Γ � t : T ) = (Γ � T type);
• ∂(Γ � T = T ′ type) = (Γ � T type, Γ � T ′ type);
• ∂(Γ � t = t′ : T ) = (Γ � t : T, Γ � t′ : T ).

(d) A collection Φ of judgements over W is deductively closed if, whenever the hypotheses of one the rules 
in Table 1 is in Φ, so too is the conclusion.

Definition 3. (See [5].) A generalised algebraic theory (gat) T comprises a collection Ω of type-constants, 
a collection Σ of term-constants, and a collection Λ of judgements (which we call basic) over Ω � Σ, such 
that:

• For each A ∈ Ω, there is a unique judgement in Λ of the form

x1 : T1, . . . , xn−1 : Tn−1 � A(x1, . . . , xn−1) type,
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Table 1
Deduction rules for generalised algebraic theories.

Equality and α rules

Γ � t : T
Γ � t = t : T

Γ � t1 = t2 : T
Γ � t2 = t1 : T

Γ � t1 = t2 : T Γ � t2 = t3 : T
Γ � t1 = t3 : T

Γ � T type
Γ � T = T type

Γ � T1 = T2 type
Γ � T2 = T1 type

Γ � T1 = T2 type Γ � T2 = T3 type
Γ � T1 = T3 type

Γ � T1 = T2 type Γ � t : T1

Γ � t : T2

Γ � T1 = T2 type Γ � t1 = t2 : T1

Γ � t1 = t2 : T2

Γ � T1 = T2 type Γ, y : T1,Δ � J
Γ, y : T2,Δ � J

Γ � J
σ · Γ � σ · J

σ ∈ Sym(V )

(in the last two rules, J denotes one of the four judgement types; in the last rule, σ ·Γ
and σ · J denote the action of the automorphism σ of V on the variables in Γ and J .)
Weakening rule

Γ � T type Γ,Δ � J
Γ, y : T,Δ � J

y /∈ fv(Γ ) ∪ fv(Δ)

Projection rule

Γ � T type
Γ, y : T � y : T

y /∈ fv(Γ )

Substitution rules

Γ � t : T Γ, y : T,Δ � J
Γ,Δ[t/y] � J [t/y]

Γ � t1 = t2 : T Γ, y : T,Δ � T ′ type
Γ,Δ[t2/y] � T ′[t1/y] = T ′[t2/y] type

Γ � t1 = t2 : T Γ, y : T,Δ � t′ : T ′

Γ,Δ[t2/y] � t′[t1/y] = t′[t2/y] : T ′[t2/y]

and we define the degree of A to be the degree of this judgement;
• For each f ∈ Σ, there is a unique judgement in Λ of the form

x1 : T1, . . . , xn−1 : Tn−1 � f(x1, . . . , xn−1) : T,

and again, we define the degree of f to be the degree of this judgement;
• All other elements of Λ are type equality or term equality judgements;
• Each element of Λ is a derived judgement of T.

Here, the collection T∗ of derived judgements of T is the smallest deductively closed collection which contains 
a judgement J ∈ Λ whenever it contains each judgement in its boundary ∂(J ).

As we have said, the notion of gat does not incorporate any of the usual type-forming operations 
of Martin–Löf type theory. To add these, we would extend the expression grammar of Definition 2 with 
syntax for the type-formers, and extend Table 1 with the corresponding formation, introduction, elimination 
and computation rules; see [10,22] for detailed treatments in this spirit. In this paper, we are interested in 
understanding the interactions between the basic structural rules, and so, as anticipated in the introduction, 
we will find it more useful to vary the definition of gat in the other direction, by removing some of the 
deduction rules.

Definition 4. Let w, p and s denote the weakening rules, the projection rules and the substitution rules, 
respectively. For any subset D ⊂ {w, p, s}, we define a “D-gat” in the same manner as a gat, but with 
the deduction rules of Table 1 reduced to those for equality, α-conversion and the rules in D. Thus a gat

in the previous sense is equally a “{w, p, s}-gat”.
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In fact, we should restrict this definition slightly. We call D ⊂ {w, p, s} decent if it contains w whenever 
it contains p; and in what follows, we consider only decent D. The reason for this restriction is that the 
projection rule requires the weakening rule to “make sense”; more precisely, the problem is that for indecent 
D, the D-gats do not have the property that the boundary of a derivable judgement is again derivable. We 
exclude such pathologies by excluding such D.

2.2. Interpretations

The (D-)gats are the objects of a category, wherein morphisms are (equivalence-classes of) interpretations
of one theory in another. In terms of this, we can, for example, define set-based models of a gat T as 
interpretations of T in the “gat of sets and families of sets”, as described in [5, Section 14].

Definition 5. (See [5].) An interpretation ϕ: T → U of (D-)gats is given by an assignation ϕ: T∗ → U
∗ on 

derived judgements such that:

• ϕ preserves boundaries; thus ϕ(∂(J )) = ∂(ϕ(J )) for all J ∈ T
∗.

• ϕ preserves deduction in the following sense. To each deduction rule with n premisses, we can associate 
an n-ary partial function h from the judgements over a given alphabet to itself, sending the hypotheses 
of the rule to its conclusion. We now require that for each J1, . . . , Jn ∈ T

∗ we have ϕ(h(J1, . . . , Jn)) =
h(ϕ(J1), . . . , ϕ(Jn)) whenever both sides are defined. For example, preserving the first equality rule 
means that:

ϕ(Γ � T type) = (Γ ′ � T ′ type) =⇒ ϕ(Γ � T = T type) = (Γ ′ � T ′ = T ′ type)

while preserving the first substitution rule means that

ϕ(Γ � t : T ) = (Γ ′ � t′ : T ′) and ϕ(Γ, y : T,Δ � J ) = (Γ ′, y : T ′,Δ′ � J ′)

=⇒ ϕ(Γ,Δ[t/y] � J [t/y]) = (Γ ′,Δ′[t′/y] � J ′[t′/y]).

Note that the requirement that an interpretation ϕ preserve deductions means that it is uniquely deter-
mined by its action on basic judgements. More precisely, to specify an interpretation ϕ it suffices to describe 
where each basic judgement J of T is sent, and to verify that these choices satisfy ∂(ϕ(J )) = ϕ(∂(J )); 
note that, since ∂(J ) is in general only a derived judgement of T, the value ϕ(∂(J )) must be determined 
from the given values on basic judgements using the fact that ϕ is required to preserve deduction.

As anticipated above, the morphisms of the category of gats will not be interpretations, but rather 
equivalence classes of interpretations modulo the equivalence relation of provable equality, which we now 
define.

Definition 6. Let T be a (D-)gat. The congruence ≡ on the derived type judgements of T is defined by 
asserting that

(x1 : S1, . . . , xn−1 : Sn−1 � Sn type) ≡ (y1 : T1, . . . , ym−1 : Tm−1 � Tm type)

if and only if n = m, and for each 1 � i � n, the judgement

x1 : S1, . . . , xi−1 : Si−1 � Si = Ti[x1/y1, . . . , xi−1/yi−1] type

is derivable. The congruence ≡ on the derived term judgements of T is defined by asserting that
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(x1 : S1, . . . , xn−1 : Sn−1 � s : Sn) ≡ (y1 : T1, . . . , ym−1 : Tm−1 � t : Tm)

if and only if their boundaries are congruent type judgements (in particular n = m) and moreover T derives 
that

x1 : S1, . . . , xn−1 : Sn−1 � s = t[x1/y1, . . . , xn−1/yn−1] : Sn.

Definition 7. The category GAT has generalised algebraic theories as objects, and as morphisms, equivalence 
classes of interpretations T → U, where two interpretations ϕ and ϕ′ are deemed equivalent just when 
ϕ(J ) ≡ ϕ′(J ) for each derived type or term judgement of T. We similarly define the category D-GAT for 
any decent D ⊂ {w, p, s}.

3. Type-and-term structures and monadicity

3.1. Type-and-term structures

We now begin the main task of this paper, that of expressing the category GAT of generalised algebraic 
theories as the category of algebras for a monad on a presheaf category. As discussed in the introduction, the 
presheaf category at issue will model the collections of derived judgements of a type theory; more precisely, 
it will model the derivable type and term judgements considered modulo derivable equality.

Definition 8. Let H denote the category generated by the graph

1t 2t 3t

1 2 3 · · · .

By a type-and-term structure, we mean a presheaf X ∈ [Hop, Set]. We write the reindexing maps X(nt) →
X(n) and X(n +1) → X(n) as ∂, and call them boundary maps. We refer to elements of X(n) as type-elements 
of degree n, and elements of X(nt) as term-elements of degree n.

Remark 9. A type-and-term structure is exactly a computational arena in the sense of [12]. At the moment, 
this may appear to be a rather fanciful observation, but we will see in Remarks 18 and 24 below that it is 
part of a more substantial link with innocent game semantics.

The idea is that, for a type-and-term structure X, elements of X(n) or of X(nt) should be thought of as 
≡-equivalence classes of type or term judgements of degree n of a dependent sequent calculus. The following 
definition makes this precise.

Definition 10. Let D ⊂ {w, p, s} be decent. We define the forgetful functor V = VD: D-GAT → [Hop, Set]
by sending a D-gat T to the type-and-term structure V T with

V T(n) =
{

(x1 : T1, . . . , xn−1 : Tn−1 � Tn type) ∈ T
∗ }/≡

and V T(nt) =
{

(x1 : T1, . . . , xn−1 : Tn−1 � t : Tn) ∈ T
∗ }/≡

and with the maps ∂: V T(n + 1) → V T(n) and ∂: V T(nt) → V T(n) sending the equivalence class of a 
judgement to the equivalence class of its boundary. On maps, V sends an interpretation ϕ: T → U to the 
presheaf map V ϕ: V T → V U with V ϕ([J ]) = [ϕ(J )] (note this is well-defined as an interpretation must 
preserve boundaries and degrees).
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In the analysis that follows, we will frequently find that most of the real action goes on at the level of 
type-elements, with the term-elements “coming along for the ride” in a fairly straightforward manner. In 
light of this, we will find convenient to introduce the following notation.

Definition 11. Given X ∈ [Hop, Set] and A ∈ X(n), we write TmX(A) for the set of all a ∈ X(nt) with 
∂a = A; given f : X → Y in [Hop, Set], we write f : TmX(A) → TmY (f(A)) for the restriction of f to such 
term-elements.

Now to specify X ∈ [Hop, Set], it is enough to give the sets of type-elements and the boundary maps 
X(1) ← X(2) ← X(3) ← . . . together with sets TmX(A) of term-elements over each type-element A. 
Similarly, to given a map of presheaves f : X → Y , it is enough to give maps X(n) → Y (n) for each n > 0
and maps TmX(A) → TmY (f(A)) for each A ∈ X(n).

3.2. Monadicity

The following result now tells us that for each decent D, we can present D-GAT (to within equivalence) 
as the category of algebras for a monad on [Hop, Set].

Proposition 12. For any decent D, the functor V = VD: D-GAT → [Hop, Set] has a left adjoint and is 
monadic.

Proof. The left adjoint G = GD has value at a type-and-term structure X given by the D-gat GX whose 
type-constants and term-constants are the respective type-elements and term-elements of X, and whose 
basic judgements are of the form

JA = x1 :A1, . . . , xn−1 :An−1(x1, . . . , xn−2) � A(x1, . . . , xn−1) type

for each A ∈ X(n) with successive boundaries An−1, . . . , A1, and

Ja = x1 :A1, . . . , xn−1 :An−1(x1, . . . , xn−2) � a(x1, . . . , xn−1) :A(x1, . . . , xn−1)

for each a ∈ TmX(A). The unit of the adjunction ηX : X → V GX is given by ηX(A) = [JA] and 
ηX(f) = [Jf ]; the counit εT: GV T → T at a D-gat T is the interpretation defined on basic judgements by 
εX(J[J ]) = J .

The monadicity of V is verified by an application of Beck’s theorem [19]. First note that D-GAT has all 
coequalisers: indeed, given interpretations ϕ, ψ: T ⇒ U, their coequaliser U′ is obtained from U by adjoining 
a basic equality judgement Γ � T = T ′ type whenever ϕ(J ) = (Γ � T type) and ψ(J ) = (Γ ′ � T ′ type)
for some basic type judgement J of T; and similarly adjoining a basic equality judgement Γ � t = t′ : T
whenever ϕ(J ) = (Γ � t : T ) and ψ(J ) = (Γ ′ � t′ : T ′) for some basic term judgement J of T. The evident 
interpretation U → U

′ exhibits U′ as the coequaliser of ϕ and ψ.
It is easy to see that V reflects isomorphisms, and so to verify monadicity, it remains to show that V

preserves coequalisers of V -split coequaliser pairs. Let ϕ, ψ: T ⇒ U be interpretations, and let

V T

V ϕ

V ψ

V U
p

�

Z
m

be a split coequaliser diagram in [Hop, Set]: thus pm = 1, mp = V ψ.
 and 1 = V ϕ.
, and these equations 
force p to coequalise V ϕ and V ψ. We must show that the coequaliser q: U → U

′ of ϕ and ψ in GAT is 
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preserved by V , i.e., that the comparison map V q.m: Z → V U
′ in [Hop, Set] is invertible. From the above 

explicit description of coequalisers in D-GAT, it is easy to see that the sets comprising V U
′ are obtained 

by quotienting out those comprising V U by the smallest equivalence relation ∼ such that:

(a) ϕ(J ) ∼ ψ(J ) for each basic type or term judgement of T;
(b) J11 ∼ J12, . . . , Jk1 ∼ Jk2 implies J1 ∼ J2 whenever one of the rules of Table 1 derives Ji from 

J1i, . . . , Jki (for i = 1, 2).

To show that the comparison map Z → V U
′ is invertible is equally to show that a ∼ b implies p(a) = p(b) for 

all a, b in V U. Clearly p(ϕ(J )) = p(ψ(J )) for all basic type or term judgements of T since p coequalises V ϕ

and V ψ; it remains to show that if p(Jj1) = p(Jj2) in V U (for j = 1, . . . , k) and one of the rules of Table 1
derives Ji from J1i, . . . , Jki (for i = 1, 2), then p(J1) = p(J2). As in Definition 5, write h for the k-ary partial 
function on judgements associated to the derivation rule at issue; thus we have h(J1i, . . . , Jki) = Ji (for 
i = 1, 2). Examining the form of the rules in Table 1, we see that definedness of h depends only on conditions 
involving boundaries; since 
: V U → V T preserves boundaries, we conclude that h(
(J1i), . . . , 
(Jki)) is 
defined for i = 1, 2; and now

p(Ji) = p
(
h(J1i, . . . ,Jki)

)
= p

(
h
(
ϕ
(J1i), . . . , ϕ
(Jki)

))
= p

(
ϕ
(
h
(

(J1i), . . . , 
(Jki)

)))
= p

(
ψ
(
h
(

(J1i), . . . , 
(Jki)

)))
= p

(
h
(
ψ
(J1i), . . . , ψ
(Jki)

))
= p

(
h
(
mp(J1i), . . . ,mp(Jki)

))

for i = 1, 2. But since p(Jj1) = p(Jj2) for j = 1, . . . , k, we conclude that p(J1) = p(J2) as required. �
When D = ∅, we have a considerably stronger result: V∅ is an equivalence. This explains why we have 

chosen to view gats as monadic over [Hop, Set], rather than over some other presheaf category.

Proposition 13. V∅: ∅-GAT → [Hop, Set] is an equivalence of categories.

Proof. We already know that V∅ has a left adjoint G∅ and is monadic, so it suffices to check that the 
unit η: 1 ⇒ V∅G∅ of the induced monad is invertible; thus, that for any X ∈ [Hop, Set], each derived type 
or term judgement of G∅X is ≡-equivalent to a unique basic one. This follows by an easy induction on 
derivations. �

In the following sections, we describe the monads VDGD on [Hop, Set] for various decent D ⊂ {w, p, s}. 
Our eventual objective is to do so in the case D = {w, p, s}, which we do in Section 7 below. We do this by 
way of various simpler cases: D = {w} in Section 4, D = {w, p} in Section 5, and D = {s} in Section 6. For 
the moment, let us record those aspects of the analysis common to all cases.

Proposition 14. For any decent D ⊂ {w, p, s} and any X ∈ [Hop, Set], the only derivable type-equalities or 
term-equalities of the free D-gat on X are reflexivity judgements Γ � T = T type or Γ � t = t : T . It 
follows that type- or term-elements of VDGD(X) are α-equivalence classes of derivable judgements in the 
free D-gat on X.

Proof. By induction on derivations. �
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4. Weakening

In this section, we describe the additional structure imposed on a type-and-term structure by the weak-
ening rules; in other words, we will characterise the weakening monad W induced by the free-forgetful 
adjunction {w}-GAT � [Hop, Set].

4.1. Underlying endofunctor

Our first step will be to describe the underlying endofunctor of the weakening monad. Its basic combi-
natorics are controlled by the notion of min-heap. Here, and throughout the rest of the paper, we use the 
notation [a, b] to indicate the set of natural numbers {a, a + 1, . . . , b − 1, b}, and write [n] to mean [1, n].

Definition 15. A min-heap of size n is a function ϕ: [0, n] → [0, n] such that ϕ(0) = 0 and ϕ(i) < i for 
all i ∈ [n]. We write Hp(n) for the set of min-heaps of size n. For ϕ ∈ Hp(n + 1), we write ∂(ϕ) for 
ϕ|[0,n] ∈ Hp(n). For ϕ ∈ Hp(n) and i ∈ [n], the depth of i in ϕ is defined to be dpϕ(i) = |{ϕ(i), ϕ2(i), . . .}|.

To give ϕ ∈ Hp(n) is equally to give a partial order �ϕ on [n] that is contained in the natural ordering 
(so i �ϕ j implies i � j) and such that each downset ↓i = {j : j �ϕ i} is a linear order. The partial order 
corresponding to a min-heap ϕ is given by i �ϕ j iff i = ϕk(j) for some k; conversely, the function associated 
to a partial order � is given by ϕ(j) = max{i ∈ [0, j − 1] : i = 0 or i � j}. In what follows, we will more 
frequently use the functional representation of min-heaps, but will switch to the relational representation 
where this is more convenient.

We may depict ϕ ∈ Hp(n) by drawing the Hasse diagram of �ϕ, which is a non-plane, directed forest 
with nodes {1, . . . , n}, wherein the values labelling the nodes decrease along any directed path. For example:

ϕ(1) = 0 ϕ(5) = 2
ϕ(2) = 1 ϕ(6) = 3
ϕ(3) = 0 ϕ(7) = 1
ϕ(4) = 2 ϕ(8) = 6

←→

4 5 8

2 7 6

1 3.

A forest of this kind with n nodes can be seen as specifying the shape of a type judgement of degree n
in a free {w}-gat; the numbers describe the ordering of types in the context, and the arrows indicate the 
dependencies between them. The following definition makes this precise.

Definition 16. Given ϕ ∈ Hp(n), we define the presheaf [ϕ] ∈ [Hop, Set] encoding a type judgement of shape 
ϕ by:

[ϕ](m) =
{
i ∈ [n] : dpϕ(i) = m

}
[ϕ](mt) = ∅

with the non-trivial boundary maps ∂: [ϕ](m + 1) → [ϕ](m) given by i �→ ϕ(i).

So for any X ∈ [Hop, Set], to give a map h: [ϕ] → X in [Hop, Set] is to give type-elements h(1), . . . , h(n)
of X such that each h(i) is of degree dpϕ(i), and such that ∂(h(i)) = h(j) whenever ϕ(i) = j. If n > 1, we 
write ∂h for the restriction of h along the evident inclusion [∂ϕ] → [ϕ].

Proposition 17. The value at X ∈ [Hop, Set] of the underlying endofunctor of the weakening monad has 
type-elements and boundaries given by
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WX(n) =
∑

ϕ∈Hp(n)

[
Hop,Set

](
[ϕ], X

)
∂:WX(n + 1) → WX(n)

(ϕ, h) �→ (∂ϕ, ∂h)

and term-elements TmWX(ϕ, h) = TmX(h(n)) for each (ϕ, h) ∈ WX(n).

Proof. By Proposition 14, type-elements of WX are α-equivalence classes of type judgements in the free 
{w}-gat on X. Each such equivalence class contains a unique judgement of the form

J = x1 :T1, . . . , xn−1 :Tn−1 � Tn type. (4.1)

Now by induction on derivations, we may show that each Ti is of the form Ai(xj1 , . . . , xjk−1) for some 
Ai ∈ X(k) and 0 < j1 < · · · < jk−1 < i. For each i ∈ [n], we define h(i) = Ai, and ϕ(i) = 0 if k = 1 and 
ϕ(i) = jk−1 otherwise. Taking also ϕ(0) = 0, we obtain a min-heap ϕ ∈ Hp(n), and by a further induction 
on derivations, we see that

if Ti is A(xj1 , . . . , xjk−1) and k > 1, then Tjk−1 is (∂A)(xj1 , . . . , xjk−2), (4.2)

which implies that h is a well-defined map [ϕ] → X. We thus have a function

θ:WX(n) →
∑

ϕ∈Hp(n)
[
Hop,Set

](
[ϕ], X

)
[J ] �→ (ϕJ , hJ )

(4.3)

Now (4.2) ensures that θ is injective, and it is clear that θ∂ = ∂θ. It remains to show surjectivity of θ. 
Given a heap ϕ ∈ Hp(n) and h: [ϕ] → X, we define a judgement J = J (ϕ, h) as in (4.1) by taking each 
Ti to be h(i)(xj1 , . . . , xjk), where here k = dpϕ(i) and j� = ϕk−�(i) for 
 ∈ [k − 1]. This J will then satisfy 
(ϕJ , hJ ) = (ϕ, h) so long as it is in fact derivable in the free {w}-gat on X.

We prove this by induction on n. The base case n = 1 is clear; suppose then that n > 1. If ϕ(i) = i − 1
for all i > 0, then J (ϕ, h) is a basic judgement, thus clearly derivable. Otherwise, there must exist some 
m < n which is not in the image of ϕ (in the corresponding forest, such an m amounts to a leaf which is 
not the maximal node). Let ϕ|m = ϕ|[0,m] in Hp(m), and let ϕ\m ∈ Hp(n − 1) be defined by

(ϕ\m)(i) =

⎧⎪⎨
⎪⎩

ϕ(i) i < m;
ϕ(i + 1) i � m and ϕ(i + 1) < m;
ϕ(i + 1) − 1 i � m and ϕ(i + 1) > m

(4.4)

(which amounts to stripping the leaf m from the corresponding forest and renumbering appropriately). Let 
h|m be the restriction of h to [ϕ|m], and let h\m: [ϕ\m] → X take i to h(i) if i < m and to h(i + 1) if 
i � m. By induction, J (ϕ|m, h|m) and J (ϕ\m, h\m) are derivable judgements, and it is easy to see that, 
up to α-equivalence, weakening J (ϕ\m, h\m) with respect to J (ϕ|m, h|m) yields J (ϕ, h). Thus this latter 
judgement is derivable, and so the map (4.3) is indeed surjective.

This completes the proof on type judgements. It remains to consider term judgements. Any term judge-
ment of the free {w}-gat on X is α-equivalent to a unique one of the form

x1 :T1, . . . , xn−1 :Tn−1 � t : Tn type, (4.5)

whose boundary is necessarily a type judgement J (ϕ, h) of the kind just described. By induction on 
derivations, we may show that if Tn is h(n)(xj1 , . . . , xjk−1) in (4.5), then t is a(xj1 , . . . , xjk−1) for some 
a ∈ TmX(h(n)). We may thus identify TmWX(ϕ, h) with TmX(h(n)), as required. �
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Remark 18. The above description of the endofunctor W reveals it to be identical in form to one arising 
in the analysis of innocent game semantics given in [9]. Definition 10 of ibid. describes an exponential 
endofunctor ! (in fact a comonad) on a category Gam of games, whose meaning involves the addition of 
backtracking: thus, “weakening = backtracking”. There are three main differences between our setting and 
that of [9], all relating to the category on which the endofunctor resides. Modulo these three differences, 
the endofunctors are completely identical in form.

• Objects of Gam contain less information than those of [Hop, Set]: games correspond to type-and-term 
structures without terms.

• There are more morphisms in the category of games; such morphisms correspond to certain kinds of 
(decorated) relations, rather than to functions.

• The category of games is polarised, in that elements at even and odd degrees act with opposite variances, 
and the endofunctor ! adds backtracking only at odd degrees. One way of understanding this polarisation 
is to observe that the “functional relations” X → Y in Gam are not maps of [Hop, Set]; rather, they 
correspond to diagrams

...

X(4)

∂

•
f4

Y (4)

∂

X(3)

∂

•
f3

Y (3)

∂

X(2)

∂

•
f2

Y (2)

∂

X(1) •
f1

Y (1)

with all marked squares pullbacks. The underlying cause of these differences is as follows. In type 
theory, a context (x :A, y :B(x), z :C(x, y), w :D(x, y, z)) is to be thought of as representing the type 
Σx :A. Σy :B(x). Σz :C(x, y). D(x, y, z). In game semantics, it would instead be seen as representing the 
type Πx :A. Σy :B(x). Πz :C(x, y). D(x, y, z).

4.2. Unit and multiplication

We now describe the unit ηW : 1 ⇒ W and the multiplication μW : WW ⇒ W of the weakening monad. 
The unit is quite straightforward.

Definition 19. For any n � 1, we define γn ∈ Hp(n) by γn(i) = 0 if i = 0 and γn(i) = i − 1 otherwise. For 
any X ∈ [Hop, Set] and A ∈ X(n), we define Ã: [γn] → X by Ã(i) = ∂n−i(A).

Note that �γn
is just the usual linear ordering on {1, . . . , n}. Moreover, [γn] is isomorphic to the repre-

sentable H(–, n), so that Ã is simply the map corresponding to A ∈ X(n) under the Yoneda lemma.

Proposition 20. For each X ∈ [Hop, Set], the unit map ηWX : X → WX of the weakening monad has compo-
nents
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X(n) → WX(n)
A �→ (γn, Ã)

TmX(A) → TmWX(γn, Ã)
a �→ a.

Proof. The unit of the adjunction G � V at X sends a type-element A ∈ X(n) to the equivalence class of 
the basic judgement

x1 :A1, x2 :A2(x1), . . . , xn−1 :An−1(x1, . . . , xn−2) � A(x1, . . . , xn−1) type.

Direct examination of the proof of Proposition 17 shows that this element is (γn, Ã) ∈ WX(n). We argue 
similarly for term-elements. �

We now describe the multiplication of W , which will be slightly more involved. First note that an 
element of W 2X(n) is a pair (ψ ∈ Hp(n), (ϕ, h): [ψ] → WX), where the second component picks out pairs 
(ϕi ∈ Hp(dpψ(i)), hi: [ϕi] → X) for each i ∈ [n] such that (∂ϕi, ∂hi) = (ϕj , hj) whenever ψ(i) = j. For such 
a type-element we have TmW 2X(ψ, (ϕ, h)) = TmWX(ϕn, hn) = TmX(hn(dpψ(n))).

Definition 21. Given (ψ, (ϕ, h)) ∈ W 2X(n), we define the heap ψ � ϕ ∈ Hp(n) in relation form by

i �ψ
ϕ j iff i �ψ j and #i �ϕj
#j (4.6)

or in function form by (ψ � ϕ)(i) = ψ#i−ϕi(#i)(i); here, and elsewhere, we write #i as an abbreviation for 
dpψ(i). We define ψ � h: [ψ � ϕ] → X by (ψ � h)(i) = hi(#i). This is well-defined by the observation that 
if (ψ � ϕ)(i) = j, then #j = ϕi(#i), whence ∂hi(#i) = hi(ϕi(#i)) = hi(#j) = hj(#j) (where the last 
equality holds since ∂hi = hj) as required.

Example 22. Suppose that ψ ∈ Hp(6) and ϕ: [ψ] → W1 are given by:

ψ =

⎛
⎜⎜⎜⎜⎜⎝

6

4 3 5

1 2

⎞
⎟⎟⎟⎟⎟⎠

ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(3 → 1 ← 2)
∂

(1 ← 2)
∂

(1 ← 2)

∂

(1 2)

∂

(1) (1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

then ψ � ϕ is given by

ψ � ϕ =

⎛
⎜⎜⎜⎜⎜⎝

6

4 3 5

1 2

⎞
⎟⎟⎟⎟⎟⎠

.

Proposition 23. For each X ∈ [Hop, Set], the multiplication μW
X : W 2X → WX of the weakening monad has 

components

W 2X(n) → WX(n)(
ψ, (ϕ, h)

)
�→ (ψ � ϕ, ψ � h)

TmW 2X

(
ψ, (ϕ, h)

)
→ TmWX(ψ � ϕ, ψ � h)

a �→ a.
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Proof. Let (ψ, 
) = (ψ, (ϕ, h)) ∈ W 2X(n). Note that if ψ = γn, then we have μW
X (γn, (ϕ, h)) =

μW
X (ηWWX(ϕn, hn)) = (ϕn, hn), and also by direct calculation that (γn � ϕ, γn � h) = (ϕn, hn). So with-

out loss of generality we may assume ψ �= γn. We proceed by induction on n. The base case n = 1 is clear, 
since the only ψ ∈ Hp(1) is γ1. So assume n > 1 and ψ �= γn. Then there exists some m < n not in the image 
of ψ, and as in the proof of Proposition 17, we form (ψ|m, 
|m) ∈ W 2X(m) and (ψ\m, 
\m) ∈ W 2X(n − 1). 
By induction and a direct calculation, we have that

μW
X (ψ|m, 
|m) = (ψ|m � ϕ|m, ψ|m � h|m) =

(
(ψ � ϕ)|m, (ψ � h)|m

)
and μW

X (ψ\m, 
\m) = (ψ\m � ϕ\m, ψ\m � h\m) =
(
(ψ � ϕ)\m, (ψ � h)\m

)
.

Now the judgement J (ψ, 
) is derivable by weakening J (ψ\m, 
\m) with respect to J (ψ|m, 
|m) and 
α-converting. Since μW

X is the image under the forgetful functor V of the interpretation εGX : GVGX → GX, 
and interpretations preserve derivations, it follows that the judgement represented by μW

X (ψ, 
) may be 
derived by weakening J ((ψ � ϕ)\m, (ψ � h)\m) with respect to J ((ψ � ϕ)|m, (ψ � h)|m) and α-converting. 
But the judgement so obtained is easily seen to be J (ψ � ϕ, ψ � h), so that finally μW

X (ψ, 
) = (ψ � ϕ, ψ � h)
as required.

This completes the argument for type-elements. That for terms is similar; the key point is that if a ∈
TmW 2X(ψ, 
) with ψ �= γn, then on taking m < n with m /∈ Imψ and forming (ψ|m, 
|m) ∈ W 2X(m)
and (ψ\m, 
\m) ∈ W 2X(n − 1), we now have a ∈ TmW 2X(ψ\m, 
\m). Weakening J (ψ\m, 
\m, a) with 
respect to J (ψ|m, 
|m) yields back J (ψ, 
, a), and we conclude the argument as before using induction and 
the preservation of derivations by μW

X . �
Remark 24. Again, we may link our monad W to the exponential comonad ! of [9]. The obvious difference 
is that one is a monad and the other a comonad. But this is easily accounted for due to the polarisation 
present in the category of games: the comonad ! corresponds to adding backtracking at “contravariant” odd 
degrees (there is a corresponding monad ? which adds backtracking at even degrees). The issue of polarity 
aside, the comonad structure of ! corresponds exactly to the monad structure of W described above.

5. Weakening and projection

We now turn to the additional structure imposed on a type-and-term structure by the projection rule. 
As we have already explained, the projection rule is not well-behaved in the absence of the weakening rule. 
Consequently, in this section, we will seek to characterise the weakening-and-projection monad P induced 
by the free-forgetful adjunction {w, p}-GAT � [Hop, Set].

5.1. Underlying endofunctor

As before, we begin by describing the underlying endofunctor of the weakening-and-projection monad.

Proposition 25. The value at X ∈ [Hop, Set] of the underlying endofunctor P of the weakening-and-
projection monad agrees with W on type-elements, and on term-elements is given by

TmPX(ϕ, h) = TmX

(
h(n)

)
+

{
πi : i ∈ [n− 1], ϕ(n) = ϕ(i), h(n) = h(i)

}
.

Note that the left-hand summand above is TmWX(ϕ, h), so that PX is simply the extension of WX

by the addition of new term-elements representing projections. We write θX : WX → PX for the evident 
inclusion maps.
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Proof. By Proposition 14, elements of PX are α-equivalence classes of type or term judgements of the free 
{w, p}-gat on X. The type judgements are visibly the same as those of the free {w}-gat, while the term 
judgements augment those of the free {w}-gat with ones of the form

J (ϕ, h, πi) = x1 :T1, . . . , xn−1 :Tn−1 � xi : Ti (5.1)

for i ∈ [n − 1] such that Tn = Ti; i.e., such that ϕ(n) = ϕ(i) and h(n) = h(i). This accounts for the 
right-hand summand in TmPX(ϕ, h). �
5.2. Unit and multiplication

We now describe the unit ηP : 1 ⇒ P and the multiplication μP : PP ⇒ P of the weakening-and-projection 
monad.

Proposition 26. For each X ∈ [Hop, Set], the unit ηPX : X → PX of the weakening-and-projection monad is 
the composite θX ◦ ηWX : X → WX → PX.

Proof. Clear. �
We now turn to the multiplication, for which we will need to identify term-elements of P 2X over a 

type-element (ψ, (ϕ, h)) ∈ P 2X(n) = W 2X(n). By definition TmP 2X(ψ, (ϕ, n)) is the set

TmPX(ϕn, hn) +
{
πi

(
ψ, (ϕ, h)

)
: i ∈ [n− 1], ψ(n) = ψ(i), ϕn = ϕi, hn = hi

}

where we annotate the projections in the second factor to distinguish them from those appearing in the 
further decomposition of TmPX(ϕn, hn) as

TmX

(
hn(#n)

)
+
{
πi(ϕn, hn) : i ∈ [#n− 1], ϕn(#n) = ϕn(i), hn(#n) = hn(i)

}
.

Proposition 27. For each X ∈ [Hop, Set], the multiplication μP
X : P 2X → PX of the weakening-and-

projection monad agrees with that of W on type-elements, and on term-elements is defined at (ψ, (ϕ, n)) ∈
P 2X(n) to be the mapping TmP 2X(ψ, (ϕ, h)) → TmPX(ψ � ϕ, ψ � h) given by

a �→

⎧⎪⎨
⎪⎩

a if a ∈ TmX(hn(#n));
πi if a = πi(ψ, (ϕ, h));
πψ#n−i(n) if a = πi(ϕn, hn).

Proof. The assertion concerning type-elements is clear. As for term-elements, an element of TmP 2X(ψ, (ϕ, h))
that lies in TmX(hn(#n)) = TmW 2X(ψ, (ϕ, h)) represents a term judgement derived without the use 
of projection, so that the action of the multiplication is inherited from W . For an element of the form 
πi(ψ, (ϕ, h)), the judgement of the free {w, p}-gat on WX which it represents is derivable from the 
judgement representing (ψ, (∂ϕ, ∂h)) by a single application of the projection rule. As in the proof of 
Proposition 23, it follows that the judgement represented by μP

X(πi(ψ, (ϕ, h))) is derivable from that rep-
resenting μP

X(ψ, (∂ϕ, ∂h)) = (∂(ψ � ϕ), ∂(ψ � h)) by applying the same instance of the projection rule; it 
follows that μP

X(πi(ψ, (ϕ, h))) = πi as required.
Finally consider an element πi(ϕn, hn) ∈ TmP 2X(ψ, (ϕ, h)). If ψ = γn, then (ψ, (ϕ, h)) = ηPPX(ϕn, hn)

and the given term-element is the image under ηPPX of πi ∈ TmPX(ϕn, hn). It follows that applying μP
X yields 

back πi = πγ#n−i
n (n), as required. For the case ψ �= γn we now proceed by induction on n; in what follows we 

abbreviate 
 = (ϕ, h). The base case n = 1 is trivial as then necessarily ψ = γ1. So assume n > 1 and ψ �= γn. 
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Then there is some m < n not in the image of ψ, and as in the proofs of Propositions 17 and 23 we may form 
the type-elements (ψ|m, 
|m) and (ψ\m, 
\m) and the term-element πi(ϕn, hn) ∈ TmP 2X(ψ\m, 
\m). Now 
in the free {w, p}-gat on PX, weakening the judgement represented by this term-element with respect to 
J (ψ|m, 
|m) yields the judgement representing πi(ϕn, hn) ∈ TmP 2X(ψ, 
). As in the proof of Proposition 23, 
applying μP

X to (ψ|m, 
|m) yields ((ψ � ϕ)|m, (ψ � h)|m), while by the inductive hypothesis, applying it to 
πi(ϕn, hn) ∈ TmP 2X(ψ\m, 
\m) yields πj ∈ TmPX((ψ � ϕ)\m, (ψ � h)\m) where

j = (ψ \m)dpψ\m(n−1)−i(n− 1) = (ψ \m)#n−i(n− 1).

Since m is not in the image of ψ, it follows easily from (4.4) that j = ψ#n−i(n) if i < m and j = ψ#n−i(n) −1
if i > m. Weakening the judgement represented by this term-element with respect to J ((ψ � ϕ)|m, (ψ � h)|m)
is easily seen (in either of the two cases i < m and i > m) to yield the judgement represented by πψ#n−i(n), 
as required. We conclude as before by using the fact that μP

X preserves derivations. �
6. Substitution

Our next step will be to consider the structure imposed on a type-and-term structure by the substitution 
rules, thus describing the substitution monad S induced by the adjunction {s}-GAT � [Hop, Set].

6.1. Underlying endofunctor

We begin by describing the underlying endofunctor of the substitution monad. Whereas the combinatorics 
of weakening are controlled by min-heaps, those of substitution are controlled by increasing lists of natural 
numbers.

Definition 28. An inc-list of length n is a function α: [0, n] → N such that α(0) = 0 and α(i) > α(j)
whenever i > j. We write Inc(n) for the set of inc-lists of length n. Given α ∈ Inc(n + 1), we write ∂(α) for 
α|[0,n] ∈ Inc(n).

An inc-list α can be seen as encoding the shape of a type judgement in a free {s}-gat. The length of the 
list gives the degree of the judgement, while the values α(1), . . . , α(n) indicate the degrees of the individual 
types appearing in it. The case where α(i) = i for each i encodes a judgement without substitution; 
otherwise, we have values α(m) and α(m + 1) that are not consecutive, and this must be compensated for 
by the substitution of suitable terms into the (m +1)st type to reduce its degree to merely one greater than 
that of the mth type. The following definition make this precise.

Definition 29. Given α ∈ Inc(n), we define the presheaf [α] ∈ [Hop, Set] encoding a type judgement of shape 
α by:

[α](i) =
{ {i} if i � α(n);
∅ otherwise;

and [α](it) =
{ {it} if i � α(n), i /∈ Imα;
∅ otherwise,

with the unique possible boundary maps.

For example, if α ∈ Inc(3) has values 0 < 2 < 3 < 5 < 8, then [α] is given by:

{1t} ∅ ∅ {4t} ∅ {6t} {7t} ∅

{1} {2} {3} {4} {5} {6} {7} {8}.
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For a general α ∈ Inc(n), a map h: [α] → X in [Hop, Set] is determined by giving, firstly, a type-element 
h(α(n)) ∈ X(α(n))—which determines h(i) ∈ X(i) for each smaller i by taking iterated boundaries—and 
secondly, term-elements h(it) ∈ TmX(h(i)) for each i ∈ [α(n)] \ Imα. When n > 1, we write ∂h: [∂α] → X

for the restriction of h along the obvious inclusion [∂α] → [α].

Proposition 30. The value at X ∈ [Hop, Set] of the underlying endofunctor of the substitution monad has 
type-elements and boundaries given by

SX(n) =
∑

ϕ∈Inc(n)

[
Hop,Set

](
[α], X

)
∂:SX(n + 1) → SX(n)

(α, h) �→ (∂α, ∂h)

and term-elements TmSX(α, h) = TmX(h(α(n))) for each (α, h) ∈ SX(n).

Proof. We prove by induction on derivations that, if J is a representative type judgement (4.1) of the free 
{s}-gat on X, then there are natural numbers 0 < α(1) < · · · < α(n), type-elements Ai ∈ X(α(i)) for 
i ∈ [n], and term-elements ai ∈ X(it) for i ∈ [α(n)] \ Imα, such that each Ti in J is of the form

Ai(x1, . . . , xα(i)−1)[tα(i)−1/xα(i)−1] . . . [t1/x1][x1/xα(1)] . . . [xi−1/xα(i−1)]; (6.1)

here, ti is the expression xi if i ∈ Imα and is ai(x1, . . . , xi−1) otherwise. By a further induction on deriva-
tions, we may show that each Ai and each ∂(ai) is of the form ∂�(An) for a suitable 
. It follows that we 
have a well-defined map h: [α] → X given by h(i) = ∂α(n)−i(An) and h(it) = ai; and that the pair (α, h)
encodes all the information of the type judgement J .

A similar induction on derivations shows that a term judgement J ′ of the form (4.5) in the free {s}-gat

on X is given by a type judgement as above together with a term expression t of the form

a(x1, . . . , xα(n)−1)[tα(n)−1/xα(n)−1] . . . [t1/x1][x1/xα(1)] . . . [xi−1/xα(n−1)]

for some a ∈ TmX(An) = TmX(h(α(n))). We thus have maps

SX(n) →
∑

α∈Inc(n)

[
Hop,Set

](
[α], X

)

[J ] �→ (αJ , hJ )

TmSX
(
[J ]

)
→ TmX

(
h
(
α(n)

))
[
J ′] �→ aJ ′

(6.2)

which by the above are well-defined, injective and compatible with boundaries. It remains to prove their 
surjectivity. Given α ∈ Inc(n) and h: [α] → X, by taking ai = h(it) (for i ∈ [α(n)] \ Imα) and defining Ti as 
in (6.1), we obtain a type judgement J (α, h) of the form (4.1), whose image under (6.2) will be (α, h) so long 
as it is in fact a derivable type judgement of the free {s}-gat on X. Similarly, to any a ∈ TmX(h(α(n))) we 
may assign a term judgement J (α, h, a) with boundary J (α, h) which will be sent to a by the right-hand 
map in (6.2) so long as it is in fact derivable.

We prove derivability of these two kinds of judgements simultaneously by induction on the value α(n) −n. 
In the base case α(n) = n we see easily that J (α, h) and J (α, h, a) are basic judgements of the free {s}-gat

on X, and so derivable. For the inductive step, suppose that α(n) − n > 0, and we wish to derive J (α, h). 
Choose some m < n and j ∈ N such that α(m) < j < α(m + 1). We now define αj ∈ Inc(n + 1) and 
αj ∈ Inc(m + 1) by
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(αj)(i) =

⎧⎪⎨
⎪⎩

α(i) i � m;
j i = m + 1;
α(i− 1) i > m + 1;

and αj = (αj)|[0,m+1].

Note that αj(n + 1) = α(n) since n + 1 > m + 1, and so αj(n + 1) − (n + 1) < α(n) − n. Likewise 
αj(m + 1) = j < α(m + 1) and so αj(m + 1) − (m + 1) < α(m + 1) − (m + 1) � α(n) − n. Note further 
that [αj ] and [αj ] are subpresheaves of [α]; we write hj and hj for the restrictions of h to them. By 
induction, J (αj , hj) is a derivable type judgement and J (αj , hj , h(jt)) a derivable term judgement, and 
substituting the latter into the former (and α-converting) now yields the required derivation of J (α, h). 
In a similar manner, each term judgement J (α, h, a) may be derived inductively from J (αj , hj , a) and 
J (αj , hj , h(jt)). �
6.2. Unit and multiplication

We now describe the unit ηS : 1 ⇒ S and the multiplication μS : SS ⇒ S of the substitution monad.

Definition 31. For any n � 1, we write ιn ∈ Inc(n) for the inc-list given by ιn(i) = i. For any X ∈ [Hop, Set]
and A ∈ X(n), we define Ã: [ιn] → X by Ã(i) = ∂n−i(A) for each i ∈ [n].

As before, [ιn] is isomorphic to the representable H(–, n) so that Ã corresponds to A ∈ X(n) under the 
Yoneda lemma.

Proposition 32. For each X ∈ [Hop, Set], the unit map ηSX : X → SX of the substitution monad has compo-
nents

X(n) → SX(n)
A �→ (ιn, Ã)

TmX(A) → TmSX(ιn, Ã)
a �→ a.

Proof. Immediate from examination of the proof of Proposition 30. �
We now turn to the multiplication of S, for which we need an explicit description of S2X. Given α ∈

Inc(n), a map [α] → SX is determined as in the discussion following Definition 29 by its value at α(n) and 
its values at it for each i ∈ [α(n)] \ Imα. Giving these data amounts to giving

• An element (β ∈ Inc(α(n)), h: [β] → X) ∈ SX(α(n)); and
• Elements k(i) ∈ TmSX(∂α(n)−i(β, h)) = TmX(h(β(i))) for i ∈ [α(n)] \ Imα.

Thus we write a typical type-element of S2X as (α ∈ Inc(n), (β, h, k): [α] → SX). Now on terms, we have 
TmS2X(α, (β, h, k)) = TmSX(β, h) = TmX(h(β(α(n)))).

Definition 33. Given (α, (β, h, k)) ∈ S2X(n), we define the inc-list βα ∈ Inc(n) by (βα)(i) = β(α(i)) and 
define h ∪ k: [βα] → X by taking (h ∪ k)(i) = h(i) for i ∈ [βα(n)] and, for i ∈ [βα(n)] \ Im βα, taking

(h ∪ k)(it) =
{
h(it) for i /∈ Im β;
k(j) for i = β(j), j /∈ Imα.

Proposition 34. For each X ∈ [Hop, Set], the multiplication μS
X : S2X → SX of the substitution monad has 

components

S2X(n) → SX(n)(
α, (β, h, k)

)
�→ (βα, h ∪ k)

TmS2X

(
α, (β, h, k)

)
→ TmSX(βα, h ∪ k)

a �→ a.
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Proof. We prove the result for type- and term-elements simultaneously by induction on α(n) −n. Consider 
first a type-element (α, 
) = (α, (β, h, k)) ∈ S2X(n). In the base case where α(n) = n, we must have α = ιn
and now μS

X(ιn, (β, h, k)) = μS
X(ηSSX(β, h)) = (β, h), which is visibly equal to (βιn, h ∪ k) (since in this case 

k is trivial). For the inductive step, assume α(n) > n. As in the proof of Proposition 30, we can find some 
m < n and some j ∈ N with α(m) < j < α(m + 1) and now form the type-elements (αj, 
j) ∈ S2X(n + 1)
and (αj , 
j) ∈ S2X(m + 1) and term-element 
(jt) = k(j) ∈ TmS2X(αj , 
j).

Now 
j = (β, h, k′): [αj ] → X, where k′ is obtained from k by removing the value at j; while 
j =
(β|[0,j], h′, k′′), where h′ is the restriction of h along the inclusion [β|[0,j]] → [β] and k′′ is the restriction of 
k to [j − 1]. Thus by induction and direct calculation, we see that

μS
X(αj , 
j) =

(
βαj , h ∪ k′

)
=

(
(βα)β(j), (h ∪ k)β(j)

)
and μS

X

(
αj , 
j

)
=

((
β|[0,j]

)
αj , h′ ∪ k′′

)
=

(
(βα)β(j), (h ∪ k)β(j)),

and that k(j) ∈ TmS2X(αj , 
j) is sent to k(j) ∈ TmSX((βα)β(j), (h ∪ k)β(j)). Now the judgement J (α, 
)
of the free {s}-gat on SX is derivable by substituting J (αj , 
j , k(j)) into J (αj , 
j) and α-converting, 
and it follows that the judgement represented by μS

X(α, 
) may be derived by substituting the judge-
ment J ((βα)β(j), (h ∪k)β(j), k(j)) into J ((βα)β(j), (h ∪k)β(j)) and α-converting; whence μS

X(α, (β, h, k)) =
(βα, h ∪ k) as required. The argument for term judgements is similar, and hence omitted. �
7. Combining the structures

We now combine the results of the preceding three sections in order to describe the structure imposed on 
a type-and-term structure by all the deduction rules of generalised algebraic theories; we will thus describe 
the monad T for gats induced by the free-forgetful adjunction GAT � [Hop, Set].

Let P and S denote, as in the preceding sections, the weakening-and-projection monad and the sub-
stitution monad on [Hop, Set]. We have natural transformations ρ: P ⇒ T ⇐ S: σ expressing that every 
derivable judgement of the free {w, p}- or {s}-gat on some X is also derivable in the free gat on X. It 
is easy to see that ρ and σ are compatible with the unit and multiplication maps and so exhibit P and S
as submonads of T . Our task in this section will be to describe how these submonads combine together to 
yield T .

7.1. Underlying endofunctor

We first characterise the underlying endofunctor of the monad T for gats in terms of those of the 
weakening-and-projection and substitution monads. Our result expresses that every judgement of the free
gat on X may be obtained in a unique way (up to α-conversion) by first applying substitution to basic 
judgements, and then weakening and projection to these substituted judgements.

Proposition 35. For any X ∈ [Hop, Set] the composite map

κX := PSX PτX−−−−→ PTX σTX−−−−→ TTX μT
X−−−→ TX (7.1)

is invertible.

Note first that a type-element of PSX has the form (ϕ, (α, h)), where ϕ ∈ Hp(n) and (αi, hi) ∈ SX(#i)
for each i ∈ [n], such that (∂αi, ∂hi) = (αj , hj) whenever ϕ(i) = j. Furthermore, TmPSX(ϕ, (α, h)) is given 
by the sum
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TmSX(αn, hn) +
{
πi : i ∈ [n− 1], ϕ(n) = ϕ(i), αn = αi, hn = hi

}
. (7.2)

Proof. Consider first a representative type judgement J of the form (4.1) in the free gat on X. By induction 
on derivations, we show that for each i ∈ [n] there are 0 < j1 < . . . < jk−1 < i such that fv(Ti) =
{xj1 , . . . , xjk−1} and such that

xj1 : Tj1 , . . . , xjk−1 : Tjk−1 � Ti type (7.3)

is derivable in the free {s}-gat on X. Define ϕ(i) to be 0 if k = 1 and to be jk−1 otherwise, and define 
(αi, hi) ∈ SX(k) to be the element representing the α-equivalence class of (7.3). Taking also ϕ(0) = 0
we obtain a heap ϕ ∈ Hp(n); moreover, for those i with ϕ(i) > 0 we see by a further induction on 
derivations that fv(Tjk−1) = {xj1 , . . . , xjk−2}, whence ∂(αi, hi) = (αϕ(i), hϕ(i)). Thus we have a well-defined 
map (α, h): [ϕ] → SX and so an element (ϕ, (α, h)) ∈ PSX(n). In this way, we have defined a mapping

θ:TX(n) → PSX(n)

[J ] �→
(
ϕJ , (αJ , hJ )

)

which we claim is inverse to the n-component of (7.1). It is easy to see that θ is injective, so it is enough to 
show that 1 = θ ◦ κX : PSX(n) → TX(n) → PSX(n).

So let (ϕ, 
) = (ϕ, (α, h)) ∈ PSX(n). If ϕ = γn, then (ϕ, 
) = ηPSX(αn, hn). Now by direct calculation 
κ ◦ ηPS = τ so that κX(ϕ, 
) = τX(αn, hn) represents the judgement J (αn, hn) of the free gat on X. But 
by inspection, the image of J (αn, hn) under θ is again (γn, (α, h)), as required. For the case ϕ �= γn we 
proceed by induction on n. The case n = 1 is trivial; so assume n > 1. As in the proof of Proposition 17, 
we may find m < n such that m /∈ Imϕ and form the type-elements (ϕ|m, 
|m) and (ϕ\m, 
\m) of PSX . 
Now the judgement J (ϕ, 
) of the free {w, p}-gat on SX is derivable by weakening J (ϕ\m, 
\m) with 
respect to J (ϕ|m, 
|m) and α-converting. It follows that the judgement represented by κX(ϕ, 
) is obtained 
in the same way from the judgements represented by κX(ϕ|m, 
|m) and κX(ϕ\m, 
\m). But by induction, 
these latter judgements are sent to (ϕ|m, 
|m) and (ϕ\m, 
\m) by θ, and now by direct inspection of the 
description of θ given above, we conclude that θ(κX(ϕ, 
)) = (ϕ, 
), as required.

This completes the argument on type judgements; that on term judgements is similar. The key point is 
that we may show by induction on derivations that a typical term judgement J ′ of the form (4.5) in the 
free gat on X comprises a type judgement as above with associated element (ϕ, (α, h)), together with a 
term expression t such that either:

(i) xj1 : Tj1 , . . . , xjk−1 : Tjk−1 � t : Tn is derivable in the free {s}-gat on X; or
(ii) t = xi for some i ∈ [n − 1] such that Tn = Ti; i.e., such that ϕ(n) = ϕ(i), αn = αi and hn = hi.

We may thus assign to [J ′] ∈ TmTX([J ]) an element of TmPSX(ϕ, (α, h)), lying in the left- or right-hand 
summand according as t is of the form (i) or (ii). An inductive argument like the one above now shows that 
this mapping is inverse to the component TmPSX(ϕ, (α, h)) → TmTX(κX(ϕ, (α, h))) of κX . �

By transporting the monad structure of T along the isomorphisms (7.1), we thus obtain a monad structure 
on PS . With respect to this structure, the maps ηPS: S ⇒ PS and SηP : P ⇒ PS now become monad 
morphisms which in addition satisfy the “middle unit law” expressed by the commutativity of:

PS
PηSηPS

1

PSPS

μPS

PS.
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Henceforth, we shall take it that in fact T = PS .

7.2. Unit and multiplication

We now describe the unit and the multiplication of the monad for gats in terms of those for the weakening-
and-projection and substitution monads. The case of the unit is straightforward.

Proposition 36. For each X ∈ [Hop, Set], the unit map ηPS
X : X → PSX of the monad for gats is the 

composite

X
ηS
X−−−→ SX ηP

SX−−−→ PSX .

Proof. An immediate consequence of the fact that ηPS is a monad map. �
The multiplication μPS of the monad for gats may be described in terms of those of S and P together 

with one additional datum: that of a distributive law of S over P in the sense of [1]. This is a natural 
transformation δ: SP ⇒ PS satisfying four axioms relating it to the units and multiplications of the monads 
S and P . It may be obtained from the multiplication μPS as the composite:

δ = SP ηPSPηS

======⇒ PSPS μPS

==⇒ PS . (7.4)

In a moment, we shall give an explicit description of δ, but first let us record how it allows us to reconstruct 
the multiplication of PS :

Proposition 37. For each X ∈ [Hop, Set], the multiplication μPS
X : PSPSX → PSX of the monad for gats is 

the composite

PSPSX PδSX−−−−→ PPSSX μPμS
X−−−−−→ PSX .

Proof. This is (1) ⇔ (2) of [1, Proposition, Section 1]. �
Since we already have explicit descriptions of μP and μS , this allows us to reduce the problem of giving an 

explicit description of μPS to that of giving one for δ. Such a description is essentially an account of how the 
process of substituting terms into a weakened judgement may be re-expressed as the process of weakening a 
judgement to which substitution has already been applied. The behaviour is different depending on whether 
the terms we are substituting in are genuine terms or are projections onto a variable; those of the former 
kind induce actual substitutions, while those of the latter express the structural rule of contraction. Our 
description of δX will thus come in two parts, the first dealing only with actual substitutions, and the second 
reintroducing contraction.

First we need an explicit description of SPX . Given α ∈ Inc(n), a map [α] → PX is determined as in the 
discussion following Definition 29 by its value at α(n) and its values at it for each i ∈ [α(n)] \ Imα, thus by 
giving:

• A pair (ϕ ∈ Hp(α(n)), h: [ϕ] → X) ∈ PX(α(n)) = WX(α(n)); and
• Elements k(i) ∈ TmPX(ϕ|i, h|i) for each i ∈ [α(n)] \ Imα,

and so we write a typical element of SPX(n) as (α, (ϕ, h, k)). By Proposition 25, the set TmPX(ϕ|i, h|i)
which each k(i) inhabits is the disjoint union
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TmX(h(i)) +
{
πj : j ∈ [i− 1], ϕ(i) = ϕ(j), h(i) = h(j)

}
;

we will call (α, (ϕ, h, k)) projection-free if each k(i) lies in the left-hand summand. We first describe the 
action of δX on projection-free elements.

Definition 38. Let (α, (ϕ, h, k)) ∈ SPX(n) be projection-free. We define the heap α∗ϕ ∈ Hp(n) in relation 
form by i �α∗ϕ j iff α(i) �ϕ α(j). Given p ∈ [n] with ↓α∗ϕ(p) = {p1 ≺ · · · ≺ pm = p}, we define αϕ

p ∈ Inc(m)
by αϕ

p (i) = dpϕ(α(pi)). If now ↓ϕ(α(p)) = {v1 ≺ · · · ≺ v� = α(p)}, then it is easy to see that i ∈ [
] is 
in the image of αϕ

p just when vi is in the image of α; it follows that we have a well-defined mapping 
(h + k)p: [αϕ

p ] → X given by

(h + k)p(i) = h(vi) and (h + k)p(it) = k(vi)

for i ∈ [
] (on the left) and i ∈ [
] \ Imαϕ
p (on the right). It is moreover easy to verify that ∂(αϕ

p , (h + k)p) =
(αϕ

q , (h + k)q) whenever α∗ϕ(p) = q, so that we have a well-defined mapping (αϕ, h + k): [α∗ϕ] → SX, and 
so an element (α∗ϕ, (αϕ, h + k)) ∈ PSX(n).

Example 39. If α is the inc-list 0 < 1 < 5 < 6 < 7 < 8 and ϕ is as on the left below, then α∗ϕ and αϕ are 
as on the right.

ϕ =

4 5 8

2 7 6

1 3

α∗ϕ =

2 5

4 3

1

αϕ =

(1 < 3) (2 < 3)

(1 < 2) (2)

(1)

We now wish to describe the action of δX on arbitrary type-elements. As a first step, let us call 
(α, (ϕ, h, k)) ∈ SPX(n) nearly projection-free if the only terms k(i) which are projections are ones for 
which i is not in the image of ϕ (thus leaves in the forest corresponding to ϕ). For such an element, we 
can still define (α∗ϕ, (αϕ, h + k)) as above; the point which requires checking is that, for p ∈ [n] with 
↓ϕ(α(p)) = {v1 ≺ · · · ≺ v� = α(p)} and i ∈ [
] \ Imαϕ

p , the element k(vi) should be a term of X rather than 
a projection. But this is true since we necessarily have i < 
, so that vi is in the image of ϕ and thus a term 
of X by assumption. With this observation in mind, we may now extend our description of the action of δX
to deal with arbitrary type-elements.

Definition 40. Given a general element (α, (ϕ, h, k)) ∈ SPX(n), let ≤k be the partial order generated on 
[0, α(n)] by the basic inequalities:

i ≤k j when j /∈ Imα and k(j) = πi,

and let ϕ̄ ∈ Hp(α(n)) be given by ϕ̄(i) = min{j : j ≤k ϕ(i)}. Note that i ≤k j implies ϕ(i) = ϕ(j) and 
h(i) = h(j), which means that dpϕ(i) = dpϕ̄(i) for all i ∈ [α(n)] and, if ϕ̄(i) > 0, that ∂h(i) = h(ϕ̄(i)). Thus 
(α, (ϕ̄, h, k)) is a well-defined element of SPX(n) which is easily seen to be nearly projection-free, so that 
we may form (α∗ϕ̄, (αϕ̄, h + k)) ∈ PSX(n).

This completes our description of the action of δX on type-elements; we now prove its validity at the same 
time as giving the action on term-elements. For the latter, let us note that we have TmSPX(α, (ϕ, h, k)) =
TmPX(ϕ, h) which by Proposition 25 again is the disjoint union
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TmX

(
h
(
α(n)

))
+

{
πj : j ∈

[
α(n) − 1

]
, ϕ

(
α(n)

)
= ϕ(j), h

(
α(n)

)
= h(j)

}
.

Proposition 41. For each X ∈ [Hop, Set], the action of the distributive law δX is given on type-elements 
SPX(n) → PSX(n) by

(
α, (ϕ, h, k)

)
�→

(
α∗ϕ̄,

(
αϕ̄, h + k

))
,

and on term-elements TmSPX(α, (ϕ, h, k)) → TmPSX(α∗ϕ̄, (αϕ, h + k)) by

a �→

⎧⎪⎨
⎪⎩

a if a ∈ TmX(h(α(n)));
πm if a = πj and min{i : i ≤k j} = α(m);
k(m) if a = πj and m = min{i : i ≤k j} /∈ Imα.

Proof. We prove the result for types and terms simultaneously by induction on α(n) −n. For the base case 
α(n) = n, we must have α = ιn, and now on type-elements we have δX(ιn, (ϕ, h, k)) = δX(ηSPX(ϕ, h)) =
PηSX(ϕ, h) = (ϕ, (ι, ̃h)), which by direct calculation from the definitions is equal to (ι∗nϕ̄, (ιnϕ̄, h + k)). The 
argument for terms in the base case is similarly straightforward, on observing that ≤k in this case satisfies 
i ≤k j iff i = j.

Before giving the inductive step, we make an observation. Suppose given (ϕ, (α, h)) ∈ PSX(n) and 
t ∈ TmPSX(ϕ|m, (α, h)|m). We wish to describe the judgement obtained by substituting J (ϕ|m, (α, h)|m, t)
into J (ϕ, (α, h)) in the free gat on X. If t = πj is a projection term, then direct inspection of the bijection 
of Proposition 7.1 shows that the judgement obtained is J (ϕ′ \m, (α, h) \m), where ϕ′ ∈ Hp(n) is defined 
by ϕ′(i) = j if ϕ(i) = m and ϕ′(i) = ϕ(i) otherwise. On the other hand, if t = a ∈ TmX(hm(αm(#m))), 
inspection of Proposition 7.1 shows that this substitution yields J (ϕ′\m, (α′, h′)\m), with ϕ′ ∈ Hp(n) and 
(α′, h′): [ϕ′] → SX given by

ϕ′(i) =
{
ϕ2(i) if ϕ(i) = m;
ϕ(i) otherwise;

(
α′
i, h

′
i

)
=

{ (αiε�, hi ∪ a) if ϕ#i−�(i) = m;
(αi, hi) otherwise.

Here we write ε�: [0, n] → [0, n + 1] for the unique injection whose image does not include 
, and, as in the 
proof of Proposition 30, write hi∪a: [αiε�] → X for the map which extends hi: [αi] → X by sending (αi(
))t
to a.

We now give the inductive step of our main argument. Let (α, 
) = (α, (ϕ, h, k)) ∈ SPX(n) with α(n) > n. 
As in Proposition 30, we can find α(m) < j < α(m + 1) and form the type-elements (αj, 
j) and (αj , 
j)
and term-element k(j) ∈ TmSPX(αj , 
j). Now we have that 
j = (ϕ, h, k′): [αj ] → X, where k′ is obtained 
from k by removing the value at j; and we have that 
j = ∂n−m−1(
j). So by induction, applying δX to 
(αj , 
j) and (αj , 
j , k(j)) yields the elements

(
αj

∗ϕ̄,
(
αj

ϕ̄, h + k′
))

and
(
αj

∗ϕ̄
∣∣
m+1,

(
αj

ϕ̄, h + k′
)∣∣

m+1, k(j)
)

of PSX . The judgement J (α, 
) of the free {s}-gat on PX is obtained by substituting J (αj , 
j , k(j))
into J (αj , 
j), whence δX(α, 
) is obtained by substituting J (αj

∗ϕ|m+1, (αj
ϕ, h + k′)|m+1, k(j)) into 

J (αj
∗ϕ, (αj

ϕ, h + k′)) in the free gat on X. Now k(j) is either a projection or non-projection; apply-
ing the appropriate part of the above observation and calculating shows that, in either case, the resultant 
judgement is J (α∗ϕ̄, αϕ̄, h + k), so that δX(α, 
) = (α∗ϕ̄, αϕ̄, h + k).

Finally, we give the inductive step on term-elements. The key point is for us to extend the ob-
servation made above. Given (ϕ, (α, h)) ∈ PSX(n) and t ∈ TmPSX(ϕ|m, (α, h)|m) as before and also 
a ∈ TmPSX(ϕ, (α, h)), we wish to describe the result of substituting J (ϕ|m, (α, h)|m, t) into J (ϕ, (α, h), a). 
If v denotes the term-element representing this judgement, then direct calculation shows that
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v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a if a ∈ TmX(hn(αn(#n)));
πj if a = πj and j < m;
t if a = πm;
πj−1 if a = πj and j > m.

Applying this observation together with induction and the preservation of derivations by δX now yields the 
inductive step on terms. The details are similar to the type-element case and so omitted. �

Drawing together the results of the previous four sections, we thus obtain the main result of the paper, 
giving a complete characterisation of the monad for gats on the presheaf category [Hop, Set].

Theorem 42. The monad for gats induced by the free-forgetful adjunction GAT � [Hop, Set] may be 
taken to have underlying endofunctor PS, where P and S are as in Propositions 25 and 30; unit map 
at X ∈ [Hop, Set] given by ηP ηSX : X → PSX, where ηP and ηS are as in Propositions 26 and 32; and 
multiplication map at X ∈ [Hop, Set] given by the composite

PSPSX PδSX−−−−→ PPSSX μPμS
X−−−−−→ PSX ,

where μP , μS and δ are as in Propositions 27, 34, and 41 respectively.

8. Categorical analysis

We have now completed the main task of the paper by describing the monads for D-gats for D = {w}, 
{w, p}, {s} and {w, p, s}. The purpose of this final section is to discuss the good categorical properties that 
these monads have: namely, those of being local right adjoint and cartesian. These properties justify us in 
regarding these monads as fundamentally combinatorial in nature, and will allow us, in future work, to 
bring a rich body of theory [2,18,24,25] to bear on the study of dependent sequent calculi. Let us begin by 
briefly sketching some of these applications:

• Nerve functors. Weber’s “nerve theorem” [25] allows us to associate to any local right adjoint, cartesian 
monad T on a presheaf category a nerve functor T -Alg → [Eop, Set]: a fully faithful embedding of 
the category of T -algebras into a presheaf category, together with a characterisation of the essential 
image of this functor. The importance of this is that a nerve functor can allow algebraic entities to be 
embedded into a geometric or topological context; hence this will allow us to explore geometric and 
higher-dimensional aspects of dependent sequent calculi.

• Categorical algebras. Any local right adjoint monad T : C → C preserves pullbacks, and so lifts to a 
2-monad on the 2-category Cat(C) of categories internal to C; an algebra for this lifted monad may 
be called a categorical T -algebra. In particular, this means that we can consider “categorical D-gats”. 
The value of this is in allowing a new approach to the coherence problem of [11], that many naturally 
occurring models of dependent type theory are “too weak” to be strict models of the syntax. This is 
resolved by observing that these models are actually categorical pseudoalgebras for the lifted 2-monad. 
By considering pseudomorphisms of algebras, we may perfectly well interpret the strict syntax in these 
weak models, thereby avoiding the use of strictifiction theorems. Among the categorical pseudoalgebras, 
we also find objects which represent the “syntax with substitution up to isomorphism” of [6]; and now 
the two-dimensional monad theory of [3] describes the relation between the strict and the weak syntax.

• Lax morphisms. As is well known, lax monoidal functors 1 → V from the terminal monoidal category 
classify monoids in V. In a similar way, if T is a categorical D-gat, then lax morphisms of D-gats 1 → T

correspond to models of type theory internal to T. In particular, one may generate the free categorical 
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D-gat containing a D-gat. This should be a fundamental combinatorial object, by analogy with the 
case of monoidal categories, where the corresponding entity is Δ+, the category of finite ordinals and 
monotone maps.

Investigating these ideas fully will be a paper in itself; for now, we merely show that the monads under 
investigation are indeed local right adjoint and cartesian.

8.1. Local right adjoint and (strongly) cartesian monads

We begin by revising the notions of interest; see [2,4,17,24,25] for further discussion and applications.

Definition 43. A functor F : C → D is called local right adjoint if, for each X ∈ C, the induced functor
F/X: C/X → D/FX on slice categories is a right adjoint. A monad T is called local right adjoint when its 
underlying endofunctor is so.

By standard pasting properties of pullbacks, if C has a terminal object then a functor F : C → D is 
local right adjoint just when F/1: C/1 → D/F1 is a right adjoint. Such an F is thus determined by its 
value F1 at the terminal object together with a functor G1: D/F1 → C left adjoint to F/1. In the case 
C = D = [Hop, Set] of interest to us, a standard categorical argument shows that giving the left adjoint G1
is equivalent to giving an arbitrary functor [–]: el(F1) → [Hop, Set]. Here el(F1) is the category of elements
of F1, whose object set is Σh∈HF1(h), and whose morphisms (x ∈ F1(h)) → (x′ ∈ F1(h′)) are maps 
f : h → h′ such that x = (F1)(f)(x′). Given F1 and [–], we can reconstruct F from it by the formula

FX(h) ∼=
∑

x∈F1(h)

[
Hop,Set

](
[x], X

)
. (8.1)

This expresses that an element of FX(h) is an element x of F1(h) together with an appropriate labelling 
[x] → X by elements of X. Thus elements of F1 can be seen as encoding the “shapes” of the operations 
appearing in the functor F .

Note that the formula (8.1) expresses the functor F (–)(h): [Hop, Set] → Set as a coproduct of representa-
bles for each h ∈ H. This provides an alternative characterisation of the local right adjoint endofunctors of 
[Hop, Set], and we record this result as:

Proposition 44. For an endofunctor F of [Hop, Set], the following are equivalent:

(i) F is local right adjoint;
(ii) F/1: [Hop, Set] → [Hop, Set]/F1 is a right adjoint;
(iii) There are given F1 and [–]: el(F1) → [Hop, Set] such that (8.1) is validated;
(iv) For each h ∈ H, the functor F (–)(h): [Hop, Set] → Set is a coproduct of representable functors;
(v) F preserves connected limits (i.e., all small fibre products and equalisers).

[The only part we have not discussed is the equivalence of (iv) and (v), which follows immediately from 
the fact that the functors [Hop, Set] → Set which preserve connected limits are precisely the coproducts of 
representables.]

Definition 45. A natural transformation α: F ⇒ G: C → D is called cartesian if all its naturality squares are 
pullbacks. A monad T is called cartesian if it preserves pullbacks and its unit 1 ⇒ T and multiplication 
TT ⇒ T are cartesian. A monad is strongly cartesian if it is cartesian and local right adjoint.
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Again, if C has a terminal object, then this definition simplifies: a natural transformation α as above is 
cartesian if and only if each naturality square of the following form is a pullback:

FX
αX

F !

GX

G!

F1
α1

G1.

(8.2)

8.2. Categorical analysis

We now consider the above notions in the context of the monads W , P , S and T = PS for weakening, 
for weakening and projection, for substitution, and for gats. We will see that W , P and S are all strongly 
cartesian, but that T , though local right adjoint, is not strongly cartesian.

Proposition 46. The weakening monad W is strongly cartesian.

Proof. We first show W is local right adjoint using the characterisation of Proposition 44(iv). For each n ∈ H, 
we have W (–)(n) =

∑
ϕ∈Hp(n) [Hop, Set]([ϕ], –) a coproduct of representables as required. As for W (–)(nt), 

we define for each ϕ ∈ Hp(n) a presheaf [ϕ]t ∈ [Hop, Set] by taking [ϕ] and adjoining a new term-element 
over n ∈ [ϕ](#n). Now (WX)(nt) =

∑
(ϕ,h)∈PX(n) TmX(h(n)) ∼=

∑
ϕ∈Hp(n)[Hop, Set]([ϕ]t, X), whence

W (–)(nt) is a coproduct of representables as required. We next show that ηW : 1 ⇒ W is cartesian, thus 
that each naturality square (8.2) is a pullback. Evaluating at n ∈ H, this says that the left square below is a 
pullback; while doing so at nt ∈ H is the requirement that the right square be a pullback for each A ∈ X(n).

X(n)
ηW
X

!

WX(n)

W !

1(n)
ηW
1

W1(n)

TmX(A)
ηW
X

!

TmWX(ξn, Ã)

W !

Tm1(�)
ηW
Y

TmW1(ξn).

To say that the left square is a pullback is to say that each (γn, h) ∈ WX(n) is of the form (γn, Ã) for 
a unique A ∈ X(n). But as we observed before Definition 20, [γn] is the representable functor H(–, n), 
and so this follows from the Yoneda lemma. For the right-hand square, we have that TmWX(γn, Ã) =
TmX(Ã(n)) = TmX(A); similarly TmW1(γn) = Tm1(�), so that both horizontal maps are isomorphisms 
and the square is a pullback. Finally, we show that μW : WW ⇒ W is cartesian, thus that the squares:

W 2X(n)
μW
X

W 2!

WX(n)

W !

W 21(n)
μW
Y

W1(n)

TmW 2X(ψ, (ϕ, h))
μW
X

W 2!

TmWX(ψ � ϕ, ψ � h)

W !

TmW 21(ψ,ϕ)
μW

1

TmW1(ψ � ϕ)

are pullbacks for all n ∈ H and all (ψ, (ϕ, h)) ∈ W 2X(n). For the left square, we must show that for 
each (ψ, ϕ) ∈ W 21(n) and (ψ � ϕ, k) ∈ WX(n), there’s a unique (ψ, (ϕ, h)) ∈ W 2X(n) with k = ψ � h. 
So for each i ∈ [n], consider the set ↓ψ(i) = {0 ≺ v1 ≺ · · · ≺ vm = i}, and now define hi: [ϕi] → X by 
hi(j) = k(vj). By the definition (4.6) of ψ � ϕ, we see that, if ϕi(j) = 
, then (ψ � ϕ)(vj) = v�, whence 
hi(
) = k(v�) = k((ψ � ϕ)(vj)) = ∂(k(vj)) = ∂(hi(j)); thus hi is a well-defined map. It is moreover easy 
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to see that ∂(ϕi, hi) = (ϕj , hj) whenever ψ(i) = j, so that (ϕ, h): [ψ] → WX is well-defined; finally, it is
straightforward to check that ψ�h = k, and that h is unique with this property. Finally, for the right square, 
we observe that TmW 2X(ψ, (ϕ, h)) = TmWX(hn(#n)) = TmX((ψ � h)(n)) = TmWX(ψ � ϕ, ψ � h). Thus 
both horizontal arrows are isomorphisms and the square is a pullback. �
Proposition 47. The weakening and projection monad P is strongly cartesian.

Proof. We first show that P is local right adjoint. Certainly P (–)(n) = W (–)(n) is a coproduct of repre-
sentables; as for P (–)(nt), we have that

PX(nt) = WX(nt) +
∑

(ϕ,h)∈PX(n)

{
πi : i ∈ [n− 1], ϕ(n) = ϕ(i), h(n) = h(i)

}
,

so by Proposition 46, it suffices to exhibit the right summand as a coproduct of representables. 
A typical element (ϕ, h, πi) of this set determines and is determined by a triple (∂ϕ ∈ Hp(n − 1),
∂h: [∂ϕ] → X, i ∈ [n − 1]) subject to no further conditions, so that this summand may be written as ∑

ϕ∈Hp(n−1),i∈[n−1][Hop, Set]([ϕ], X) as required. It remains to show that ηP and μP are cartesian. Since 
P agrees with W on type-elements, the only extra work involves term-elements: we must show that squares 
of the form

TmX(A)
ηP
X

!

TmPX(γn, Ã)

P !

Tm1(�)
ηP
Y

TmP1(γn)

TmP 2X(ψ, (ϕ, h))
μP
X

P 2!

TmPX(ψ � ϕ, ψ � h)

P !

TmP 21(ψ,ϕ)
μP

1

TmP1(ψ � ϕ)

are pullbacks for all A ∈ X(n) and for all (ψ, (ϕ, h)) ∈ P 2X(n). For the left-hand square, note that 
TmPX(γn, Ã) contains no projection terms πi, as γn(n) �= γn(i) for any i ∈ [n − 1]. Thus TmPX(γn, Ã) =
TmWX(γn, Ã) and similarly for P1, and so we may appeal to Proposition 46. Finally, for the right-hand 
square, we need only deal with the new projection terms. We must show two things:

• Given projection terms πi(ψ, ϕ) ∈ P 21(ψ, ϕ) and πi ∈ PX(ψ �ϕ, ψ �h), we have a valid projection term 
πi(ψ, (ϕ, h)) ∈ P 2X; if this exists, it will clearly be the unique element sitting over πi(ψ, ϕ) and πi. 
Since πi(ψ, ϕ) is a projection term, we already have that ψ(n) = ψ(i) and ϕn = ϕi; and so we need 
only show that also hn = hi. Since ψ(n) = ψ(i), we have ∂hn = ∂hi; it remains to show that hi and hn

agree at #n = #i. But since πi ∈ PX(ψ � ϕ, ψ � h), we have (ψ � h)(n) = (ψ � h)(i), so by definition 
hn(#n) = hi(#i) as required.

• Given projection terms πi(ϕn) ∈ P 21(ψ, ϕ) and πψ#n−i(n) ∈ PX(ψ�ϕ, ψ�h), we have a valid projection 
term πi(ϕn, hn) ∈ P 2X. Since πi(ϕn) is a projection term, we already have that ϕn(#n) = ϕn(i), so 
it remains to show that hn(#n) = hn(i). Let us write j = ψ#n−i(n). Since πj ∈ PX(ψ � ϕ, ψ � h), we 
have (ψ � h)(n) = (ψ � h)(j), whence hn(#n) = (ψ � h)(n) = (ψ � h)(j) = hj(#j) = hj(i) = hn(i), as 
required, where for the last step, we use the fact that j ∈ ↓ψ(n) and so that hj = (hn)|i. �

Proposition 48. The substitution monad S is strongly cartesian.

Proof. We first show that S is local right adjoint. Arguing as in Proposition 46, we have that S(–)(n) =∑
α∈Inc(n)[Hop, Set]([α], –) is a coproduct of representables, while we may write S(–)(nt) as the coproduct ∑

[Hop, Set]([α]t, –), where the presheaf [α]t ∈ [Hop, Set] is obtained by adjoining to [α] a new 
α∈Inc(n)
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term-element over α(n) ∈ [ϕ](α(n)). We next show that ηS: 1 ⇒ S is cartesian; which, as before, is to show 
that the squares:

X(n)
ηS
X

!

SX(n)

S!

1(n)
ηS
1

S1(n)

TmX(A)
ηS
X

!

TmSX(ιn, Ã)

S!

Tm1(�)
ηS
Y

TmS1(ιn)

are pullbacks for each n ∈ H and each A ∈ X(n). The argument is exactly as in Proposition 46, using the 
facts that [ιn] is again the representable H(n, –), and that TmSX(ιn, Ã) = TmX(Ã(ιn(n))) = TmX(A). 
Finally, we show that μS : SS ⇒ S is cartesian, thus that the squares:

S2X(n)
μS
X

S2!

SX(n)

S!

S21(n)
μS
Y

S1(n)

TmS2X(α, (β, h, k))
μS
X

S2!

TmSX(βα, h ∪ k)

S!

TmS21(α, β)
μS

1

TmS1(βα)

are pullbacks for all n ∈ H and all (α, (β, h, k)) ∈ S2X(n). For the left square, we must show that for 
each (α, β) ∈ S21(n) and (βα, 
) ∈ SX(n), there’s a unique (α, (β, h, k)) ∈ S2X(n) with 
 = h ∪ k. But 
this is easy: we define h(i) = 
(i) for i ∈ [β(α(n))] and h(it) = 
(it) for i ∈ [β(α(n))] \ Im β, and define 
k(j) = 
(β(j)t) for j ∈ [α(n)] \ Imα. It is easy to see that this is well-defined, that h ∪ k = 
, and that h
and k are unique with this property. Finally, for the right square, we observe that TmS2X(α, (β, h, k)) =
TmSX(β, h) = TmX(β(α(n))) = TmSX(βα, h ∪ k). Thus both horizontal arrows are isomorphisms and the 
square is a pullback. �

We conclude by considering the categorical properties of the monad T = PS for gats. One might expect 
that T , like its constituent monads P and S, would be strongly cartesian. However, this turns out not to 
be the case.

Proposition 49. The monad T for gats is local right adjoint, but not strongly cartesian.

Proof. The underlying endofunctor T = PS is the composite of two local right adjoint functors, and so itself 
is local right adjoint. Similarly, the unit ηPS = ηPS ◦ ηS : 1 ⇒ PS is the composite of two cartesian natural 
transformations and so cartesian. However, the same is not true of the multiplication. The problem is that 
the distributive law δ: SP ⇒ PS is not a cartesian natural transformation; it follows that μPS is not either. 
Indeed, if it were, then both components of (7.4) would be cartesian (the first since ηP and ηS are and PS
preserves pullbacks), and hence the composite δ would be, too. It remains to prove that δ is not cartesian. 
Let X ∈ [Hop, Set] be generated by a single element A ∈ X(1), and consider the square on the left in:

SPX(1)
δX

SP !

PSX(1)

PS!

SP1(1)
δ1

PS1(1)

(
γ1, (ι1, Ã)

)

(α,ϕ) (γ1, ι1).

We will show that this square is not a pullback. Let α ∈ Inc(1) be given by α(0) = 0 and α(1) = 2, and 
let ϕ ∈ Hp(α(1)) = Hp(2) be given by ϕ(2) = ϕ(1) = ϕ(0) = 0. These data give rise to a projection-free 
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term (α, ϕ) in SP1(1), and easily α∗ϕ = γ1 and αϕ = ι1. Thus we have a diagram of elements as on the 
right above; but there can be no element of SPX(1) forming a cone over it. For indeed, such an element 
would have to be a projection-free element (α, (ϕ, h, k)), where h: [ϕ] → X and k comprises an element 
k(1) ∈ TmX(h(1)); but since X has no term-elements, this is impossible. �
Remark 50. It is probably worth explaining what the above failure of cartesianness means in proof-theoretic 
terms. Consider the following pattern of derivation. Take a type judgement � A type. Weaken it with respect 
to a closed type B to obtain x : B � A type. Now substitute in a closed term � t : B. The result is, of course, 
once again just � A type. The basic data for this derivation—the types A and B and the term t—correspond 
to an element (α, (ϕ, h, k)) ∈ SPX(1), where α and ϕ are as in the preceding proof. The result of the 
derivation—the judgement � A type—is the resultant element δX(α, (ϕ, h, k)) = (γ1, (ι1, Ã)) ∈ PSX(1). 
When X = 1, this reduces to δ1(α, ϕ) = (γ1, ι1) and in fact (α, ϕ) is the unique preimage of (γ1, ι1) under 
δ1. Thus if δ were to be cartesian, then each (γ1, (ι1, Ã)) would also have to have a unique preimage of 
the form (α, (ϕ, –, –)). But this would be to say that there were a unique derivation of � A type given by 
weakening and then substituting as above. This is clearly is not so: there is one such derivation for each 
closed type B and each term t of that type.

Thus, finally, the reason for the failure of cartesianness is that, in the presence of weakening, application 
of substitution may destroy information like that of B and t in the above example. Thus the failure is a 
failure of linearity. What is perhaps remarkable is that substitution is linear in this sense with respect to the 
theory without weakening; it is only the interaction of substitution with weakening that causes the problem.
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