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a b s t r a c t

The notion of Grothendieck topos may be considered as a generalisation of that of topo-
logical space, one in which the points of the space may have non-trivial automorphisms.
However, the analogy is not precise, since in a topological space, it is the points which have
conceptual priority over the open sets, whereas in a topos it is the otherway around. Hence
a topos ismore correctly regarded as a generalised locale than as a generalised space. In this
article we introduce the notion of ionad, which stands in the same relationship to a topo-
logical space as a (Grothendieck) topos does to a locale. We develop basic aspects of their
theory and discuss their relationship with toposes.
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1. Introduction

Grothendieck introduced toposes in [6] in order to describe a more general kind of ‘‘space’’ than that given by general
topology, one whose ‘‘points’’ could possess non-trivial automorphisms. However, as Grothendieck himself immediately
points out, the notion of topos is not a faithful generalisation of that of topological space; for though each space gives rise
to a topos—namely the topos of sheaves on that space—we may only reconstruct the space from the topos if the space
satisfies a separability axiom (‘‘sobriety’’). This is a reflection of amore general fact concerning the continuousmaps between
spaces. Every such map induces a geometric morphism between the corresponding sheaf toposes, and so we have a functor
Sp→ GTop from the category of spaces to the category of Grothendieck toposes; but this functor is neither full nor faithful
(not even in the bicategorical sense). As is well known, the reason for these discrepancies is that a Grothendieck topos is
not really a more general kind of space, but rather a more general kind of locale [3,9]. Indeed, to every locale we may assign
a topos—again, by the sheaf construction—but, by contrast with the case for spaces, it is always possible to reconstruct the
locale from the topos. We obtain similar good behaviour with respect to continuous maps of locales: the sheaf construction
extends to a functor Loc→ GTopwhich is (bicategorically) full and faithful and has a (bicategorical) left adjoint.

The reason thatwe bring this up is to point out a gap in our conceptual framework: there is no established structurewhich
generalises the notion of topological space in a manner corresponding to that in which a Grothendieck topos generalises
a locale. The purpose of this paper is to fill this gap by introducing the notion of ionad1. Like a topological space, an ionad
comprises a set of points together with a ‘‘topology’’. The notion of topology employed is not the classical one, but is at least
a generalisation of it: which in particular means that there is a canonical way of viewing a topological space as an ionad,
giving rise to a full, reflective embedding of the category of spaces into the category of ionads. Thus an ionad is indeed a
‘‘generalised space’’, and the tightness of the correspondence is confirmed bymany further correlations between the theory
of topological spaces and that of ionads: for instance, a continuous map between ionads is a function on the underlying
sets which commutes with the topologies in an appropriate sense; (co)limits in the category of ionads are constructed by
equipping the (co)limit of the underlying diagram of sets with a suitably universal topology; and the most common way of
constructing an ionad is in terms of a set of points together with a (suitably-generalised) basis of opens. Moreover, any ionad
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has a collection of ‘‘opens’’, and just as the opens of a topological space form a locale, so the opens of an ionad form a topos.
For those ionads arising from topological spaces, this ‘‘topos of opens’’ is just the topos of sheaves on the space; which is to
say that the passage from spaces to ionads to toposes coincides with that from spaces to locales to toposes.

If we do take a topos-theoretic perspective, then the notion of ionad turns out to have a succinct and familiar expression—
it is nothing other than a topos equipped with a separating set of points. Many other aspects of ionad theory admit similarly
familiar topos-theoretic interpretations. However, the viewwe take here is that it should be perfectly possible to develop the
basic theory of ionads without presupposing the corresponding aspects of topos theory, and we have arranged our account
accordingly.

The paper is structured as follows. In Section 2, we introduce the notion of ionad, and give such examples as we may
construct with our bare hands. We see that the ‘‘generalised opens’’ of an ionad are always a topos, and that, as mentioned
above, the notion of ionad is essentially the same as that of spatial topos. Then in Section 3 we describe how ionads may
be generated from a basis; where this notion naturally generalises the corresponding one for spaces. Using this we are
able to give several more examples of ionads, which correspond to some familiar examples of toposes. We investigate
the connection between the ionad generated from a basis, and the Grothendieck topos generated from a site, and finally
characterise the ionads which may be generated from a basis (which we call bounded) as being those whose category of
opens is a Grothendieck topos.

In Section 4 we define continuous maps between ionads and give a number of examples. We shall see that both the
category of topological spaces and the category of small categories embed fully and faithfully into the category of bounded
ionads, with the former embedding having a left adjoint; later, we show that the latter one has a right adjoint. In Sections 5
and 6, we briefly consider further aspects of the theory. Section 5 shows that the category of ionads may be enriched to a
2-category, whose 2-cells are specialisations between continuous maps, generalising the (pointwise) specialisation order on
maps of topological spaces; and Section 6 describes the limits and colimits possessed by the 2-category of ionads: we see
that the 2-category of all ionads has rather few limits and colimits, but that the 2-category of bounded ionads is complete
and cocomplete. The paper is concluded in Section 7 by a short discussion on the comparative advantages and disadvantages
of the notions of topos and ionad.

2. Ionads

We usually define a topological space to be a set X of points together with a topology: a collection of subsets of X closed
under finite intersections and arbitrary unions. However, we may equally well give the set X together with an interior
operator: an order-preserving map i : PX → PX which is a coclosure operator (i.e., deflationary and idempotent) and
preserves finite intersections. The passage between the two definitions is straightforward: given a topology on X , there is an
interior operator sending A ⊆ X to the largest open set contained in it; and given an interior operator i : PX → PX , there
is a topology on X consisting of all those A ⊆ X for which A = i(A). Now by taking this second definition of topological space
and replacing every poset-theoretic device which appears in it with a corresponding category-theoretic one, we obtain the
notion of ionad.

Definition 2.1. An ionad is given by a set X of points together with a cartesian (i.e., finite limit preserving) comonad
IX : SetX → SetX .

Remark 2.2. It will be convenient to carry over from the topological case the abuse of notation which names a space by its
set of points: thus we may refer to an ionad (X, IX ) simply as X , with the interior comonad being left implicit.

If we are given a topological space presented in terms of its interior operator i, thenwe can reconstruct its open sets as the
collection of i-fixpoints. In the case of an ionad, the only presentation we have is in terms of a generalised interior operator:
but we can use the category-theoretic analogue of the fixpoint construction in order to define its ‘‘generalised opens’’.

Definition 2.3. The category of opens O(X) of an ionad X is the category of IX -coalgebras.

Remark 2.4. In the definition of ionad, we have chosen to have a mere set of points, rather than a category of them. We do
so for a number of reasons. The first is that this choice mirrors most closely the definition of topological space, where we
have a set, and not a poset, of points. The second is that we would in fact obtain no extra generality by allowing a category
of points. We may see this by analogy with the topological case, where to give an interior operator on a poset of points
(X,6) is equally well to give a topology O(X) on X such that every open set is upwards-closed with respect to 6. Similarly,
to equip a small category C with an interior comonad is equally well to give an interior comonad on X := ob C together
with a factorisation of the forgetful functor O(X) → SetX through the presheaf category SetC; this is an easy consequence
of Example 2.7 below. However, the most compelling reason for not admitting a category of points is that, if we were to do
so, then adjunctions such as that between the category of ionads and the category of topological spaces would no longer
exist. Note that, although we do not allow a category of points, the points of any (well-behaved) ionad bear nonetheless a
canonical category structure—described in Definition 5.7 and Remark 5.9 below—which may be understood as an analogue
of the specialisation ordering on the points of a space.



1736 R. Garner / Journal of Pure and Applied Algebra 216 (2012) 1734–1747

Remark 2.5. As stated in the Introduction, the category of opens of an ionad is always a (cocomplete, elementary) topos:
this because SetX is a topos for any set X , and the category of coalgebras for a cartesian comonad on a topos is again a topos.
Moreover, the cofree/forgetful adjunction between SetX and O(X) yields a surjective geometric morphism SetX → O(X). To
give such a geometric morphism is to give an X-indexed family of points of the topos O(X); to say that it is surjective is to
say that these points separate the generalised opens in O(X), in the sense that their inverse image functors jointly reflect
isomorphisms. In particular, this makes O(X) a topos with enough points [11, §C2.2].

In fact, given any surjective geometric morphism f : SetX → E , we obtain an ionad (X, f ∗f∗)whose category of open sets
is equivalent (by surjectivity of f ) to E . Thus ionads are essentially the same things as toposes equipped with a separating
set of points. There is a parallel here with the theory of topological spaces: where a spacemay be identified with a surjective
locale morphism out of a discrete locale—one of the form PX for some set X , an ionad may be identified with a surjective
geometric morphism out of a discrete topos—one of the form SetX for some set X .

Remark 2.6. We shall see in Examples 3.5.2 below that every topological space A gives rise to an ionad ΣA, and that the
topos of opens O(ΣA) is equivalent to the topos of sheaves Sh(A). With this in mind, we could have chosen to refer to the
topos O(X) as the topos of sheaves on the ‘‘generalised space’’ X . We will not do so here, for the following two reasons. The
first is that, in generalising further concepts from topological spaces to ionads, we often need do nothing more than replace
O(X) everywhere by O(X), and the inevitability of this replacement would be diminished if we were to refer to this latter
topos as Sh(X). The second reason is that, whilst it is indeed true that objects of O(X) look very much like sheaves on a
topological space—as evidenced by Proposition 3.4, for instance—it is equally true that they look very much like generalised
open sets. We will expand on this point in Remark 3.2 below.

Example 2.7. If (X,6) is a partially ordered set, then there is a topology on X—the Alexandroff topology—whose open sets
are the upwards-closed subsets of X with respect to 6. In a similar way, if C is a small category, then there is an ionad A(C)
on the set of objects of C whose generalised opens are the ‘‘generalised upsets’’ in C: that is, the covariant presheaves on C.
The interior comonad of this ionad is induced by the adjunction

Setob C

RanJ
//⊥ SetC

SetJoo
(1)

obtained by restriction and right Kan extension along the inclusion functor J : ob C→ C. Observe that the functor SetJ , since
it strictly creates equalisers, is strictly comonadic; and so the category of open sets for A(C) is isomorphic to SetC.

Recall that the lattice of open sets of an Alexandroff topology is closed under arbitrary intersections, and that this
property serves to completely characterise the Alexandroff topologies. Likewise, for an Alexandroff ionad, the forgetful
functor U : O(A(C))→ Setob C creates limits (since SetJ , and hence the interior comonad, preserve them); and this property
completely characterises the Alexandroff ionads. Indeed, if for some ionad X the forgetful functor O(X) → SetX creates
limits, then the interior operator IX : SetX → SetX will preserve them; and so have a colimit-preserving left adjoint K . The
comonad structure of IX transposes across the adjunction to give a monad structure on K , which is equivalently a monoid
structure on the functor

M := X
y
−→ SetX K

−→ SetX

with respect to profunctor composition; and this in turn amounts to specifying a category C with object set X and homsets
C(x, y) := M(x)(y). Moreover, it follows (‘‘adjoint triples’’ [4]) that there is an isomorphism between the category of IX -
coalgebras—which is O(X)—and the category of K -algebras, which, by an easy calculation, is SetC.

3. Generalised bases

In order to produce more sophisticated examples of ionads, we will need a way of generating topologies from bases.
Recall that a basis for an ordinary topology on a set X is a collection B ⊆ PX satisfying the following properties:

• For every x ∈ X , there is some B ∈ B with x ∈ B;
• If x ∈ X and B1, B2 ∈ B with x ∈ B1 ∩ B2, then there is some B3 ∈ B with B3 ⊆ B1 ∩ B2 and x ∈ B3.

The open sets of the topology this generates are arbitrary unions of elements of B. However, since our aim is to generalise
this definition from spaces to ionads, we will be more interested in describing the interior operator generated by B. To this
end,we regardB as a poset under inclusion, andwritem : B → PX for the (order-preserving) inclusionmap. Now the basis
axioms forB correspond to the requirement thatm should be flat, in the sense that, for each x ∈ X , the set {B ∈ B x ∈ m(B)}
should be a downwards directed poset. In fact, we can drop the requirement thatm should be injective entirely; this gives a
more ‘‘intensional’’ notion of basis, where the same open set may be named by more than one basis element. (Observe that
this happens quite frequently in practice: think, for example, of the Zariski topology on the prime spectrum of a ring; or of
the logical topology on the set of complete theories extending a first-order theory T.)

Now given any flat morphismm : B → PX , we may define an interior operator on X in the following manner. We write
↓B for the poset of downsets in B, and y : B → ↓B for the order-preserving map sending B ∈ B to the downset of all
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elements below B. This map exhibits↓B as the free join-completion ofB, and so there is a uniqueway of extendingm along
y to yield a join-preserving mapm⊗ (–) : ↓B → PX:

B

y

��

m // PX

↓B

m⊗(–)

==z
z

z
z

.

Since thism⊗ (–) preserves joins, it has a right adjoint [m, –] : PX → ↓B, and composing these yields a coclosure operator
i := m ⊗ [m, –] on PX . In order to show that this i preserves finite meets, it suffices to show that m ⊗ – does so; but
a standard piece of lattice theory tells us that this is equivalent to the flatness of m. It remains to check that this interior
operator i is the one associated to the topology generated by B. For this, we calculate that

m⊗X =

B∈X

m(B) and [m, A] = {B ∈ B m(B) ⊆ A}

so that the composite i : PX → PX sends A to the union of all those m(B)’s with m(B) ⊆ A, as required. Consideration of
the above now leads us to propose:

Definition 3.1. A basis for an ionad with set of points X is given by a small category B together with a functorM : B→ SetX
which is flat, in the sense that for each x ∈ X , the category of elements of the functorM(–)(x) : B→ Set is cofiltered.

The construction of an ionad from a basis mirrors that of a space from a basis. The Yoneda embedding y : B → SetB
op

exhibits SetB
op

as the free colimit-completion of B, and so we may extend M along it to yield a colimit-preserving functor
M ⊗ (–) : SetB

op
→ SetX :

B

y

��

M //

∼=

SetX .

SetB
op

M⊗(–)

;;w
w

w
w

w

Since thisM ⊗ (–) preserves colimits, it has a right adjoint [M, –], and composing these together yields a comonad on SetX .
Again, to ensure that this comonad preserves finite limits, it suffices to show that M ⊗ (–) does; and a standard piece of
category theory says that this is equivalent to the flatness ofM .

Remark 3.2. If B is a basis for an ordinary topology on a set X , then a subset A ⊂ X is open in that topology just when
every x ∈ A is contained in some B ∈ B with B ⊂ A. If M : B → SetX is a basis for an ionad X , then we may view objects
of the category of opens O(X) in a corresponding manner. Unravelling the definitions, we see that the interior comonad I
generated by the basisM has its value at A ∈ SetX given by

(IA)(x) =
 B∈B

(MB)(x)×

y∈X

A(y)(MB)(y) .

Thus, if we think of a typical A ∈ SetX as specifying, for each x ∈ X , a set Ax of proofs that x lies in A, then to give an I-
coalgebra structure on A is to give a mapping which, to each proof that x lies in A, coherently assigns an element B ∈ B,
together with proofs that x lies inMB and thatMB is contained in A.

Remark 3.3. Having motivated the preceding construction purely from topological considerations, we now see that it is a
familiar one in topos-theory. A basis for an ionad is a flat functor B → SetX , which corresponds to a colimit- and finite-
limit-preserving functor SetB

op
→ SetX , and hence to a geometric morphism SetX → SetB

op
. Any such geometric morphism

factors as

SetX
p
−−→ E

i
−−→ SetB

op
(2)

where p is a surjection, and i an inclusion (see [10, Theorem A4.2.10] for example). By Remark 2.5, the map p determines
an ionad on X , which is by inspection precisely the ionad generated by the basis B → SetX . The fact that i is a geometric
inclusion tells us that E , the category of opens of this ionad, is a subtopos of SetB

op
. In fact, we have:

Proposition 3.4. If M : B → SetX is a basis for an ionad X, then the category O(X) is equivalent to the category of sheaves on
the site whose underlying category is B and whose covering sieves are those (fi : Ui → U | i ∈ I) in B which M sends to jointly
epimorphic families in SetX .
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Proof. Since O(X) is the category of coalgebras for the comonad generated by the adjunction

SetX
[M,–]

//⊥ SetB
op

M⊗(–)
oo

,

there is a canonical comparison functor L : SetB
op
→ O(X), which preserves finite limits sinceM ⊗ (–) does. Because SetB

op

has equalisers, this functor has a right adjoint R; becauseM⊗(–) preserves them, this R is fully faithful, and so exhibitsO(X),
up-to-equivalence, as the category of sheaves for a Grothendieck topology on B. A family of morphisms (fi : Ui → U | i ∈ I)
is covering for this topology just when the sieve ϕ : A � B(–,U) they generate is inverted by L. Since the forgetful functor
UX : O(X) → SetX is comonadic, hence conservative, Lϕ is invertible if and only if UXLϕ = M ⊗ ϕ is so in SetX . But ϕ
is the image of the map [C(–, fi)]i∈I :


i∈I C(–,Ui) → C(–,U); and since M ⊗ (–) preserves finite limits and colimits, it

preserves image factorisations, whence M ⊗ ϕ is an isomorphism if and only if (M ⊗ C(–, fi) | i ∈ I) = (Mfi | i ∈ I) is a
jointly epimorphic family, as required. �

Examples 3.5. (1) If C is a small category, then we obtain a basis for the Alexandroff ionad A(C) of Example 2.7 by taking
B := Cop and M := [J, –] : Cop

→ Setob C, where J : ob C → Cop is the canonical inclusion. We see that the ionad this
basis generates is A(C) by noting that the adjunctionM ⊗ (–) ⊣ [M, –] induced byM is precisely the adjunction of (1).

(2) Every topological space X gives rise to an ionad ΣX on the same set of points, generated by the following basis. We
take B := O(X), the lattice of open sets of the topology (though we could equally well take it to be any basis, in the
classical sense, for the topology on X), and M : O(X)→ SetX the composite of O(X) � PX with the obvious inclusion
PX � SetX . Thus we have

M(U)(x) =

1 if x ∈ U;
0 otherwise.

ClearlyM preserves finite limits, and so is flat; and it is easy to see that the covering families of the induced site structure
onB are of the form (Ui ⊆ U | i ∈ I)where


Ui = U . Thus by Proposition 3.4, the category of opensO(ΣX) is equivalent

to the category of sheaves on the space X .
(3) Let X be a topological space equipped with an action by a discrete group G. We define the G-equivariant ionad ΣGX to

have set of points X , and topology generated by the following basis.We take B := OG(X), the categorywhose objects are
open sets of X , and whose morphisms U → V are elements g ∈ G for which g(U) ⊆ V ; and define M : OG(X)→ SetX
by

M(U)(x) = {h ∈ G hx ∈ U} and M(g)(x) : h → gh .

It is easy to show that M is flat, and so defines a basis for an ionad ΣGX . The induced site structure on OG(X) has as
covering families all those (gi : Ui → V | i ∈ I) such that (Mgi) is jointly epimorphic; that is, such that for every x ∈ X
and h ∈ G with hx ∈ V , there exists i ∈ I such that g−1i hx ∈ Ui; that is, such that the family of maps gi|Ui

: Ui → X
jointly cover V . Thus by Proposition 3.4 and [10, Examples A.2.1.11(c)], we conclude that O(ΣGX) is equivalent to the
topos of G-equivariant sheaves on X .

(4) If A is a commutative ring, we define its étale ionad as follows. Its set of points is Spec(A), the set of prime ideals of A,
whilst its topology is generated by the following basis. The category B is (a skeleton of) EtopA , the opposite of the category
of étale A-algebras, whilst M : EtopA → SetSpec(A) sends an étale A-algebra f : A → B and a prime ideal P ▹ A to the
set of all prime ideals Q ▹ B for which f −1(Q ) = P . The induced site structure on EtopA has as covering families those
(fi : Bi ← B | i ∈ I) such that (Mfi | i ∈ I) is jointly epimorphic; but since the disjoint union of the sets (MB)(P), as P
ranges over the prime ideals of A, is clearly the set of all prime ideals of B, to say that the family (Mfi | i ∈ I) is jointly
epimorphic is equally well to say that every prime ideal of B is the inverse image of a prime ideal of some Bi. Thus by
Proposition 3.4 and [8, Exercise 0.11], the topos of opens of the étale ionad is the little étale topos of A.

(5) Let T be a coherent first-order theory over a language of cardinality κ . For any regular cardinal λ > κ , we define the
λ-small classifying ionad as follows. Let X be a set of representatives of isomorphism classes of models of T of cardinality
< λ, and let B be the syntactic category [11, §D1.4] of the theory T; it has as objects, coherent formulae-in-context {x⃗.φ},
and asmorphisms, equivalence classes of provably functional relations between them.Wedefine a functorM : B→ SetX
which takes a formula-in-context {x⃗.φ} and a model A and returns the interpretation JφKA of φ in A. We may show that
B has, andM preserves, all finite limits, so thatM is a basis for an ionad. Moreover, if


θi : {y⃗i.φi} → {x⃗.ψ} | 1 6 i 6 n


is

a family of maps in B, then it is easy to see that the sequentψ ⊢x⃗
n

i=1(∃y⃗i)θi is validated in a given model A of T if and
only if the family of functions JθiKA : JφiKA → JψKA is jointly epimorphic. Since the collection of models of cardinality
< λ is complete for T, it follows that the family (θi | i ∈ I) is sent to a jointly epimorphic family in SetX if and only if the
sequent ψ ⊢x⃗

n
i=1(∃y⃗i)θi is provable in T: so that the induced site of this ionad is the syntactic site of T, and the topos

of opens, the classifying topos of T.

Although every ionadwemeet in practice will be generated from a basis, it is not a priori the case that every ionad need arise
in this way. Indeed, if an ionad is generated by a basisM : B→ SetX , then its category of opens is equivalent to a category of
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sheaves, and hence aGrothendieck topos. On the other hand, the category of coalgebras for an inaccessible cartesian comonad
on SetX is not locally presentable, and hence not a Grothendieck topos. In fact, we have:

Proposition 3.6. The following conditions on an ionad X are equivalent:
(1) It may be generated (up to isomorphism) from a basis;
(2) Its interior comonad is accessible;
(3) Its category of opens is a Grothendieck topos.

Proof. First we show (1)⇒ (2). Given a basis M : B→ SetX , we will show that [M, –] : SetX → SetB
op

preserves λ-filtered
colimits for some regular cardinal λ; it then follows that also its composite with the left adjoint M ⊗ (–) will do so.
So let λ be such that the set of objects {MB | B ∈ B} are all λ-presentable in SetX (such a λ exists since SetX is locally
presentable). Now given a λ-filtered diagram A : I → SetX we calculate that [M, colimi Ai](B) = SetX (MB, colimi Ai) ∼=
colimi SetX (MB, Ai) = colimi[M, Ai](B) for every B ∈ B as required. For (2)⇒ (3), we simply observe that if IX is an accessible
comonad, then its category of coalgebras O(X) is locally presentable, and hence a Grothendieck topos. Finally we show that
(3)⇒ (1). If O(X) is a Grothendieck topos, then it is in particular locally presentable; and so we may find a small full dense
subcategoryN : B � O(X)which,without loss of generality,wemay take to be closed under finite limits. Then the composite
M := B � O(X)→ SetX is a cartesian functor on B, and so gives a basis for an ionad. The interior comonad of this ionad is
isomorphic to that generated by the string of adjunctions

SetX
cofree

//⊥ O(X)
[N,–]

//⊥

forget
oo

SetB
op

N⊗(–)
oo

,

but since B is dense in O(X), the counit of the right-hand adjunction is an isomorphism, and it follows that the interior
comonad of the resultant ionad is isomorphic to IX . �

Definition 3.7. We call an ionad bounded if it satisfies any one of the three equivalent conditions of Proposition 3.6.

Remark 3.8. Every ionad that we meet in mathematical practice is bounded: moreover, it is quite probable that the
existence or otherwise of unbounded ionads is a problem that is independent of the usual axioms of set theory. A
construction given in [10, Example B3.1.12] shows that any inaccessible cartesian endofunctor of Set gives rise to an
unbounded ionad on the two-element set; but the only known construction of an inaccessible, cartesian endofunctor of
Set, given in [2], requires the existence of a proper class of measurable cardinals.

Remark 3.9. In Remark 2.5, we noted that the category of opens of an ionad is always a topos with enough points. For
bounded ionads, we can say more: the toposes arising as their categories of opens are precisely the Grothendieck toposes
with enough points. Indeed, for a topos E to have enough points is for the class of all inverse image functors E → Set to be
jointly conservative. In the case of a Grothendieck topos, this implies the existence of a mere set X of inverse image functors
with this property (as is shown in [11, Proposition C2.2.12]), and hence of a geometric surjection SetX → E exhibiting E as
the category of opens of an ionad.

4. Maps of ionads

We now consider the appropriate notion of morphism between ionads. For ordinary topological spaces X and Y , a
continuous map is a morphism of underlying sets f : X → Y such that the induced inverse imagemapping f −1 : PY → PX
maps open sets to open sets; which is to say that there exists a (necessarily unique) lifting

O(Y )
f ∗

//___
��

��

O(X)
��

��

PY
f−1

// PX

of f −1 as indicated. We are therefore led to propose:

Definition 4.1. A continuous map of ionads X → Y is a function f : X → Y of the underlying sets together with a lifting

O(Y )
f ∗

//

UY

��

O(X)

UX

��

SetY
f−1

// SetX

(3)

of f −1 := Setf through the corresponding categories of open sets. We write Ion for the category of ionads and continuous
maps, and BIon for the full subcategory determined by the bounded ionads.
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Remark 4.2. In accordancewith the notational convention established in Remark 2.2,wemay choose to denote a continuous
map of ionads by naming its underlying map of sets f : X → Y whilst leaving the corresponding lifting f ∗ : O(Y ) → O(X)
implicit.
Remark 4.3. Observe that if f is an ionadmorphism, then f ∗ : O(Y )→ O(X) is cartesian, because finite limits are preserved
by f −1.UY and reflected by UX . Moreover, since UY and UX are comonadic and O(Y ) has equalisers, the adjoint lifting
theorem [7] permits us to lift the right adjointΠf of f −1 to a right adjoint f∗ for f ∗, and so to make f ∗ into the inverse image
part of a geometric morphism O(X)→ O(Y ). This construction yields a functor2 O(–) : Ion→ Top, which is analogous to
the functor O(–) : Sp→ Loc assigning to every topological space its locale of open sets.
Example 4.4. If C and D are small categories, then to give a continuous map A(C) → A(D) between the corresponding
Alexandroff ionads is to give a function f : ob C→ obD together with a lifting

SetD
f ∗

//

��

SetC

��

SetobD
f−1

// Setob C .

(4)

In particular, any extension of f to a functor F : C→ D determines such a lifting by taking f ∗ = SetF , and so the assignation
C → A(C) extends to a functor A : Cat → BIon. In fact, this functor is fully faithful. To see this, we must prove that every
lifting in (4) is induced by a unique extension of f to a functor. So given such a lifting f ∗, wemust construct for each g : x→ x′
in C a morphism F(g) : fx → fx′. Note first that commutativity in (4) forces f ∗(H)(x) = H(fx) and f ∗(H)(x′) = H(fx′) for
every H ∈ SetD. In particular, taking H = yfx, we obtain a map of sets

f ∗(yfx)(g) : D(fx, fx)→ D(fx, fx′)

and evaluating this at 1fx yields the requiredmorphism fx→ fx′. Straightforward diagram chasing shows this assignation to
be functorial, and that the resultant functor uniquely induces the lifting f ∗. Thus we have a full embedding A : Cat→ BIon;
in Remark 6.5 below, we will see that this embedding is in fact coreflective.
Remark 4.5. To give a continuous map of ionads (X, I)→ (Y , J) is equally well to give a function f : X → Y and a natural
transformation δ : f −1J ⇒ If −1 such that the diagrams

f −1J
f−1ϵ

//

δ

��

f −1

If −1
ϵf−1

==|||||||||

and

f −1J
f−1∆

//

δ

��

f −1JJ
δJ

// If −1J

Iδ
��

If −1
∆f−1

// IIf −1

(5)

commute; that is, such that the pair (f −1, δ) is a comonad morphism(SetY , J)→ (SetX , I) in the sense of [14]. The passage
between the two descriptions is as follows: given δ : f −1J ⇒ If −1, we define the corresponding f ∗ : O(Y ) ⇒ O(X) by
f ∗(a : A → JA) = δA.f −1a : f −1A → If −1A. Conversely, given f ∗, we obtain the A-component of the corresponding
δ by applying f ∗ to the cofree J-coalgebra ∆A : JA → JJA—yielding an I-coalgebra f ∗(∆A) : f −1JA → If −1JA—and then
postcomposing with If −1ϵA : If −1JA→ If −1A.
Example 4.6. Let Y be the ionad generated by a basis M : B → SetY . By the preceding Remark, to give a continuous map
X → Y is to give a function f : X → Y togetherwith a natural transformation f −1.M⊗[M, –] ⇒ IX .f −1 satisfying the axioms
of (5). Now by virtue of the adjunctionM⊗ (–) ⊣ [M, –], to give this natural transformation is equally well to give a natural
transformation f −1.M ⊗ (–) ⇒ IX .f −1.M ⊗ (–) : SetB

op
→ SetX ; and since both f −1 and IX .f −1 preserve colimits, such a

natural transformation is uniquely determined by a natural transformation α : f −1.M ⇒ IX .f −1.M : B→ SetX . Under these
correspondences, the two axioms of (5) become two axioms onαwhich say exactly that it equips f −1.M with the structure of
a coalgebra for the comonad (IX )B on (SetX )B. But to give such a coalgebra structure on f −1.M is equally well to give a lifting

B

M
��

f ′
// O(X)

UX

��

SetY
f−1

// SetX

(6)

of f −1.M through O(X), the category of IX -coalgebras.

2 With the usual definition of geometric morphism, this is really only a pseudofunctor, because we must choose a right adjoint f∗ for each f ∗ , and in
general cannot expect these choices to satisfy g∗f∗ = (gf )∗ , but only g∗f∗ ∼= (gf )∗ . However, we shall take the slightly non-standard definition of a
geometric morphism E → F as a left adjoint cartesian functor F → E ; whereupon we do indeed obtain a genuine functor Ion→ Top.
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A consequence of this is that the collection of ionad morphisms X → Y will be a set whenever Y is bounded. For in this
case, continuous maps are given by diagrams as in (6); there are only a set of functions f : X → Y ; and for every such f ,
there are only a set of liftings f ′, since B is small and eachH ∈ SetX admits only a set of IX -coalgebra structures. In particular,
we deduce that the category BIon of bounded ionads is locally small.

Remark 4.7. Writing Set(–) : Set→ CATop for the functor sending X to SetX and f : X → Y to f −1 : SetY → SetX , we may
regard Ion as a full subcategory of the comma category CATop

↓ Set(–). The preceding example shows that, for any basis
M : B→ SetY , the corresponding ionad Y is a coreflection of M into this full subcategory. The counit of this coreflection is
a map

B
M //

M
##FFFFFFFFF O(Y )

UY{{xxxxxxxx

SetY

composition with which induces the bijection between squares of the form (3) and of the form (6).

Example 4.8. Let f : X → Y be a continuous map of topological spaces. We have a commutative diagram

O(Y )
f ∗

//

��

��

O(X)
��

��

PY
��

��

PX
��

��

SetY
f−1

// SetX

and so applying the coreflection of the preceding remark, we obtain a continuous map of ionads ΣX → ΣY . Thus the
assignation X → ΣX extends to a functor Σ : Sp → Ion, which in fact exhibits Sp as a full reflective subcategory of Ion
(and indeed also of BIon). Let us describe the left adjoint Λ of Σ . Given an ionad X , we observe that PX is the lattice of
subobjects of 1 inside SetX ; and that since IX is cartesian, it restricts and corestricts to this lattice, thus yielding an interior
operator i : PX → PX . We claim that the spaceΛX with this interior operator gives a reflection of X along the functorΣ .
To see this, first observe that the open sets ofΛX , which are the fixpoints of i, are precisely the subobjects of 1 inside O(X);
and so we have a pullback diagram

O(ΛX) // //

��

��

O(X)

��

PX // // SetX .

(7)

Now if Y is a topological space, then by Example 4.6, to give an ionad map X → ΣY is to give a function f : X → Y and a
functor f ′ : O(Y )→ O(X)making the following square commute:

O(Y )
f ′

//

M
��

O(X)

UX

��

SetY
f−1

// SetX .

But the lower composite f −1.M factors through the inclusion PX � SetX (since f −1 preserves finite limits, and hence
subobjects of 1); and so, since (7) is a pullback, f ′ must factor through the inclusion O(ΛX) � O(X). But this implies that
there is atmost one f ′ lifting f −1, and that such a liftingwill exist preciselywhen f is continuous as amap of spacesΛX → Y .
Thus for each X , we have established a bijection Ion(X,ΣY ) ∼= Sp(ΛX, Y )—whose naturality in Y is easily checked—so that
the assignation X → ΛX extends to a functorΛ : Ion→ Sp left adjoint toΣ . It remains to observe that for any space Z , we
haveΛΣZ = Z , so that the adjunctionΛ ⊣ Σ is a reflection as claimed.

Remark 4.9. The reflection constructed in the previous example again has a familiar topos-theoretic interpretation. Given
an ionad X , we may factorise the unique geometric morphism O(X)→ Set (note that this exists since O(X) is cocomplete)
as

O(X) i
−→ E

p
−→ Set
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where i is hyperconnected and p is localic (cf. [10, §A4.6]). That p is localic means that E is equivalent to Sh(K) for some
locale K ; whilst that i is hyperconnected means in particular that it is a surjection. Hence so also is the composite geometric
morphism

SetX −→ O(X) i
−→ E . (8)

But since SetX is itself equivalent to the category of sheaves on the discrete localePX , the geometricmorphism (8) is induced
by a surjective locale morphism PX → K ; and, as we noted in Example 2.5, to give this is to give a topological space with
set of points X: which is the reflection of X into Sp described above.

5. The specialisation enrichment

Recall that if X is a space, then its set of points may be preordered by the specialisation order, in which x 6 y whenever
every open set of X that contains x also contains y. The specialisation order induces a preordering on each hom-set
Sp(X, Y ) in which f 6 g iff fx 6 gx for all x ∈ X , and with respect to these preorderings, the composition functions
Sp(Y , Z) × Sp(X, Y ) → Sp(X, Z) become order-preserving maps. Consequently, this structure enriches Sp to a locally
preordered 2-category. We now wish to describe a corresponding enrichment of Ion to a (no longer locally preordered)
2-category. In order to do so, we first recast the definition of the 2-cells of Sp in a manner which makes the correct
generalisation obvious. Observe that f 6 g : X → Y just when fx ∈ U implies gx ∈ U for every x ∈ X and open U ⊆ Y . This
is equivalently to ask that f −1(U) ⊆ g−1(U) for every open set U ⊆ Y : or in other words, that there should be an inequality

O(Y )

f ∗

%%o _ O

g∗

99O _ o
6 O(X)

between the (unique) liftings of f −1 and g−1 through the corresponding open set lattices. We are therefore led to propose:

Definition 5.1. A specialisation between ionad morphisms f , g : X → Y is a natural transformation

O(Y )

f ∗
((

g∗
66

α�� O(X) (9)

subject to no further conditions (in particular, this means no compatibility conditions with f −1 or g−1). The ionads,
continuous maps and specialisations form a 2-category, for which we reuse the notation Ion; similarly, we write BIon to
denote the full and locally full sub-2-category spanned by the bounded ionads.

Remark 5.2. We saw in Remark 4.3 that the assignation (X, I) → O(X) yields a functor O(–) : Ion → Top, with a
continuous map (f , f ∗) of ionads being sent to the geometric morphism whose inverse image part is f ∗. Consequently, the
specialisations between continuous maps are in bijection with the geometric transformations between the corresponding
geometric morphisms, so that the functor O(–) extends to a locally fully faithful 2-functor.

Example 5.3. If F ,G : C → D are functors between small categories, then the specialisations A(F) ⇒ A(G) : A(C) ⇒ A(D)
are given by natural transformations SetF ⇒ SetG : SetD → SetC; and these are in bijection with natural transformations
F ⇒ G : C→ D. Thus the ordinary functor A : Cat→ BIon extends to a 2-fully faithful 2-functor.

Remark 5.4. Recall from Remark 4.5 that a map of ionads (X, I) → (Y , J) corresponds to a pair (f , δ) where f : X → Y
and δ : f −1J ⇒ If −1 is a natural transformation satisfying two axioms. If (f , δ) and (g, γ ) are a parallel pair of ionad
morphisms given in thismanner, then the specialisations between themare in correspondencewith natural transformations
ρ : f −1J ⇒ g−1 making the diagram

f −1J
f−1∆

//

f−1∆
��

f −1JJ
ρJ

// g−1J

γ

��

f −1JJ
δJ

// If −1J
Iρ

// Ig−1

(10)

commute. This is a consequence of [12, Section 2.1]; we summarise the argument as follows. Given a natural transformation
α : f ∗ ⇒ g∗ : O(Y )→ O(X), then the component at A of the corresponding ρ : f −1J ⇒ g−1 is obtained by first evaluating
UX .α at the cofree coalgebra ∆A : JA → JJA—which yields a map f −1JA → g−1JA—and then postcomposing this with
g−1ϵA : g−1JA→ g−1A. Conversely, if given ρ : f −1J ⇒ g−1 making (10) commute, then the corresponding α : f ∗ ⇒ g∗ has
its component at a coalgebra a : A→ JA given by ρA.f −1a : f ∗A→ g∗A.
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Example 5.5. Recall from Example 4.6 that if the ionad Y is generated by the basis M : B → SetY , then ionad morphisms
X → Y are in bijection with pairs (f , f ′) where f : X → Y is a function and f ′ : B → O(X) a functor making (6) com-
mute. Suppose now that (f , f ′) and (g, g ′) are two ionad morphisms specified in this way. By the preceding Remark, the
specialisations between them correspond with natural transformations ρ : f −1J ⇒ g−1 making (10) commute, where J is
the comonad M ⊗ [M, –] generated by the basis M . But to give such a ρ is equally well to give a natural transformation
f −1.M⊗ (–)⇒ g−1.M⊗ (–) satisfying one axiom; and since both f −1 and g−1 preserve colimits, such a natural transforma-
tion is determined uniquely by a natural transformation φ : f −1.M ⇒ g−1.M satisfying one axiom, which is easily shown
to amount to the requirement that φ should lift through the forgetful functor UX : O(X)→ SetX . Thus we have shown that
to give a specialisation from (f , f ′) to (g, g ′) is equally well to give a natural transformation α : f ′ ⇒ g ′ : B→ O(X).

We may deduce from this that the category Ion(X, Y ) is small whenever Y is a bounded ionad. Indeed, we know from
Example 4.6 that this category has only a set of objects; moreover, the collection of morphisms between any two such
objects may be identified with the collection of natural transformations f ′ ⇒ g ′ for some f ′, g ′ : B→ O(X), and this is a set
because B is small. In particular, we may conclude that BIon is a locally small 2-category.

Example 5.6. Taking the preceding example together with Example 4.8, we see that if f , g : X → Y are continuous maps of
topological spaces, then the specialisationsΣ f ⇒ Σg : ΣX → ΣY are given by natural transformations

O(X)
))

))RRRRR

O(Y )

f ∗ 66mmmmmm

g∗ ((QQQQQQ α�� O(ΣX)

O(X)
55

55lllll

as indicated. But as the embedding O(X) � O(ΣX) is full and faithful, any such α is induced by a unique natural
transformation f ∗ ⇒ g∗; and as O(X) is a poset, there can be at most one such, which exists precisely when f 6 g in
the 2-category Sp. Thus we have shown that the embedding functorΣ : Sp→ BIon extends to a 2-fully faithful 2-functor;
and much the same argument shows that the left adjoint ofΣ extends to a left 2-adjoint.

When at the start of this Section we described the two-dimensional structure of Sp, we did so by constructing it from the
specialisation order on each space. By contrast, when we defined the two-dimensional structure of Ion we did so directly;
and this raises the question of what the appropriate ionad-theoretic analogue of the specialisation order should be. In order
to answer this, let us observe that in Sp, the specialisation order on a space X is encoded in the two-dimensional structure
as the hom-category Sp(1, X). This immediately suggests the following:

Definition 5.7. The specialisation functor V : BIon→ Cat is the representable functor BIon(1, –), and its value at a bounded
ionad X is the specialisation category of X .

Observe that we are forced to define V only on the bounded ionads, since if X is an unbounded ionad, then there is no
reason to expect that BIon(1, X) should be a small category (though it will always have a mere set of objects).

Remark 5.8. In the topological case, the 2-functor Sp(1, –) : Sp → Poset is right 2-adjoint to the 2-functor Poset → Sp
sending aposet to the correspondingAlexandroff space.We shall see in Remark 6.5 below that the corresponding result holds
for ionads: the 2-functor V : BIon→ Cat of the previous definition is right 2-adjoint to the embedding A : Cat→ BIon.

Remark 5.9. We may extract the following explicit description of the specialisation category VX of a bounded ionad X . An
object of VX is given by a function 1→ X , which is a point x ∈ X , together with a lifting x∗ making

O(X) x∗ //

UX

��

Set

id

��

SetX
x−1

// Set

commute. Obviously, there is exactly one such lifting, namely x∗ = x−1.UX , and so we may identify objects of VX with
elements of X . Now the morphisms x → y in VX are the specialisations (x, x∗) ⇒ (y, y∗), and these are given by natural
transformations x−1.UX ⇒ y−1.UX : O(X)→ Set.

A priori this is as much as we can say; however, if we suppose given some basisM : B→ SetX which generates the ionad
X then we can simplify this description further. For then, by Remark 5.5, we may identify specialisations (x, x∗) ⇒ (y, y∗)
with natural transformations x−1.UX .M ⇒ y−1.UX .M , where M : B → O(X) is the coreflection map of Remark 4.7; and
since x−1.UX .M = x−1.M = M(–)(x) and likewise y−1.UX .M = M(–)(y), we may identify these in turn with natural
transformationsM(–)(x)⇒ M(–)(y) : B→ Set. Thus we arrive at the following simple description of VX . Starting from the
basis M : B→ SetX we may transpose it to a functor M ′ : X → SetB, and VX is now obtained by factorising M ′ as a functor
bijective on objects, followed by one that is fully faithful.
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6. Limits and colimits of ionads

In this section, we describe, with sketches of proofs, the limits and colimits that exist in the 2-category of ionads. It turns
out that in the category of all ionads, rather few of these exist:

Proposition 6.1. The 2-category Ion has coproducts, tensors by small categories, and a terminal object.

Proof. The terminal object of Ion is given by (1, idSet). Given a family (Xk, Ik)k∈K of ionads, their coproduct has as its
underlying set


k Xk and as its interior comonad the composite

Set


k Xk
∼=
−−→


k Set

Xk


k Ik
−−−−→


k Set

Xk
∼=
−−→ Set


k Xk .

As regards tensor products, suppose given an ionad X and a small category C. We define the ionad C⊗ X to have underlying
set ob C× X , and interior comonad generated by the composite adjunction

Setob C×X ∼= (SetX )ob C

(cofree)ob C
//⊥ O(X)ob C

RanJ
//⊥

(forget)ob C
oo

O(X)C ,
O(X)J

oo
(11)

where J : ob C → C is the canonical inclusion. Observe that in order for RanJ to exist here we must know O(X) to be
complete: but being a topos, it is complete if and only if cocomplete, and it is certainly the latter by virtue of being comonadic
over SetX . Since both left adjoint functors in (11) strictly create equalisers, the adjunction they generate is strictly comonadic,
so that O(C⊗ X) ∼= O(X)C: from which the universal property of the tensor product follows easily. �

However, on restricting to the 2-category of bounded ionads, the situation is much more satisfying:

Theorem 6.2. BIon is cocomplete as a 2-category.

Proof (Sketch). It is easy to see that the constructions of coproducts and tensor products in Ion restrict to BIon. It therefore
suffices to prove that BIon has coequalisers. Given a parallel pair f , g : X ⇒ Y , we first form the coequaliser q : Y → Z of
the functions between the underlying sets of points, and then the equaliser E : E → O(Y ) of f ∗, g∗ : O(Y ) ⇒ O(X) in CAT.
Observing that q−1 is the equaliser of f −1 and g−1, we thereby induce a morphism V : E→ SetZ fitting into a commutative
diagram:

E
E //

V
��

O(Y )
f ∗

//

g∗
//

UY

��

O(X)

UX

��

SetZ
q−1

// SetY
f−1

//

g−1
// SetX .

We shall show that E is isomorphic to the category of opens of a bounded ionad structure on the set Z; it is then easy to see
that this ionad must be the coequaliser of f and g in BIon. The key step in the proof will be to show that E is an accessible
category, which we will do using the fact that the 2-category ACC of accessible categories is closed under the formation
of inserters and equifiers in CAT (see [13, Theorem 5.1.6]). So let γ : f −1.J ⇒ I.f −1 and δ : g−1.J ⇒ I.g−1 be the natural
transformations corresponding to the functors f ∗ and g∗. Now an object of E consists of a coalgebra a : A→ JA in SetY such
that the equality

f −1A
f−1a
−−−→ f −1JA

γA
−→ If −1A = g−1A

g−1a
−−−→ g−1JA

δA
−→ Ig−1A

holds. In particular, thismeans that f −1A = g−1A, so that to give such an object is equallywell to give an objectW ∈ SetZ and
a coalgebra a : q−1W → Jq−1W such that γX .f −1q−1u = δX .g−1q−1u. Using this explicit description of E, it is easy to give a
construction of it from inserters and equifiers in ACC: first we form the inserter of the two functors q−1, Jq−1 : SetZ ⇒ SetY ,
and then equify three pairs of 2-cells, imposing the coalgebra axioms and the additional compatibility with γX and δX . It
follows that E is accessible as claimed.

We may now show by a straightforward diagram chase that, because UY and UX strictly create colimits and finite limits,
so too does V . Since SetZ has all colimits, it follows that E does too, and that V preserves them. Hence E is locally presentable,
and by the special adjoint functor theorem, V has a right adjoint G. Moreover, since V creates finite limits, it in particular
preserves them, so that the composite VG is the interior comonad of an ionad on Z . Since V strictly creates equalisers, it is
strictly comonadic, so that E is isomorphic to the category of opens of this ionad; and it remains only to show the ionad to
be bounded. But since E is locally presentable, it is in particular a Grothendieck topos, so we are done by Proposition 3.6. �

We have similarly good behaviour with respect to limits:

Theorem 6.3. BIon is complete as a 2-category.



R. Garner / Journal of Pure and Applied Algebra 216 (2012) 1734–1747 1745

Proof (Sketch). We begin by showing that BIon is complete as a 1-category. First we prove that the forgetful functor
U : BIon → Set is a fibration; then we show that all the fibres of U are complete; and then we show that reindexing
between those fibres preserves limits. These three conditions together imply that BIon, the total category of this fibration,
is complete as a 1-category.

To show that U : BIon→ Set is a fibration, we must, given a bounded ionad (Y , J) and a map of sets f : X → Y , produce
a cartesian lift (f , f ∗) : (X, I) → (Y , J) in BIon. We take I : SetX → SetX to be the comonad generated by the string of
adjunctions

SetX
Πf

//⊥ SetY
cofree

//⊥

f−1
oo

O(Y )
forget

oo
,

and take (f , f ∗) : (X, I) → (Y , J) to be the map corresponding, under Remark 4.5, to the natural transformation f −1.J.η :
f −1.J ⇒ f −1.J.Πf .f −1 = I.f −1. It is easy to check that this map is cartesian; and so U is a fibration.

Secondly, we show that each of the fibres of U is complete. For a given set X , the fibre category UX is the opposite of
the category of accessible, cartesian comonads on SetX , and to show this complete, it suffices to show that the category
AC(SetX , SetX ) of accessible, cartesian endofunctors of SetX is cocomplete. But this category is isomorphic to AC(SetX , Set)X ,
so it is enough to show that AC(SetX , Set) is cocomplete; which we do by proving it reflective in the cocomplete
Acc(SetX , Set). So given a functor A : SetX → Set which preserves κ-filtered colimits, we let C denote a skeleton of the full
subcategory of SetX on the κ-presentable objects; by elementary cardinal arithmetic, C has finite limits and the inclusion
V : C→ SetX preserves them. The categoryCart(C, Set) is reflective in [C, Set]; let B denote the reflection ofA◦V into it. Now
LanVB is clearly accessible, but we claim it is also cartesian: whereupon it easily provides the required reflection of A into
AC(SetX , Set). To prove the claim, note that, since V is dense, LanV B is the composite of B⊗ (–) : SetC

op
→ Setwith [V , –] :

SetX → SetC
op
. The former is cartesian because B is, and the latter because it is a right adjoint; so LanV B is cartesian as

desired.
Thirdly, we show that for every map of sets f : X → Y , the reindexing functor Uf : UY → UX preserves limits. This is

equivalent to showing that Uop
f is cocontinuous, for which it is enough to show that

f −1.(–).Πf : AC(SetY , SetY )→ AC(SetX , SetX )

is cocontinuous; but this is immediate from the fact that it has a right adjointΠf .(–).f −1. This completes the proof that BIon
is complete as a 1-category.

To show that BIon is complete as a 2-category, it now suffices to show that it admits cotensors products with the arrow
category 2. If X is the ionad generated by a basisM : B→ SetX , then the cotensor product 2 t X will be the ionad whose set
of points Z is the set of triples (x, y, α), where x, y ∈ X and α : M(–)(x)⇒ M(–)(y); observe that Z is the set of morphisms
of the category VX of Definition 5.7. The topology on this ionad is generated by the following basis N : B2

→ SetZ . For an
object k : c → d of B2 and element α : M(–)(x)⇒ M(–)(y) of Z , the set N(k)(α) is obtained as the pullback

N(k)(α) //

��

_� M(d)(x)

αd

��

M(c)(y)
M(k)(y)

// M(d)(y) .

(12)

With some effort, we may check that N is flat; and with considerable further effort, may verify the ionad it induces does
indeed possess the universal property required of the cotensor 2 t X . The argument is similar to, but more elaborate than,
the one given in the following Remark in regard of finite products; it is closely related to the corresponding topos-theoretic
argument, as given in [10, Proposition B4.1.2], for example. �

Remark 6.4. We may describe the product of two bounded ionads more concretely, in terms of a basis generated by open
rectangles. More precisely, if the ionads X and Y are generated by basesM : B→ SetX and N : C→ SetY , then their product
is the ionad with set of points X × Y and topology generated by the basis

M ⊗ N : B× C→ SetX×Y

(M ⊗ N)(b, c)(x, y) = M(b)(x)× N(c)(y) .

Flatness ofM ⊗ N follows easily from that ofM and N . To show that the ionad it generates is a product of X and Y , we must
show that, for any pair of functions f : Z → X , g : Z → Y , we have a bijection between squares of the form

B× C h′ //

M⊗N
��

O(Z)

UZ

��

SetX×Y
(f ,g)−1

// SetZ

(13)
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and pairs of squares of the form

B
f ′

//

M
��

O(Z)

UZ

��

SetX
f−1

// SetZ

and

C
g ′

//

N
��

O(Z)

UZ

��

SetY
g−1

// SetZ .

(14)

On the one hand, if given f ′ and g ′ as in (14), thenwe define the corresponding h′ by h′(b, c) = f ′(b)×g ′(c); sinceUZ strictly
creates finite limits, we may always choose this product in such a way as to make (13) commute. Conversely, if given h′ as
in (13), we define the corresponding f ′ and g ′ by f ′(b) =

 c∈C h′(b, c) and g ′(c) =
 b∈B h′(b, c); again, since UZ strictly

creates colimits, we may choose the colimits in question so as to render the squares in (14) commutative.

Remark 6.5. We may also describe the tensor product of a bounded ionad by a small category in terms of bases: given a
basisM : B→ SetX for an ionad X , easy calculation shows that C⊗ X may be generated by the basis

N : Cop
× B→ Setob C×X

N(c, b)(c ′, x) = C(c ′, c)×M(b)(x) .

Now by comparing this descriptionwith Examples 3.5.1 and Remark 6.4, we conclude that for a bounded ionad X , the tensor
product C⊗X is equallywell the product A(C)×X; in particular, there is a 2-natural isomorphism A ∼= (–)⊗1 : Cat→ BIon,
and so by virtue of the 2-adjunction

(–)⊗ 1 ⊣ BIon(1, –) : BIon→ Cat

we deduce, as promised in Remark 5.8, that the Alexandroff embedding A : Cat→ BIon is left 2-adjoint to the specialisation
2-functor V : BIon→ Cat.

7. Conclusions

In this final section, we make a few comments on the advantages and disadvantages of the notion of ionad as compared
with the notion of topos. The obvious starting point for such a discussion is a consideration of the analogous relationship
between the notions of topological space and locale.

One of the major advantages that locales have over spaces is the ease with which their theory may be relativised. Maps of
locales X → Y may be identified with internal locales in the sheaf topos Sh(Y ), and so properties of, and constructions on,
locales—so long as these are expressed in the logic common to any topos—may without effort be transferred to properties
of, and constructions on, maps of locales. For instance, as soon as we know how to form the product of locales, we also know
how to form the fibre product over X: it is simply the product of locales internal to Sh(X). The theory of topological spaces
does not relativise in the sameway, since many parts of its development makes essential use of classical logic, and so do not
internalise well to an arbitrary topos.

It seems likely that this advantage of locales over spaces propagates upwards to a corresponding advantage of toposes
over ionads. Certainly, the theory of toposes relativises very satisfactorily: for example, bounded geometric morphisms into
a topos F may be represented by sites internal to that topos; and this means that, for example, constructing the pullback of
bounded geometric morphisms is scarcely more problematic than constructing the product of two Grothendieck toposes.
Yet it seems unlikely that the theory of ionads relativises in the same manner: so, for instance, we should not expect our
concrete description of the product of two bounded ionads to yield a corresponding concrete description of pullbacks of
bounded ionads. This, then, is one reason for preferring toposes over ionads.

A second reason is that many toposes of interest do not have a natural expression as an ionad. Most obviously, this
could be because the topos we are interested in does not have enough points: which mirrors the corresponding fact that a
non-spatial locale will not admit a natural expression as a topological space. More subtly, it could be that the topos we are
interested in has too many points: namely, a proper class of them. Such a topos, if spatial, will admit any number of different
representations as an ionad, but each such representation will require the selection of a mere set of separating points:
and since maps of ionads are required to preserve these selected sets of points, none of the ionads representing the topos
will be able to capture the full range of geometric morphisms into it. This means, amongst other things, that the theory of
classifying toposes has no ionad-theoretic analogue. For instance, there can be no bounded ionad Y which ‘‘classifies groups’’
in the sense that ionad morphisms X → Y correspond with group objects in O(X). The best we can do is to construct, as in
Examples 3.5.5, the ionad Y which ‘‘classifies λ-small groups’’—in the sense that ionad morphisms X → Y correspond with
group objects G ∈ O(X) whose ‘‘stalks are λ-small’’; in other words, such that (UXG)(x) is a set of cardinality < λ for each
x ∈ X . Clearly this is nowhere near as useful a notion, which is something of a pity: the classifying topos of groups really
should be considered as ‘‘the generalised space of all groups equipped with the Scott topology’’, and the language of ionads
would appear ideal for the expression of this idea. It is conceivable that this problem could be overcome with a sufficiently
clever definition of ‘‘large ionad’’—one endowedwith a proper class of points—but whilst there are a few obvious candidates
for such a notion, none seems to be wholly satisfactory.
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These, then, are two quite general grounds for preferring toposes over ionads; yet there remain good reasons for having
the notion of ionad available to us. The first is that some particular applications of topos theory may be more perspicuously
expressed in the language of ionads than of toposes: two examples that come to mind are the sheaf-theoretic semantics for
first-order modal logic given in [1], and the generalised Stone duality of [5]. The second reason is pedagogical. Many aspects
of topos theory are abstractions of corresponding aspects of general topology, but the abstraction is twice removed: first
onemust pass from spaces to locales, and then from locales to toposes. At the first step, one loses the points, which tomany,
is already to enter a quite unfamiliar world, and the second step can only compound this unfamiliarity. With the notion
of ionad available, one may arrive at these same abstractions by a different route, passing first from spaces to ionads, and
then from ionads to toposes. The advantage of doing so is that one retains the tangibility afforded by the presence of points
for as long as possible. It seems to me that it is in this pedagogical aspect that ionads are likely to make their most useful
contribution.
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