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1. Introduction

Operads originated in algebraic topology, first appearing in Boardman and Vogt [6]
under the name “category of operators in standard form”, with the modern name and 
modern definition being provided by May [15]. They quickly caught on, with applications 
subsequently being found not only in topology, but also in algebra, geometry, physics 
and beyond; see [14] for an overview. As the use of operads has grown, it has proven 
useful to recast the definition: rather than explicitly listing the data and axioms, one may 
re-express them in various more abstract ways [2,11,12], each of which points towards a 
range of practically useful generalisations of the original notion.

This has led to a rich profusion of operad-like structures, and various authors have 
proposed unifying frameworks to bring some order to this proliferation. One such frame-
work is that of operadic categories [3], introduced by Batanin and Markl to specify certain 
kinds of generalised operad necessary for their proof of the duoidal Deligne conjecture. 
An operadic category is a combinatorial object which specifies a flavour of operad; an 
“algebra” for an operadic category is an operad of that flavour. Such an operad will, in 
turn, have its own algebras, but this extra layer will not concern us here.

As the name suggests, operadic categories are categories, but endowed with extra 
structure of a somewhat delicate nature. This structure seems to invite attempts at 
reconfiguration, so as better to link it to other parts of the mathematical landscape. One 
such reconfiguration was given by Lack [13], who drew a tight correspondence between 
operadic categories and the skew-monoidal categories of Szlachányi [17], which in recent 
years have figured prominently in categorical quantum algebra and work of the Australian 
school of category theorists.

The present paper gives another reconfiguration of the definition of operadic category, 
which links it to the (upper) décalage construction. While primarily an operation on 
simplicial sets, décalage may also—via the nerve functor—be seen as an operation on 
categories; namely, that which takes a category to the disjoint union of its slices:

D(C) =
∑

X∈C C/X .

There are two main aspects to the tight relationship between operadic categories and 
décalage. To explain these, we must first recall the data for an operadic category. These 
are: a small category C with a chosen terminal object in each connected component; a 
cardinality functor |–| : C → S into the category of finite ordinals and arbitrary mappings; 
and an operation assigning to every f : Y → X in C and i ∈ |X| an “abstract fibre” 
f−1(i) ∈ C, functorially in Y .

The first connection between operadic categories and décalage arises from the fact that 
the décalage construction on categories underlies a comonad D on Cat, whose coalgebras 
may be identified, as in Proposition 5 below, with categories endowed with a choice of 
terminal object in each connected component. In particular, each operadic category is a 
coalgebra for the décalage comonad.
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The second connection arises through the functorial assignment of abstract fibres 
f �→ f−1(i) in an operadic category. Functoriality says that, for fixed X ∈ C and i ∈ |X|, 
this assignment is the action on objects of a functor ϕX,i : C/X → C, so that the totality 
of the abstract fibres can be expressed via a single functor

ϕ :
∑

X∈C,i∈|X| C/X → C . (1.1)

The domain of this functor is clearly related to the décalage of C, and in due course, we 
will explain it in terms of a modified décalage construction on categories endowed with a 
functor to S. However, there is a special case where no modification is necessary. We call 
an operadic category unary if each |X| is a singleton; in this case, the domain of (1.1) is 
precisely the décalage D(C), so that the fibres of a unary operadic category are encoded 
in a single functor D(C) → C.

So, for a unary operadic category C, we have on the one hand, that C is a D-coalgebra; 
and on the other, that C is endowed with a map D(C) → C. To reconcile these apparently 
distinct facts, we apply a general observation: any comonad C on a category A induces 
a monad C̃ on the category of C-coalgebras AC, namely, the monad generated by the 
forgetful–cofree adjunction AC � A. In the case of the décalage comonad, we induce a 
décalage monad D̃ on CatD; and the axioms of a unary operadic category turn out to 
be captured precisely by the requirement that the map D(C) → C giving abstract fibres 
should endow the D-coalgebra C with D̃-algebra structure in CatD. Our first main result 
is thus:

Theorem. The category of algebras for the décalage monad D̃ on CatD is isomorphic to 
the category of unary operadic categories.

In order to remove the qualifier “unary” from this theorem and accommodate the 
“multi” aspect of the general definition, we will need, as anticipated above, to adjust the 
décalage construction. Rather than the décalage comonad D on Cat, we will consider a 
modified décalage comonad Dm on the arrow category Cat2 whose action on objects is 
given by

E
P−→ C �→

∑
Y ∈E E/Y

ΣY ∈CP/Y−−−−−−−→
∑

Y ∈E C/PY . (1.2)

To relate this to operadic categories, we consider those objects of Cat2 which are ob-
tained to within isomorphism as the canonical projection PC : EC → C from the category 
of elements of a functor |–| : C → S. These objects span a full subcategory of Cat2 which 
is equivalent to the lax slice category Cat/ /S; they are moreover closed under the action 
of Dm, which thus restricts back to a comonad on Cat/ /S. Now by following the same 
trajectory as the unary case, starting from this comonad on Cat/ /S, we already come 
very close to characterising operadic categories.

The first point to make is that an object (C, |–| : C → S) ∈ Cat/ /S is a Dm-coalgebra 
just when C has chosen terminal objects in each connected component, and |–| sends 
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each of these to 1 ∈ S. Since these are among the requirements for an operadic category, 
every operadic category gives rise to a Dm-coalgebra.

Like before, we can ask what it means to equip such a Dm-coalgebra with algebra 
structure for the induced monad D̃m on (Cat/ /S)Dm . The action of this monad on (C, |–|)
is given by the category 

∑
X∈C,i∈|X| C/X of (1.1), endowed with a suitable functor to S; 

therefore, the basic datum of D̃m-algebra structure is a functor of the same form as (1.1). 
This seems promising, but what we find is:

Theorem. The category of algebras for the modified décalage monad D̃m on (Cat/ /S)Dm

is isomorphic to the category of lax-operadic categories.

Here, a lax-operadic category is a new notion, which generalises that of operadic cat-
egory by replacing the assertion of equalities |f |−1(i) =

∣
∣f−1(i)

∣
∣ on cardinalities of 

abstract fibres with a collection of coherent functions |f |−1(i) →
∣
∣f−1(i)

∣
∣. Since it is not 

yet clear that this extra generality has any practical merit, our final objective is to find 
a version of the above result which removes the qualifier “lax”.

The source of the laxity is easy to pinpoint. A D̃m-algebra structure is given by a 
map Dm(C, |–|) → (C, |–|) in Cat/ /S, whose data involves not only a functor (1.1), but 
also a natural transformation relating the functors to S. The components of this natural 
transformation are the comparison functions |f |−1(i) →

∣
∣f−1(i)

∣
∣, so that the genuine 

operadic categories correspond to those D̃m-algebras whose structure map is given by a 
strictly commuting triangle over S.

However, we cannot simply restrict the modified décalage comonad Dm from the 
lax slice category Cat/ /S back to the strict slice category Cat/S, and then proceed as 
before. The problem is that Dm does not restrict, since the counit maps εC : Dm(C) → C

in Cat/ /S involve triangles which are genuinely lax-commutative. On the other hand, it 
turns out that we can restrict the lifted monad D̃m on (Cat/ /S)Dm back to the subcategory 
(CatD)/S on the strictly commuting triangles. Having done so, our final result quickly 
follows:

Theorem. The category of algebras for the modified décalage monad D̃m on CatD/S is 
isomorphic to the category of operadic categories.

The rest of this article will fill in the details of the above sketch. The plan is quite 
simple. In Section 2, we recall Batanin and Markl’s definition of operadic category [3]; 
then in Section 3 we recall the décalage construction and establish the first of the two 
links with the notion of operadic category. In Section 4, we prove our first main theo-
rem, characterising unary operadic categories in terms of décalage. Section 5 is devoted 
to describing the modified décalage construction required to capture general operadic 
categories. Finally, in Sections 6 and 7, we prove our second and third theorems, giv-
ing the characterisations of lax-operadic categories and, finally, of operadic categories 
themselves.
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2. Operadic categories

We begin with some necessary preliminaries. We say that a category C is endowed 
with local terminal objects if each connected component of C is provided with a chosen 
terminal object; we write uX for the chosen terminal in the connected component of 
X ∈ C and τX : X → uX for the unique map.

We write S for the category whose objects are the sets n = {1, . . . , n} for n ∈ N and 
whose maps are arbitrary functions. Note that S has a unique terminal object 1 which 
we use to endow S with local terminal objects; we may also sometimes write the unique 
element of 1 as ∗ rather than 1.

Given ϕ : m → n in S and i ∈ n, there is a unique monotone injection

εϕ,i : ϕ−1(i) → m (2.1)

in S whose image is { j ∈ m : ϕ(j) = i }; we call the object ϕ−1(i) the fibre of ϕ at i. 
Given also ψ : � → m in S, we write ψϕ

i for the unique map of S rendering

(ϕψ)−1(i)
ψϕ

i

εϕψ,i

ϕ−1(i)

εϕ,i

�
ψ

m

(2.2)

commutative, and call it the fibre map of ψ with respect to ϕ at i.
The Batanin–Markl notion of operadic category which we now reproduce can be seen 

as specifying a category with formal notions of fibre and fibre map. The fibres of a map 
need not be subobjects of the domain as in the case of S, but the axioms will ensure that 
they retain many important properties of fibres in S.

Definition 1. [3] An operadic category is given by the following data:

(D1) A category C endowed with local terminal objects;
(D2) A cardinality functor |–| : C → S;
(D3) For each object X ∈ C and each i ∈ |X| a fibre functor

ϕX,i : C/X → C

whose action on objects and morphisms we denote as follows:

Y
f

X �→ f−1(i)

Z
g

fg

Y

f

X

�→ gfi : (fg)−1(i) → f−1(i) ,
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referring to the object f−1(i) as the fibre of f at i, and the morphism 
gfi : (fg)−1(i) → f−1(i) as the fibre map of g with respect to f at i;

all subject to the following axioms, where in (A5), we write εj for the image of j ∈ |f |−1(i)
under the map ε|f |,i : |f |−1(i) → |Y | of (2.1):

(A1) If X is a local terminal then |X| = 1;
(A2) For all X ∈ C and i ∈ |X|, the object (1X)−1(i) is chosen terminal;
(A3) For all f ∈ C/X and i ∈ |X|, one has |f−1(i)| = |f |−1(i), while for all g : fg → f

in C/X and i ∈ |X|, one has |gfi | = |g||f |i ;
(A4) For X ∈ C, one has τ−1

X (∗) = X, and for f : Y → X, one has fτX∗ = f ;
(A5) For g : fg → f in C/X, i ∈ |X| and j ∈ |f |−1(i), one has that (gfi )−1(j) = g−1(εj), 

and given also h : fgh → fg in C/X, one has (hfg
i )g

f
i

j = hg
εj .

A functor F : C → C′ between operadic categories is called an operadic functor if it 
strictly preserves local terminal objects, strictly commutes with the cardinality functors 
to S, and preserves fibres and fibre maps in the sense that

F (f−1(i)) = (Ff)−1(i) and F (gfi ) = (Fg)Ff
i

for all g : fg → f in C/X and i ∈ |X|. We write OpCat for the category of operadic 
categories and operadic functors.

The preceding definitions are exactly those of [3] with only some minor notational 
changes for clarity. The most substantial of these is that we make explicit the use of the 
monotone injections (2.1) in the axiom (A5), whereas in [3] this is left implicit. In light 
of this, let us spend a moment doing the necessary type-checking to see that this axiom 
makes sense.

Intuitively, the first clause of (A5) identifies the fibres of the fibre maps of a map, 
with the fibres of that map. Therein we have gfi : (fg)−1(i) → f−1(i), and j ∈ |f |−1(i) =
|f−1(i)|, so that one can consider the object (gfi )−1(j). On the other hand, we have 
εj ∈ |Y | and g : Z → Y and so can equally consider the object g−1(εj); now the first 
part of (A5) states that these two are equal.

As for the second part of (A5), this says that the fibre maps of the fibre maps of 
a map, are themselves fibre maps of that map. In this case, functoriality of the fibre 
functor ϕX,i : C/X → C implies that we have an equality

(fgh)−1(i) (gh)fi−−−−→ f−1(i) = (fgh)−1(i) hfg
i−−−→ (fg)−1(i) gf

i−−→ f−1(i)

and again we have j ∈ |f |−1(i) =
∣
∣f−1(i)

∣
∣. It follows that the fibre map of hfg

i with 
respect to gfi at j is given as to the left in:
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(hfg
i )g

f
i

j : ((gh)fi )−1(j) → (gfi )−1(j) hg
εj : (gh)−1(εj) → g−1(εj) .

On the other hand, one could just consider the fibre map of hwith respect to g at εj ∈ |Y |, 
as to the right. The first part of (A5) ensures that the domains and codomains of these 
maps coincide, and now the second part asserts that the maps themselves are equal.

Example 2. The most basic example of an operadic category is S itself. The choice of 
local terminals is the unique one, the cardinality functor is the identity, and the action 
of the fibre functors is defined as in (2.1) and (2.2).

Many more examples of operadic categories are discussed in [3]; we give here two new 
examples inspired by probability theory.

Example 3. Let C be the category of finite sub-probability spaces. Its objects are lists r =
(r1, . . . , rn) where each ri ∈ [0, 1] and Σiri � 1; its maps ϕ : (s1, . . . , sm) → (r1, . . . , rn)
are maps ϕ : m → n of S such that ri = Σj∈ϕ−1(i)si. There is an obvious cardinality 
functor |–| : C → S, and a unique choice of local terminals: indeed, C is a coproduct of 
categories C = Σr∈[0,1]Cr where Cr has the unique terminal object (r). For the abstract 
fibres, given ϕ : s → r in C and i ∈ |r|, we define ϕ−1(i) to be (sε1, . . . , sεk) where 
k = |ϕ|−1(i) and ε = ε|ϕ|,i : |ϕ|−1(i) → |s| is as in (2.1); finally, fibre maps in C are as in S.

Example 4. Let C1 be the category of finite probability spaces, i.e., the connected com-
ponent of (1) in the category C of the previous example. This subcategory of C is not 
a sub-operadic category; however, it bears a different operadic category structure which 
describes disintegration of finite probability measures.

We begin with the cardinality functor |–|1 : C1 → S. For any r = (r1, . . . , rn) ∈ C1, 
we let (rp1 , . . . , rpk

) be the sublist of r obtained by deleting all zeroes, and now take 
|r|1 = k. Given a map ϕ : s → r in C1, where s has sublist (sq1 , . . . , sq�) of non-zero 
entries, we determine |ϕ|1 : |s|1 → |r|1 by requiring that |ϕ|(qj) = p|ϕ|1(j); i.e., |ϕ|1 is the 
restriction of |ϕ| to the indices of non-zero entries.

To define the C1-fibres, we employ the normalisation of a non-zero sub-probability 
space r = (r1, . . . , rn) ∈ C \ C0; this is the probability space r ∈ C1 with r =
(r1/Σiri, . . . , rn/Σiri). Now given ϕ : s → r in C1 and i ∈ |r|1, we define the C1-fibre 
ϕ−1(i) to be the normalisation of the ith non-zero C-fibre ϕ−1(pi). Note that we cannot
normalise a C-fibre ϕ−1(j) for which rj = 0; this is why we had to remove such j in 
defining the cardinality functor |–|1. Finally, given also ψ : t → s in C1, we define the 
C1-fibre map ψϕ

i to have underlying S-map ψϕ
pi

.

3. Décalage

In this section, we recall the décalage comonad on Cat, characterise its category of 
coalgebras, and explain how this links up with the notion of operadic category. Through-
out, “décalage” will always mean upper décalage.
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The décalage comonad on Cat can be obtained as a restriction of Illusie’s décalage 
comonad [9] on [Δop, Set], the category of simplicial sets. This is, in turn, obtained from 
the monad T = (T, η, μ) on the category Δ of non-empty finite ordinals and monotone 
maps given by freely adjoining a top element. In terms of the usual presentation of Δ
in terms of “coface” maps δi and “codegeneracy” maps σj , this monad is given by the 
data:

T [n] = [n + 1], Tδi = δi, Tσj = σj , η[n] = δn+1 and μ[n] = σn+1 .

It follows that Top is a comonad on Δop, so that precomposition with Top is a comonad 
on [Δop, Set]; this is the décalage comonad.

The classical nerve functor N: Cat → [Δop, Set] exhibits the category of small cate-
gories as equivalent to a full subcategory of simplicial sets. The simplicial sets in this 
full subcategory happen to be closed under the action of the décalage comonad, which 
thereby restricts to a comonad D on Cat. The underlying endofunctor D of this comonad 
sends a category C to the coproduct of its slices:

D(C) =
∑

X∈C C/X ; (3.1)

the counit εC : D(C) → C is the copairing of the domain projections C/X → C from 
the slices (i.e., the map induced from the family of domain projections by the universal 
property of coproduct); while the comultiplication δC : D(C) → DD(C), which is a functor

δC :
∑

X∈C C/X →
∑

f∈D(C) D(C)/f ,

sends the X-summand to the 1X -summand via the isomorphism C/X → D(C)/1X .
We now characterise the category of coalgebras for the décalage comonad as the 

category Cat�t whose objects are small categories endowed with local terminal objects, 
and whose morphisms are functors which preserve chosen local terminals.

Proposition 5. The category CatD of D-coalgebras is isomorphic to Cat�t over Cat. Under 
this isomorphism, the D-coalgebra structure on C ∈ Cat�t is given by the functor τ : C →
D(C) which takes X ∈ C to τX : X → uX ∈ D(C).

Proof. It suffices to show that the forgetful functor U : Cat�t → Cat is strictly comonadic, 
and that the induced comonad is isomorphic to D. Towards the first of these, it is clear 
that U strictly creates limits and is faithful, and so by the Beck theorem will be strictly 
comonadic so long as it has a right adjoint.

We can endow the category D(C) with the chosen terminal object 1X in each connected 
component C/X, so making it into an object of Cat�t; we claim this gives the value at 
C of the desired right adjoint. Thus, for any B ∈ Cat�t and functor F : B → C, we must 
exhibit a unique factorisation
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F = B
G−→ D(C) εC−−→ C (3.2)

where G strictly preserves chosen local terminals. Such a G must send each object X ∈ C

to an object of D(C) with domain projection FX. In particular, each chosen terminal 
uX of B must be sent to a chosen terminal of D(C) with domain FuX, and so we must 
have G(uX) = 1FuX . Furthermore, such a G, if it exists, must send each map f : Y → X

of B to a map in D(C) as to the left in:

FY
Ff

GY

FX

GX

FY
FτX

GX

FuX .

1FuX

• FuX

In particular, taking f = τX yields the commuting triangle to the right, so that on 
objects we must have GX = (FτX : FX → FuX). So G is unique if it exists; but it is 
easy to see that defining G in this way does indeed yield a map G : B → D(C) in Cat�t
preserving chosen terminals and factorising (3.2) as required.

So U : Cat�t → Cat has a right adjoint R, and by strict comonadicity, Cat�t is iso-
morphic to the category of UR-coalgebras. By construction, the underlying functor and 
counit of UR are equal to D and ε, while the comultiplication at C is the unique factori-
sation (3.2) of F = 1D(C) : D(C) → D(C) through a map in Cat�t. As δC : D(C) → DD(C)
is easily seen to be such a factorisation, we conclude that D = UR and so Cat�t ∼= CatD

as required. �
To motivate the developments which will follow, we now establish a first link be-

tween operadic categories and décalage, by showing how the data and axioms for an 
operadic category can be partially re-expressed in terms of structure in Cat�t ∼= CatD. Of 
course, (D1) asserts that C is an object in Cat�t, whereupon axiom (A1) asserts that the 
cardinality functor |–| : C → S is a map therein. Similarly, axiom (A2) states that each 
functor ϕX,i : C/X → C is a map of Cat�t, where we take the chosen (local) terminal 
object in C/X to be the identity 1X .

To express (A3), we define for each X ∈ C and i ∈ |X| a cardinality functor 
|–|X,i : C/X → S as the composite of |–|/X : C/X → S/|X| with the fibre functor 
ϕ|X|,i : S/|X| → S of the operadic category S; thus, on objects, |f |X,i = |f |−1(i). 
Now (A3) asserts that the following diagram commutes for all X ∈ C, i ∈ |X|:

C/X
ϕX,i

|–|X,i

C .

|–|
S

(3.3)

We may express all of the above more compactly as follows. For any object |–|C : C → S

of Cat�t/S, we write Dm(C) for the category ΣX∈C,i∈|X|C/X, seen as an object of Cat�t
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by choosing each identity map as a local terminal, and write |–|Dm(C) : Dm(C) → S for 
the copairing of the maps |–|X,i : C/X → S. Now to give the data (D1)–(D3) and axioms 
(A1)–(A3) for an operadic category is to give an object (C, |–|C) of Cat�t/S and a map 
ϕ : (Dm(C), |–|Dm(C)) → (C, |–|C).

It remains to account for axioms (A4) and (A5). In fact, it turns out that the 
assignment (C, |–|C) �→ (Dm(C), |–|Dm(C)) is the action on objects of a monad D̃m

on the category Cat�t/S, and that the remaining axioms are just those needed for 
ϕ : (Dm(C), |–|Dm(C)) → (C, |–|C) to endow (C, |–|) with D̃m-algebra structure. While 
we could verify this straight away in a hands-on fashion, we prefer to give an argument 
which justifies the constructions in terms of a deeper link to the décalage construction. 
In the end, the claimed monad structure on D̃m will be exhibited in Definition 26 below, 
and the characterisation of its algebras as operadic categories given in Theorem 27.

4. Characterising unary operadic categories

The characterisation of general operadic categories in terms of décalage will require 
a modification of the décalage construction, to be introduced in Section 5 below. As a 
warm-up for this, we consider the case of unary operadic categories, for which the usual 
décalage will suffice.

Definition 6. An operadic category is unary if |X| = 1 for all X ∈ C. We write OpCat1
for the category of unary operadic categories and operadic functors.

Example 7. For any category C, the category D(C) =
∑

X∈C C/X is a unary operadic 
category. The chosen local terminals are the identity maps, and the unique fibre of a 
map g : fg → f is the object g. Given another map h : fgh → fg, the fibre map of h
with respect to g at ∗ is taken to be h : gh → g.

Example 8. If C is a pointed category with a chosen zero object and chosen kernels, we 
can attempt to impose a unary operadic structure as follows: the chosen (local) terminal 
is the zero object; the unique fibre of a map f : Y → X is its kernel; and the fibre map of 
g : Z → Y with respect to f is the restriction g|ker fg : ker fg → ker f . However, whether 
these data satisfy the required axioms is sensitive to the choice of kernels. For instance, 
if g : Z → Y and f : Y → X, then the chosen kernel of g, though always isomorphic
to the chosen kernel of g|ker fg : ker fg → ker f , need not be equal to it as required by 
axiom (A5).

Often, there is an appropriate choice of kernels; for example if C is Set∗ or Ab or 
k-Vect or Ch(R-Mod), then we can take the kernel of any identity map to be the chosen 
zero object, and the kernel of any other map to be given by the usual subset formula; 
this yields the necessary axioms for a unary operadic category.

Yet even for a C where we cannot choose kernels appropriately, we can always consider 
the equivalent category Pt(Cop, Set∗)rep of representable zero-preserving functors to Set∗, 
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and endow this with unary operadic structure given pointwise as in Set∗. Note that this 
structure need not transport back to an operadic structure on C, since the notion of 
operadic category is not invariant under equivalence (in the terminology of [5] it is not 
flexible).

In the unary case, we can effectively ignore the cardinality functor down to S; so on 
repeating the analysis at the end of the preceding section, we find that the data and first 
three axioms for a unary operadic category C are encoded precisely by a map D(C) → C in 
Cat�t. To complete this analysis, we will show that the assignment C �→ D(C) underlies a 
monad on Cat�t whose category of algebras is isomorphic to OpCat1. The monad structure 
arises as follows.

Definition 9. The décalage monad D̃ = (D̃, η, μ) on Cat�t ∼= CatD is the monad induced 
by the forgetful–cofree adjunction CatD � Cat.

Since the proof of Proposition 5 furnishes us with an explicit description of the 
forgetful–cofree adjunction CatD � Cat, we can read off from it the following description 
of the décalage monad:

(i) The underlying functor D̃ on objects sends C to 
∑

X∈C C/X endowed with the local 
terminal objects 1X ∈ C/X; while on morphisms, it sends F : C → C′ to the functor 
which maps the X-summand of 

∑
X∈C C/X to the FX-summand of 

∑
Y ∈C′ C′/Y

via F/X : C/X → C′/FX;
(ii) The unit map ηC : C → D̃(C) is defined on objects by ηC(X) = τX : X → uX and 

on morphisms by ηC(f : Y → X) = f : τY → τX ;
(iii) The multiplication map μC : D̃D̃(C) → D̃(C), which is given by a functor 

∑
f∈D(C) D(C)/f →

∑
X∈C C/X, sends the summand indexed by f : Y → X to 

the summand indexed by Y via the isomorphism D(C)/f → C/Y .

Using this description, we can now prove our first main theorem.

Theorem 10. The category of algebras for the décalage monad D̃ on Cat�t ∼= CatD is 
isomorphic to the category OpCat1 of unary operadic categories.

Proof. We have already argued that the data and first three axioms for a unary operadic 
category C are encapsulated by giving the object C ∈ Cat�t together with the map 
ϕ : D̃(C) → C in Cat�t obtained as the copairing of the fibre functors ϕX,∗ : C/X → C. 
Given this, we can read off from Definition 9 that (A4) asserts precisely the unit axiom 
ϕ ◦ ηC = 1C, while (A5) asserts the multiplication axiom ϕ ◦μC = ϕ ◦D̃(ϕ) : D̃D̃(C) → C. 
So D̃-algebras in Cat�t are in bijection with unary operadic categories; the corresponding 
bijection on maps is direct. �
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Using this result, we may obtain a further description of unary operadic categories 
which, though not necessary for the subsequent results of this paper, is nonetheless 
enlightening. We observed above that the décalage comonad on Cat is the restriction 
along the full inclusion N: Cat → [Δop, Set] of the décalage comonad on simplicial sets. 
It follows that we have a full inclusion

OpCat
∼=−→ (CatD)D̃ (ND)D̃

−−−−→ ([Δop, Set]D)D̃ (4.1)

(where we re-use the notation D and D̃ for the décalage comonad on [Δop, Set] and the 
induced monad on [Δop, Set]D) whose essential image comprises just those D̃-algebras 
in [Δop, Set]D whose underlying simplicial set satisfies the Segal condition. On the other 
hand, we have a straightforward characterisation of the category ([Δop, Set]D)D̃:

Lemma 11. The comparison functor

[Δop, Set] → ([Δop, Set]D)D̃

sending a simplicial set X to D(X) with its canonical D̃-algebra structure, is an equiva-
lence of categories.

Proof. The functor part of the comonad D on [Δop, Set] is given by precomposition with 
T op : Δop → Δop, and so is cocontinuous. Thus, for the forgetful–cofree adjunction

[Δop, Set]D
UD

GD

� [Δop, Set]

the functor GD is again cocontinuous. Moreover, UD is conservative, and it is easy to 
see that UDGD = D is conservative—since the set of 0-simplices of a simplicial set is 
the splitting of an idempotent on the set of 1-simplices—so that GD is also conservative. 
Thus by the Beck monadicity theorem GD is monadic, and so the comparison functor 
[Δop, Set] → ([Δop, Set]D)D̃ is an equivalence. �

Combining this with the characterisation of the essential image of (4.1) yields:

Corollary 12. The category OpCat1 of unary operadic categories is isomorphic to the full 
(reflective) subcategory of [Δop, Set] on those simplicial sets C for which D(C) satisfies 
the Segal condition.

Explicitly, the simplicial set C giving the “undecking” of a unary operadic category 
C has as 0-simplices, the chosen terminal objects of C, and as (n + 1)-simplices the 
n-simplices of the nerve of C. The faces of a 1-simplex X are
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ϕ(1X) X−−→ uX

where we write ϕ(f) for the unique fibre f−1(∗) of a map f : Y → X of C. The faces of 
a 2-simplex f ∈ C(Y, X) are given by

ϕ(1X)
X

ϕ(1Y )

ϕ(f)

Y

f

uX ;

while the faces of a 3-simplex (g, f) ∈ C(Z, Y ) × C(Y, X) are given by

ϕ(1Y )

g Y

ϕ(f)
ϕ(1X)
f

X

ϕ(1Z)

ϕ(g)

Z
uX

ϕ(1Y )
ϕ(f)

gf
∗

ϕ(1X)

fg
X

ϕ(1Z)
ϕ(fg)

ϕ(g)

Z
uX .

The degeneracies are easily written down, and the remaining data is determined by 
coskeletality. Note that D(C) is the nerve of C, which satisfies the Segal condition. 
Conversely, if C is a simplicial set for which D(C) satisfies the Segal condition, then 
D(C) ∼= N(C) for a category C, and by working backwards through the above description 
we may read off the operadic structure on C.

Remark 13. The condition on a simplicial set X that D(X) should satisfy the Segal 
condition gives half of the axioms for a discrete decomposition space [8]. (Decomposition 
spaces are also known as 2-Segal spaces [7].) In particular, for any discrete decomposition 
space X : Δop → Set, its décalage is a unary operadic category, generalising Example 7. 
For example, there is a discrete decomposition space X of (combinatorialists’) graphs, 
wherein Xn is the set of graphs with a map from the set of vertices to n. The correspond-
ing unary operadic category has graphs as objects; a map is the opposite of a full inclusion 
of graphs, and the fibre of such a map is the induced graph on the complementary set 
of vertices.

In fact, the remaining axioms for a discrete decomposition space X can be expressed 
in terms of the associated unary operadic category C: they say precisely that the fibre 
functor ϕ : D(C) → C is a discrete opfibration. This establishes a link with Lack’s [13], 
which characterises operadic categories with object set O in terms of certain left-normal 
skew monoidal [17] structures on Set/O, and provides conditions for these skew structures 
to be genuinely monoidal; in the unary case, the necessary condition is, again, that ϕ be 
a discrete opfibration.

In the following result, the equivalence between (i) and (ii) is thus due to Lack; we 
omit the proof, since the result is not needed elsewhere in this paper.
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Theorem. Let C be a unary operadic category. The following are equivalent:

(i) The fibre functor ϕ : D(C) → C is a discrete opfibration;
(ii) The associated skew monoidal structure on Set/obC is genuinely monoidal;
(iii) The “undecking” C is a discrete decomposition space.

In fact (cf. [13, Remark 7.2]) the left-normal skew monoidal structures induced by 
unary operadic categories are precisely those whose tensor preserves colimits in each 
variable; these can be identified with skew monoidales in the monoidal bicategory Span, 
and in this case Lack’s characterisation reduces to one given by Andrianopoulos [1]. 
Under this identification, the unary operadic categories satisfying the equivalent condi-
tions of the above theorem correspond to genuine monoidales in Span: in the language 
of [8], this monoidale is the incidence algebra of the corresponding discrete decomposition 
space.

Remark 14. The equivalence of Corollary 12 is also interesting in the other direction. If 
C is a unary operadic category derived from a category with a zero object and kernels, 
as in Example 8, then the associated simplicial set is a discrete version of Waldhausen’s 
S• construction.

5. Modified décalage

We now wish to expand on Theorem 10 to give a characterisation of general operadic 
categories in terms of décalage. As explained in the introduction, the key to this will be 
a comonad Dm on the arrow category Cat2 given on objects by

E
P−→ C �→

∑
Y ∈E E/Y

ΣY ∈EP/Y−−−−−−−→
∑

Y ∈E C/PY , (5.1)

which we call modified décalage. In this section, we describe this comonad, and show that 
it restricts back to the lax slice category Cat/ /S, identified with the full subcategory of 
Cat2 on the discrete opfibrations with finite fibres.

While we could describe the comonad Dm and its coalgebras by hand, we prefer in 
the spirit of the rest of the paper to obtain it by way of more general considerations. 
The key is the following construction on a functor P : E → C. It begins by decomposing 
E and C into their connected components:

E =
∑

y∈Y Ey and C =
∑

x∈X Cx .

Now for each y ∈ Y , the restriction of P to Ey must factor through a single connected 
component Cfy of C. If we write Py : Ey → Cfy for this factorisation, then summing the 
Py’s over all y ∈ Y yields the first map LP in a factorisation:
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∑
y∈Y Ey

P

LP

∑
x∈X Cx

∑
y∈Y Cfy

RP

(5.2)

whose second map RP maps the y-summand to the fy-summand via 1Cfy
. Let us call 

a functor π0-bijective if, like LP , the induced function on connected components is 
invertible, and π0-cartesian if, like RP , it maps each connected component of its do-
main bijectively onto a connected component of its codomain. As these two classes of 
functors are easily seen to be orthogonal, we have a factorisation system (π0-bijective, 
π0-cartesian) on Cat; and so by [10, Theorem 5.10] we have:

Lemma 15. The full subcategory π0-Bij of Cat2 whose objects are the π0-bijective functors 
is a coreflective subcategory. The counit of the coreflection at P is given by the morphism 
(1, RP ) : LP → P in Cat2.

Remark 16. Whenever H : T → B is a Grothendieck fibration, there is a factorisation 
system on T whose left and right classes are, respectively, the maps inverted by H, and 
the cartesian maps with respect to H. The above factorisation system arises in this way 
from the connected components functor π0 : Cat → Set.

Now, if the P : E → C of (5.2) is a strictly local-terminal-preserving functor between 
categories endowed with local terminal objects, then there is a unique way of endowing 
the interposing 

∑
y Cfy with local terminal objects such that both LP and RP preserve 

them strictly. It follows that the (π0-bijective, π0-cartesian) factorisation system on Cat
lifts to Cat�t, and so again by [10, Theorem 5.10]:

Lemma 17. The full subcategory π0-Bij�t of (Cat�t)2 whose objects are the π0-bijective 
functors is a coreflective subcategory. The counit of the coreflection at P is given by the 
morphism (1, RP ) : LP → P in (Cat�t)2.

Remark 18. The lifting of the (π0-bijective, π0-cartesian) factorisation system from Cat
to Cat�t is in fact also the lifting of the comprehensive factorisation system [16], whose 
classes are the final functors and the discrete fibrations. So the category π0-Bij�t is 
equally the full subcategory of (Cat�t)2 on the final functors.

Now, if we let L and L�t denote the idempotent comonads on Cat2 and (Cat�t)2
corresponding to the coreflective subcategories of the last two lemmas, then it is evident 
from their explicit descriptions that L�t is a lifting—in the sense of [4]—of L along the 
strictly comonadic (Cat�t)2 → Cat2. It follows by the proposition in [4, §2] that the 
composite adjunction
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π0-Bij�t � (Cat�t)2 � Cat2 (5.3)

is also strictly comonadic. Thus, if we define the modified décalage comonad Dm to be 
the comonad generated by this adjunction, then we have:

Proposition 19. The category (Cat2)Dm of Dm-coalgebras is isomorphic over Cat2 to the 
full subcategory π0-Bij�t of (Cat�t)2 on the π0-bijective functors.

By combining Proposition 5 and Lemma 17, we see that the cofree functor Cat2 →
(Cat2)Dm sends the object P : E → C of Cat2 to the object

Dm(P ) =
∑

Y ∈E E/Y
ΣY ∈EP/Y−−−−−−−→

∑
Y ∈E C/PY (5.4)

endowed in domain and codomain with the respective local terminals 1Y and 1PY for each 
Y ∈ E. Furthermore, the counit at P of the adjunction (5.3) is the map Dm(P ) → P

of Cat2 whose two components 
∑

Y E/Y → E and 
∑

Y C/PY → C are given by the 
appropriate copairings of slice projections.

We now show that the comonad Dm on Cat2 restricts to the lax slice category Cat/ /S. 
The objects of this category are pairs of a small category C and a functor |–|C : C → S, 
while morphisms (C, |–|C) → (C′, |–|C′) are pairs of a functor F and natural transforma-
tion ν fitting into a diagram:

C
F

|–|C

ν

C′ .

|–|C′

S

(5.5)

To embed Cat/ /S into Cat2, we use the category of elements construction. For a functor 
Q : C → Set, its category of elements el(Q) has objects given by pairs (X ∈ C, i ∈ QX), 
and maps (Y, j) → (X, i) given by maps f ∈ C(Y, X) with (Qf)(j) = i. Associated to 
the category of elements we have a discrete opfibration πQ : el(Q) → C sending (X, i)
to X; recall that a functor P : E → C is a discrete opfibration if, for every Y ∈ E and 
f : PY → X in C, there is a unique map f̄ : Y → X̄ with P f̄ = f . In particular, to each 
(C, |–|C) ∈ Cat/ /S we can associate the discrete opfibration PC : EC → C obtained as the 
projection from the category of elements of |–|C : C → S ↪→ Set.

Proposition 20. The assignment (C, |–|C) �→ (PC : EC → C) is the action on objects of 
a fully faithful functor Υ: Cat/ /S → Cat2. Its essential image comprises the discrete 
opfibrations with finite fibres, and choosing an isomorphism with an object in the image 
amounts to endowing each of these fibres with a linear order.

While this result is well known, we prove it for the sake of self-containedness.
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Proof. If (C, |–|C) and (C′, |–|C′) are objects of Cat/ /S, then a map PC → PC′ of Cat2 is 
a commutative square

EC
G

PC

EC′

PC′

C
F

C′ .

Commutativity forces G(X, i) = (FX, νX(i)) for suitable νX(i) ∈ |FX|C′ , so yielding 
functions νX : |X|C → |FX|C′ , which by applying G to morphisms we see are natural in 
X. So every map PC → PC′ arises from a lax triangle (5.5), and it is easy to see that 
any such triangle induces a map PC → PC′ in this manner.

So Υ is well-defined and fully faithful. As for its essential image, it is well known (and 
easily proved) that H : E → C is a discrete opfibration just when it is isomorphic over C
to πQ : el(Q) → C for some functor Q : C → Set. In this case, H will have finite fibres 
just when πQ does so, which happens just when each Q(B) is finite. But such a Q may 
always be replaced by an isomorphic one which factors through S ⊆ Set, and so the 
discrete opfibration H has finite fibres just when it is in the essential image of Υ.

Finally, the fibre of PC : EC → C over X ∈ C is the set {(X, i) : i ∈ |X|C} which 
inherits a linear order from |X|C. So any specified isomorphism H ∼= PC induces by 
transport of structure a linear order on each fibre of H. Conversely, given a linear order 
on the fibres of H, we may reconstruct an isomorphism with PC by requiring each map 
on fibres to be a monotone isomorphism. �

We now show that the modified décalage comonad Dm on Cat2 restricts back to a 
comonad on Cat/ /S.

Proposition 21. The essential image of Υ: Cat/ /S → Cat2 is closed under the action 
of modified décalage, which thus restricts to a comonad Dm on Cat/ /S. The category of 
coalgebras (Cat/ /S)Dm is isomorphic to the lax slice Cat�t/ /S.

Proof. Given (C, |–|) in Cat/ /S, applying Dm to the corresponding PC : EC → C in Cat2

yields by (5.4) the functor

∑
X∈C,i∈|X| EC/(X, i) ΣX,iPC/(X,i)−−−−−−−−−→

∑
X∈C,i∈|X| C/X . (5.6)

We must show this is a discrete opfibration with finite fibres. Since functors of this kind 
are closed under coproducts, it suffices to show that each PC/(X, i) : EC/(X, i) → C/X

is a discrete opfibration with finite fibres. It is a discrete opfibration since it is a slice of 
the discrete opfibration PC; as for the fibres, given f : Y → X in C/X, the objects over 
it in EC/(X, i) are maps of EC of the form f : (Y, j) → (X, i), which are indexed by the 
finite set { j ∈ |Y | : |f |(j) = i }.
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It follows that Dm restricts back to a comonad on Cat/ /S, and the corresponding 
category of coalgebras fits into a pullback

(Cat//S)Dm

U

(Cat2)Dm

U

Cat//S Υ
Cat2 .

Now given (C, |–|) ∈ Cat/ /S, endowing its image PC : EC → C under Υ with Dm-
coalgebra structure means, first of all, endowing C with local terminal objects. Having 
done this, we must endow EC with local terminals such that PC preserves them, and 
it is easy to see that the unique way of doing this is by choosing the set of objects 
{(X, i) : X is local terminal in C, i ∈ |X|}. Finally, to assert that PC is π0-bijective, 
there must be a unique (X, i) over each chosen local terminal of C, which is to say that 
|X| = 1 for each local terminal of C. So objects of (Cat/ /S)Dm are in bijection with those 
of Cat�t/ /S. The argument on maps is similar and left to the reader. �
6. Characterising lax-operadic categories

In this section, we take the procedure employed in Section 4 for the décalage comonad 
on Cat—considering its category of coalgebras, then the monad induced on the cate-
gory of coalgebras, and then the algebras for that monad—and apply it to the modified 
décalage comonad on Cat/ /S. By doing so, we come very close to obtaining a charac-
terisation of operadic categories. What we in fact characterise are instances of the more 
general notion of lax-operadic category. These generalise operadic categories by replacing 
the fact of the commutativity of the triangles (3.3) by the data of coherent 2-cells filling 
these triangles.

Definition 22. A lax-operadic category is given by the following data, which augment 
those of an operadic category by the addition of (D4):

(D1) A category C endowed with local terminal objects;
(D2) A cardinality functor |–| : C → S;
(D3) For all X ∈ C and i ∈ |X| a fibre functor ϕX,i : C/X → C notated as before;
(D4) For each f : Y → X in C and i ∈ |X|, a relabelling function

γf,i : |f |−1(i) → |f−1(i)| .

These data are subject to the following axioms, which are as for an operadic category, 
except that (A3) and (A5) are suitably modified to take account of the relabelling func-
tions of (D4). In stating (A5-lax), we write γj and εj for the images of j ∈ |f |−1(i) under 
γf,i : |f |−1(i) →

∣
∣f−1(i)

∣
∣ and ε|f |,i : |f |−1(i) → |Y |.
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(A1) If X is a local terminal then |X| = 1;
(A2) For all X ∈ C and i ∈ |X|, the object (1X)−1(i) is chosen terminal;

(A3-lax) For all g : fg → f in C/X and i ∈ |X|, the fibre map is compatible with 
relabelling, in the sense that |gfi | ◦ γfg,i = γf,i ◦ |g||f |i ;

(A4) For X ∈ C, one has τ−1
X (∗) = X, and for f : Y → X, one has fτX∗ = f ;

(A5-lax) For g : fg → f in C/X, i ∈ |X| and j ∈ |f |−1(i) one has that (gfi )−1(γj) =
g−1(εj) and that the square left below commutes:

(|g||f |i )−1(j)
γ̄fg,i

|gfi |
−1(γj)

γ
g
f
i ,γj

|g|−1(εj)
γg,εj

|g−1(εj)|

(|g||f |i )−1(j)
γ̄fg,i

ε
|g||f|

i ,j

|gfi |
−1(γj)

ε|gfi |,γj

|fg|−1(i)
γfg,i

|(fg)−1(i)|

(6.1)

where γ̄fg,i is the unique map making the square right above commute. Given 
moreover h : fgh → fg in C/X, one has (hfg

i )g
f
i

γj = hg
εj .

A strictly local-terminal-preserving functor F : C → C′ between lax-operadic cate-
gories is called a lax-operadic functor if it comes endowed with a natural family of 
relabelling functions νX : |X| → |FX|, which are compatible with fibre functors in the 
sense of rendering commutative each diagram of the form:

C/X
ϕX,i

F/X

C

F

C′/FX
ϕFX,νX (i)

C′ ;

in other words, we have F (f−1(i)) = (Ff)−1(νX(i)) and F (gfi ) = (Fg)Ff
νX(i) for all 

g : fg → f in C/X and i ∈ |X|. We write LaxOpCat for the category of lax-operadic 
categories and lax-operadic functors.

It is perhaps worth type-checking the display in (A5-lax) to see that it makes sense. In 
the left square, the left edge is well-defined simply by computing cardinalities of fibres; 
while the right edge is well-defined by the equality (gfi )−1(γj) = g−1(εj) asserted directly 
beforehand. In the right square, for the factorisation γ̄fg,i to exist, we must know that 
γfg,i maps each k ∈ |fg|−1(i) with |g||f |i (k) = j to an element k′ ∈

∣
∣(fg)−1(i)

∣
∣ with 

|gfi |(k′) = γf,i(j); but this follows from the equality |gfi | ◦ γfg,i = γf,i ◦ |g||f |i asserted 
in (A3-lax).

We now begin our abstract rederivation of lax-operadic categories in terms of modified 
décalage. Recall that in Proposition 21, we exhibited the category of coalgebras for the 
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modified décalage comonad on Cat/ /S as isomorphic to the lax slice category Cat�t/ /S. 
Thus we are justified in giving:

Definition 23. The modified décalage monad D̃m on Cat�t/ /S ∼= (Cat/ /S)Dm is the monad 
induced by the forgetful–cofree adjunction (Cat/ /S)Dm � Cat/ /S.

Towards a concrete description of the modified décalage monad, we note that the 
sets {j ∈ |Y | : |f |(j) = i} giving the fibres of (5.6) inherit linear orders from |Y |, so 
that we may use the last clause of Proposition 20 to obtain a particular instantiation of 
the forgetful–cofree adjunction for the modified décalage comonad on Cat/ /S. The cofree 
functor Cat/ /S → (Cat/ /S)Dm sends an object (C, |–|) to the object (Dm(C), |–|Dm(C)), 
where Dm(C) = ΣX∈C,i∈|X|C/X is the codomain of (5.6), with the chosen terminal 1X in 
the connected component indexed by (X, i), and where |–|Dm(C) : Dm(C) → S is defined 
on objects and morphisms by

(X ∈ C, i ∈ |X|, f : Y → X) �→ |f |−1(i)

(X, i, fg) g−→ (X, i, f) �→ |fg|−1(i) |g||f|
i−−−−→ |f |−1(i) .

(6.2)

The counit at (C, |–|) of the forgetful–cofree adjunction is given by a lax triangle

Dm(C)
EC

|–|Dm(C)

εC

C

|–|

S

(6.3)

wherein the functor EC : ΣX∈C,i∈|X|C/X → C is the copairing of the slice projec-
tions, and the natural transformation εC has component at (X, i, f) given by the map 
ε|f |,i : |f |−1(i) → |Y | of (2.1). We now use this to read off a description of the modified 
décalage monad on (Cat/ /S)Dm ∼= Cat�t/ /S.

(i) The underlying functor D̃m : Cat�t/ /S → Cat�t/ /S is given on objects by (C, |–|) �→
(Dm(C), |–|Dm(C)) as above, and on morphisms by:

C
F

|–|C

ν

C′

|–|C′
�→

Dm(C)
Dm(F )

|–|Dm(C)

Dm(ν)
Dm(C′) .

|–|Dm(C′)

S S

Here Dm(F ) has action on objects (X, i, f) �→ (FX, νX(i), Ff) and action on maps 
inherited from F ; while the component of Dm(ν) at an object (X, i, f) is the unique 
map rendering commutative the square
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|f |−1
C (i)

Dm(ν)(X,i,f)

ε|f|,i

|Ff |−1
C′ (νX(i))

ε|Ff|,νX (i)

|X|C
νY |FX|C′ .

(ii) The unit ηC : (C, |–|) → D̃m(C, |–|) is a strictly commuting triangle, whose upper 
edge is the functor C → Dm(C) sending X to (uX, 1, τX) and sending f : Y → X

to f : (uX, 1, τX) → (uY, 1, τY ).
(iii) The multiplication μC : D̃mD̃m(C, |–|) → D̃m(C, |–|) is also a strictly commuting 

triangle, whose upper edge is the functor

∑
(X,i,f)∈DmC,j∈|f |−1(i) DmC/(X, i, f) →

∑
X∈C,i∈|X| C/X (6.4)

defined as follows. Since a typical map in DmC is of the form g : (X, i, fg) →
(X, i, f), an object of the domain of (6.4) comprises the data of

X ∈ C, i ∈ |X|, f : Y → X, j ∈ |f |−1(i), g : Z → Y (6.5)

while each morphism is of the form h : (X, i, f, j, gh) → (X, i, f, j, g). In these terms, 
we can define the functor (6.4) on objects and morphisms by

(X, i, f, j, g) �→ (Y, εj, g)

(X, i, f, j, gh) h−→ (X, i, f, j, g) �→ (Y, εj, gh) h−→ (Y, εj, g) ,
(6.6)

where, like before, we write εj for ε|f |,i(j).

Using this description, we can now give our second main result.

Theorem 24. The category of algebras for the modified décalage monad D̃m on Cat�t/ /S ∼=
(Cat/ /S)Dm is isomorphic to the category LaxOpCat of lax-operadic categories.

Proof. The data (D1)–(D2) and axiom (A1) specify exactly an object (C, |–|) in Cat�t/ /S. 
Giving the fibre functors (D3) is equivalent to giving a single functor ϕ : Dm(C) → C, 
and the relabelling maps of (D4) give the components of a natural transformation

Dm(C)
ϕ

|–|Dm(C)

γ

C

|–|

S

(6.7)

whose naturality is then asserted by (A3-lax). Since axiom (A2) asserts that ϕ in (6.7)
is a map of Cat�t, we conclude that giving the data for a lax-operadic category plus the 
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first three axioms is the same as giving an object (C, |–|) of (Cat/ /S)Dm endowed with a 
morphism (ϕ, γ) : D̃m(C, |–|) → (C, |–|).

It is not hard to see that (A4) is equivalent to (ϕ, γ) satisfying the D̃m-algebra unit 
axiom (ϕ, γ) ◦ (η(C,|–|), 1) = (1C, 1|–|); we claim, finally, that (A5-lax) asserts the multi-
plication axiom given by the equality of pastings:

DmDmC

|–|DmDm(C)

Dmϕ
DmC

ϕ

Dm(γ) γ

|–|DmC

C

|–|

S

=

DmDmC

|–|DmDm(C)

μC

DmC
ϕ

|–|DmC

=
γ

C .

|–|

S

(6.8)

Now, the functors across the top of (6.8) act on a typical object (6.5) of DmDmC by 
the respective assignments:

(X, i, f, j, g) �→ (f−1(i), γj, gfi ) �→ (gfi )−1(γj)
and (X, i, f, j, g) �→ (Y, εj, g) �→ g−1(εj) ,

whose equality is precisely the first clause of (A5-lax). On the other hand, at this same 
object (6.5), the components of the two composite natural transformations in (6.8) are 
given by the two sides of the left square of (6.1)—whose equality is the second clause 
of (A5-lax). Finally, the actions on a map h : (X, i, f, j, gh) → (X, i, f, j, g) of DmDmC

of the functors across the top of (6.8) are given by

h �→ hfg
i �→ (hfg

i )g
f
i

γj and h �→ h �→ hg
εj ,

whose equality is precisely the final clause of (A5-lax). This proves that D̃m-algebras 
in (Cat/ /S)Dm correspond bijectively with lax-operadic categories. A similar argument 
verifies the same for the maps between them, and we leave this to the reader. �
7. Characterising operadic categories

There is not much left to do to get from the preceding result to our main result, 
characterising genuine operadic categories in terms of décalage. If we define a morphism 
of Cat�t/ /S as in (5.5) to be strict whenever the natural transformation ν therein is an 
identity, then it is immediate from the preceding proof that:

Proposition 25. Under the isomorphism of Theorem 24, a D̃m-algebra corresponds to an 
operadic category just when its algebra structure map in Cat�t/ /S is strict; while a D̃m-
algebra morphism corresponds to an operadic functor just when its underlying map in 
Cat�t/ /S is strict.

At this point, it is not possible to restrict the modified décalage comonad Dm on Cat/ /S
back to the strict slice category Cat/S, and obtain operadic categories as algebras for 
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the induced monad D̃m on (Cat/S)Dm . The reason for this, as noted in the introduction, 
is simply that modified décalage Dm does not restrict from Cat/ /S to Cat/S, since its 
counit maps (6.3) are only lax triangles.

However, the modified décalage monad D̃m on (Cat/ /S)Dm ∼= Cat�t/ /S does interact 
well with strictness: inspection of the description following Definition 23 shows that 
the functor D̃m preserves strictness of triangles, and that each unit and multiplication 
component is a strict triangle. We are thus justified in giving:

Definition 26. The modified décalage monad D̃m on Cat�t/S is the restriction to Cat�t/S
of the modified décalage monad Cat�t/ /S.

And so, from Theorem 24 and Proposition 25, our main result immediately follows:

Theorem 27. The category of algebras for the modified décalage monad D̃m on Cat�t/S
is isomorphic to the category OpCat of operadic categories.
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