
From Minimal Logical Forms for Answer
Extraction to Logical Graphs for Question

Answering

Diego Mollá

Department of Computing, Macquarie University, Sydney, Australia
diego.molla-aliod@mq.edu.au

http://web.science.mq.edu.au/~diego/

Abstract. Many exciting things happened since I left the ExtrAns project
at the University of Zurich. In this paper I present a very brief journal of
the research that derived from my work at Zurich. My work combined a
study of several representations of questions and answer sentences with
the development of procedures to find the answer. The culmination of
this work was the definition of the Logical Graphs (LGs), which are graph
representations derived from ExtrAns’ original Minimal Logical Forms
(MLFs), and the development of a method for the automatic learning
of question-answer patterns based on LGs. I hope the reader will enjoy
reading this journey of ideas.

Key words: answer extraction, question answering, minimal logical
forms, logical graphs

1 Introduction

My post-doctoral research started with the ExtrAns answer extraction project
at the University of Zurich. Work carried out there lead to the definition of
Minimal Logical Forms (MLFs) as the core representation of text and questions.
Life continued on and I left Zurich in pursue of new research paths. In the process
my research has evolved from the original idea of the MLFs to a graph-based
representation and procedures. In this paper I will give a quick review of the
key research ideas that lead to my current work following a chronological order.
Section 2 introduces the original MLFs; Section 3 describes the use of various
similarity measures including MLFs; Section 4 gives some detail of the logical
patterns I used for question answering; Section 5 shows the transformation of
MLFs into graphs; Section 6 details some work on the format of graphs derived
from the change to a new parser; and Section 7 wraps up everything.

2 Minimal Logical Forms

The Minimal Logical Forms (MLFs) were designed as a means to express the
logical contents of sentences in a way that is practical to produce and to work



2 From Minimal Logical Forms to Logical Graphs

with, yet still able to be generalised to express the full meaning of sentences. This
is a compromise that worked well and that turned out to be the same sort of
compromise used in the literature, notably by Jerry Hobbs [Hobbs, 1985]. Similar
approaches were used in practical implementations of Question Answering (QA)
systems such as Lasso [Moldovan et al., 1999], a system that obtained the best
results in the Question Answering track of the TREC 1999 conference.

Let us recapitulate the key features of the Minimal Logical Forms used by
ExtrAns:

– The format of the MLFs is in Prolog. The complete process of determining
if a sentence is an answer uses Prolog unification.

– The logical forms are flat lists of predicates that use reification as a means to
express information that otherwise would be presented in nested expressions.

– There is no attempt to express the full semantic interpretation of the sentence
and many issues that are typical sources of ambiguity, such as determiner
scope and tense, are left out. I have published some suggestions on how to
handle these issues [Mollá, 2001] but it was never our goal to implement
them.

The MLFs as used by ExtrAns used the output of Link Grammar (LG). LG
is an open-source dependency-based parser and grammar system implemented in
the C programming language and that is easily customisable [Sleator and Temperley, 1993].
We modified the original parser so that it could express dependency structures
(called linkages in LG’s terminology) with conjunctions as single trees, in con-
trast with the original form that expressed independent linkages for each con-
junct. The resulting answer extraction system incorporating Link Grammar was
a simple system that was easy to port to other machines.

One of the first changes that we did at Macquarie University was to switch to
Conexor FDG [Tapanainen and Järvinen, 1997] (henceforth Conexor), a dependency-
based parser that was faster and more accurate, as shown by our evaluations
[Mollá and Hutchinson, 2003]. The aim was to simply replace the parser and
keep the format of the original logical forms, and in the process we proposed
a principled way to build the logical form from the output of a dependency-
based parser such as Conexor using an introspection stage where each word is
considered in isolation, and an extrospection stage where additional logical rela-
tions are incorporated [Mollá and Hutchinson, 2002]. Given the limited human
resources we had there was no attempt to provide an optimised conversion of the
parser output. For example, we did not attempt to trace long-distance depen-
dencies and therefore a sentence like “Mary wants to marry a sailor” would not
express the concept that the subject of marrying is Mary. This is a major differ-
ence from ExtrAns’ logical forms, yet our comparative studies showed a better
performance with the new parser. The new logical forms had less information
but the available information was correct more often.



From Minimal Logical Forms to Logical Graphs 3

3 Similarity Measures

In the years that followed the incorporation of Conexor we performed more rad-
ical changes to the original system, this time on the way the answer was found.
Instead of using Prolog unification and backtracking we experimented with vari-
ous similarity measures between the question and the answer. We experimented
with the following similarity measures [Mollá, 2003]:

– Word overlap: This is a simple method that retrieves the sentences with
highest overlap of keywords with the question.

– Grammatical relation overlap: This method computes the overlap of gram-
matical relations [Carroll et al., 1998]. We used a subset of grammatical re-
lations that could be extracted by our system.

– Logical form overlap: This method is a simplification of ExtrAns’ answer
extraction. It computes the number of MLFs that are in common between
question and answer. This overlap used Prolog unification to handle the
variables in the logical forms.

The framework was a question-answering system that returned exact answers.
This task is more difficult than ExtrAns’ answer extraction, which returned
complete sentences containing the answer. The similarity measures listed above
were used to select sentences and rank the named entities that were compatible
with the expected answer type. So, if the question was “Who turned 60 years
old on October 31st 2009”, the expected answer type is a person. All person
names identified in the preselected sentences were identified, and if a named
entity appeared in several sentences its score would be the sum of scores of each
sentence. With this simple framework we found that the simplest method, word
overlap, was best than any other isolated methods, but a combination of all
methods was best.

4 Answer Patterns

The question answering method described above relied on a good named entity
(NE) recogniser but the NE recognisers we had available were unreliable. We
tried ANNIE, GATE’s [Gaizauskas et al., 1996] NE recogniser but the program
had a tendency to crash. We tried to use ANNIE to compute all named entities
off-line, and after over a month of computer processing and numerous crashes
we managed to obtain the list of entities. Still, because of the crashes and the
way we collected the entities there was an undetermined number of documents
of which we did not have the named entities.

To reduce the dependency on the NE recogniser we used the logical forms
to try to find the exact answers directly, without relying on named entities.
In an initial study we examined questions and answers and after painstak-
ing work we came with a few very generic rules such as the one of Figure 1
[Mollá and Gardiner, 2004].



4 From Minimal Logical Forms to Logical Graphs

Pattern:
object(what, ,[XW])
object(A,OA,[XW])
prop(of, ,[XW,XB])
object(B,OB,[XB])

Replacement:
object(B,OB,[XB])
evt(have, ,[OB,XW])
object(A,OA,[XW])
prop(of, ,[XW,XANSW])
dep(ANSWER,OX,[XANSW])

Fig. 1. Minimal Logical Form Rule

This rule addresses questions of the form “What is the X of Y?” where the
candidate answer sentence is “X has a Y of ANSWER”. The example shows
clearly a shortcoming of this approach: it is very difficult to understand the
logical patterns, and trying to find these patterns manually was a very labour
intensive task. For this reason we moved on to try to learn the logical form
patterns.

5 Using Graphs

To learn the logical form patterns we used a formalism that I wanted to try for
quite a long time: graphs. A logical form can be expressed as a graph whose
vertices represent predicate concepts and whose edges represent variable bind-
ings between predicates. This way, for example, the pattern of Figure 1 can be
expressed as in Figure 2.

Pattern:

object:

what

XW

object: OA

A

XW

prop:

of

XW XB

object: OB

B

XB

Replacement:

object: OB

B

XB

evt:

have

OB XW

object: OA

A

XW

prop:

of

XW XA

dep: OX

ANSWER

XA

Fig. 2. Graph Representation of a Minimal Logical Form Rule; the vertex in thick lines
represents the answer.



From Minimal Logical Forms to Logical Graphs 5

These graphs are sugar coating of the original notation but they are not
graphs in the traditional Graph Theory sense because of the way the vertices
are connected. We decided to simplify them so that it becomes easier to use
traditional Graph Theory tools on them. Inspired on Sowa’s Conceptual Graphs
[Sowa, 1979], we defined directed bipartite graphs with two types of vertices
named concepts and relations [Mollá and van Zaanen, 2005]:

Concepts are MLF’s objects and eventualities;
Relations are MLF’s properties and other relational predicates like lattices

produced by a conjunction.

Figure 3 shows an example of a Minimal Logical Form and its corresponding
Logical Graph.

A person is between a rock and a hard place
holds(e3), object(person,o2,[x2]), evt(be,e3,[x2]), prop(between,p4,[e3,x7]), x6≤x7,

x10≤x7, object(rock,o6,[x6]), prop(hard,p9,[x10]), object(place,o10,[x10])

person 1 be between

≤rock ≤ place

prop

hard

Fig. 3. A Logical Graph; concepts are represented as square boxes and relations are
ellipses.

Though inspired on Sowa’s Conceptual Graphs (CGs) they differ from them
in that ours are traditional graphs that can use traditional Graph Theory opera-
tions. Sowa’s CGs, in contrast, are associated with a semantic theory of inference.

The resulting graphs are named Logical Graphs (LGs). By using the LGs
we substitute the concept of overlap with that of Minimum Common Subgraph
(MCS) so that the size of the MCS between a question and a sentence is an
indication of similarity and a hint that the answer might be there.

The good thing of graphs (and in general of any structure with relational
information) is that now we can follow the connections between vertices to
try to find the answer. So we devised a simple mechanism to learn question-
answering patterns based on the MCS between question and answer sentence
graphs [Mollá, 2006]. Basically, given a question-answer pair in the training cor-
pus, the MCS between the question and the answer sentence can be used as the
question pattern, and the path that connects this MCS with the actual answer
in the sentence is the pattern to look for in the candidate answer sentence.

Our experiments showed that indeed we can obtain the answer this way,
though our training set was very small and therefore the results were not im-
pressive.



6 From Minimal Logical Forms to Logical Graphs

6 From Conexor to Enju

Recently the license of Conexor expired and we had to find another parser. This
became an opportunity to experiment with different graph formats to decide
what is the optimal graph for Question Answering. Our results in this section
are sadly not comparable with those of the previous section so it is not known
whether the modifications shown here are better than the original LGs as de-
scribed above, but still we think the results are interesting enough to report
here.

Enju is a parser developed by the University of Tokyo that uses a wide-
coverage HPSG grammar [Sagae et al., 2007]. We chose this parser and grammar
among other free tools because it produces a dependency-based structure that
can be converted to graphs and because there is also a grammar that is fine-
tuned for the biomedical domain, an area that I am interested in exploring in
the future.

Being HPSG-based, the dependencies use conventions that differ from those
of Conexor, though, and we had to modify some of them. In particular, we re-
versed the direction of dependency of all determiners and modifiers, since HPSG
treats them as the head of the dependency. We also modified the dependencies
concerning prepositions to make them similar to our original Logical Graphs.
Figure 4 shows the original graph obtained from Enju, and after the modifica-
tions that were made.

(a) Original graph

I 1 see 2 man 1 the

2 in 1 park 1 the

1 small

(b) After reversing dependencies; changes in thick lines

I 1 see 2 man 1 the

1 in 2 park 1 the

1 small

Fig. 4. Variations of the output of the Enju parser for the sentence I saw the man in
the park.

Changes in the directions of dependency required changes in the relation
labels. For example, the graph of Figure 4 (b) would seem to imply that “in” is
the argument 1 of “see”, but “see” already has “I” as its argument 1. We are



From Minimal Logical Forms to Logical Graphs 7

currently experimenting with the level of detail that we want to encode in the
labels: from simply stating the part of speech of the old head (so that, say, “in”
is the argument IN1 of “see” and “I” is the argument VB1 of “see” ) to using
a different label per different word. Our current experiments seem to indicate
that, if we have a corpus of questions and answers large enough, using graphs
with very specific information in the labels could be the best bet.

7 Conclusions and Further Work

To conclude, research initiated at the University of Zurich led to a very produc-
tive line of work. Engineering issues prevented our system from obtaining better
results but, on the theoretical side, the methods developed were very exciting
. . . and they are still my main area of research.

Further work includes expanding the learning method to incorporate differ-
ent weighting systems of parts of the graphs according to some sort of semantic
similarity between words and semantic importance of the particular word for
question answering. An idea that I toyed with was the use of WordNet as in the
work about MCS for Conceptual Graphs [Montes-y-Gómez et al., 2001]. Some-
thing that might be more exciting would be to use methods to identify word
relations automatically [van der Plas and Bouma, 2005].

Furthering on the analysis of graphs for QA, an interesting area worth ex-
ploring is the study of the formal properties of graphs and the determination of
the actual graph types that are expressive enough for what we need to represent
of sentences and questions for QA, yet still allowing fast processing of the MCS.
The original task of finding the MCS of two arbitrary graphs is NP-complete, but
in theory it could be possible to define a subclass of graphs that allow a faster
algorithm. Alternatively we could look at methods to compute an approximate
MCS in polynomial time.

Moving to other areas, I am interested in exploring the use of graphs as a
means to present abstracts of the original text source. This in a sense would be
a step forward from the use of in-context highlighting of the original ExtrAns
system, but rather than returning an extract, graphs can be used to detect the
important bits of information, remove redundancies in complex answers spanning
multiple documents, and generate new text. This would mean going beyond the
boundary of sentences and enable graphs to express complete documents or even
sets of documents.

And research continues on.

8 Thanks and Acknowledgements

Research described in this paper is originated by work carried out at the Univer-
sity of Zurich and led by Prof. Michael Hess. I am grateful for his original idea of
using logical forms for question answering, and though I might have gone a bit
away from the original form, I would like to think that I didn’t go astray. The
work presented here is in essence inspired from that original idea. Parts of the



8 From Minimal Logical Forms to Logical Graphs

research carried out at Macquarie University have been funded with the Mac-
quarie University New Staff Grant and with the Australian Research Council
Discovery Grant number DP0450750.

References

[Carroll et al., 1998] Carroll, J., Briscoe, T., and Sanfilippo, A. (1998). Parser evalu-
ation: a survey and a new proposal. In Proc. LREC98.

[Gaizauskas et al., 1996] Gaizauskas, R., Cunningham, H., Wilks, Y., Rodgers, P., and
Humphreys, K. (1996). GATE: an environment to support research and development
in natural language engineering. In Proceedings of the 8th IEEE International Con-
ference on Tools with Artificial Intelligence, Toulouse, France.

[Hobbs, 1985] Hobbs, J. R. (1985). Ontological promiscuity. In Proc. ACL’85, pages
61–69. University of Chicago, Association for Computational Linguistics.

[Moldovan et al., 1999] Moldovan, D., Harabagiu, S., Paşca, M., Mihalcea, R.,
Goodrum, R., Gı̂rju, R., and Rus, V. (1999). Lasso: A tool for surfing the an-
swer net. In Voorhees, E. M. and Harman, D. K., editors, Proc. TREC-8, number
500-246 in NIST Special Publication. NIST.

[Mollá, 2001] Mollá, D. (2001). Ontologically promiscuous flat logical forms for NLP.
In Bunt, H., van der Sluis, I., and Thijsse, E., editors, Proceedings of IWCS-4, pages
249–265. Tilburg University.

[Mollá, 2003] Mollá, D. (2003). Towards semantic-based overlap measures for question
answering. In Proc. ALTW03, pages 130–137, Melbourne.

[Mollá, 2006] Mollá, D. (2006). Learning of graph-based question answering rules.
In Proc. HLT/NAACL 2006 Workshop on Graph Algorithms for Natural Language
Processing, pages 37–44.

[Mollá and Gardiner, 2004] Mollá, D. and Gardiner, M. (2004). Answerfinder - ques-
tion answering by combining lexical, syntactic and semantic information. In Asudeh,
A., Paris, C., and Wan, S., editors, Proc. ALTW 2004, pages 9–16, Sydney, Australia.
Macquarie University.

[Mollá and Hutchinson, 2002] Mollá, D. and Hutchinson, B. (2002). Dependency-
based semantic interpretation for answer extraction. In Proc. 2002 Australasian
NLP Workshop.

[Mollá and Hutchinson, 2003] Mollá, D. and Hutchinson, B. (2003). Intrinsic versus
extrinsic evaluations of parsing systems. In Proc. European Association for Computa-
tional Linguistics (EACL), workshop on Evaluation Initiatives in Natural Language
Processing, pages 43–50, Budapest. Association for Computational Linguistics, ACL.

[Mollá and van Zaanen, 2005] Mollá, D. and van Zaanen, M. (2005). Learning of graph
rules for question answering. In Baldwin, T., Curran, J. R., and van Zaanen, M.,
editors, Proc. ALTW 2005, Proceedings of the Australasian Language Technology
Workshop. Australasian Language Technology Association.

[Montes-y-Gómez et al., 2001] Montes-y-Gómez, M., Gelbukh, A., and Baeza-Yates,
R. (2001). Flexible comparison of conceptual graphs. In Proc. DEXA-2001, number
2113 in Lecture Notes in Computer Science, pages 102–111. Springer-Verlag.

[Sagae et al., 2007] Sagae, K., Miyao, Y., and Tsujii, J. (2007). Hpsg parsing with
shallow dependency constraints. In Proc. ACL 2007, pages 624–631.

[Sleator and Temperley, 1993] Sleator, D. D. and Temperley, D. (1993). Parsing En-
glish with a link grammar. In Proc. Third International Workshop on Parsing Tech-
nologies, pages 277–292.



From Minimal Logical Forms to Logical Graphs 9

[Sowa, 1979] Sowa, J. F. (1979). Semantics of conceptual graphs. In Proc. ACL 1979,
pages 39–44.

[Tapanainen and Järvinen, 1997] Tapanainen, P. and Järvinen, T. (1997). A non-
projective dependency parser. In Proc. ANLP-97. ACL.

[van der Plas and Bouma, 2005] van der Plas, L. and Bouma, G. (2005). Automatic
acquisition of lexico-semantic knowledge for qa. In Proceedings Ontolex 2005, page 9
pages.


