Ontologically Promiscuous Flat Logical Forms for

NLP

Diego Molla

Macquarie University
Sydney
Diego.Molla-Aliod@mq.edu.au

Abstract

In this paper a flat notation for logical forms is described. This
notation allows the logical forms to be easy to build, easy to work
with, and able to deal with ambiguity by underspecification. The main
mechanism to convert a logical form into the corresponding flat form is
the reification of all the predicates and operators used in an otherwise
nested expression. The resulting flat logical forms are convenient for
natural language processing applications that require the use of par-
tial logical forms. In particular, it is shown how partial logical forms
(encoded in flat notation) can be used to perform answer extraction.

Keywords: flat logical form, reification, underspecification, par-
tial logical form, answer extraction

In this paper we explore a notation for logical forms that can be useful
for several Natural Language Processing (NLP) applications. The main goal
is to provide a notation that is easy to build, easy to work with, and able
to deal with ambiguity by underspecification. In Section 1 we introduce
the notation. In Section 2 we mention some of the most important features
of this notation and how the resulting logical forms can be used for NLP.
Finally, in Section 3 we explain the use of this notation for a particular NLP
application, Answer Extraction.



1 The notation

1.1 The basic idea

The basic idea is to do like computer programmers do when the program-
ming language only allows a function to return the result in one of the
arguments: use one of the arguments to collect the result. For example,
the instruction (1a) can be substituted by the sequence of instructions (1b),
where the functions factorial and exp are changed to make them return
the value in their first argument:

(1) a. A := (factorial(25)-exp(12)) * 2;

b. factorial(X,25);
exp(Y,12);
A = (X-Y) * 2;

If the programmer wants to redefine subtraction and multiplication,
then (1b) could even be translated into:

(2) factorial(X,25);
exp(Y,12);
subtract (P,X,Y);
multiply(A,P,2);

The resulting expression (2) is a completely flat form that produces the
same result as the nested form (1a).

1.2 Ontological promiscuity

A method to convert a (nested) logical form into a flat form is to reify all

the partial expressions that appear in the logical form, and use the reified

entities to refer to these partial expressions. In our analogy with computing

programs, these reified entities are the “results” of the partial expressions.
Let us start with a preliminary example:

(3) a. John ate an apple quickly
b. Ja(quick(eat(j,a)) A apple(a))

c. da,ei(eat(er,j,a) Aquick(er) A apple(a))



The logical form (3c) is a flat form of (3b). To obtain it, we have reified
the eating event and by so doing the predicate quick introduced by the
adverbial quickly does not need to take the predicate eat as its argument.
Instead, the argument is the reified entity e; that represents the eating event.
Reifying events is a common practice in Davidsonian approaches (Davidson
1967; Parsons 1985),' but we go further and reify all the predicates. This is
Hobbs’ ontological promiscuity (Hobbs 1985) carried to its extremes. The
flat form of (3b) becomes:

(5) Ja,e1,e2,e3(eat(er, j,a) A quick(ey, e1) A apple(es, a))

This is a consequence of Hobbs’ ontological promiscuity: all the mor-
phemes in the sentence are subject to reification. By using ontological
promiscuity, one can easily express sentences with adverb modifiers (or any
other type of modifiers):

(6) a. John ate a pale green apple very quickly
b. Ja(very(quick(eat(j,a))) A apple(a) A pale(green(a)))

C. 30’7 €1, €2, €3, €4, €5, €4 (eat(817j7 a’) A quiCk(627 61) N verY(eﬁa 62) A
apple(es,a) A green(eq,a) A pale(es,eq))

The relation between ontological promiscuity and the programming tech-
nique discussed in the introduction can be seen quite clearly by comparing
the original nested form (6b) and the flat form (6¢) with (1a) and (2).

1.3 Existence

A potential complication of the proposed notation is the scope of existential
quantification. Since now all the variables have existential quantification
with the widest possible scope, what happens with entities that should ap-
pear in a narrower scope, as is the case with opaque verbs, negation, or
implication?

Tt may be argued that actually Davidson’s events and our reification system belong
to different domains. In fact, we may need to use both the event as a new independent
entity (s below) and the predicate reification (e1 below):

(4) a. John sleeps deeply
3617 s(sleep(el,, .7)7 deep(), jOhn(j))
b. John probably sleeps

Je, s(sleep(, $,7), probable(), john(j))

This possibility, however, is not considered further in this paper.



Hobbs himself addresses this complication by making the universe of
quantification an imaginary universe that contains everything that one can
think of. This is what Hobbs calls the “Platonic universe”. Those entities
that also exist in the universe of discourse are specifically marked by a new
predicate, say, Rexists. Thus, if an entity is the argument of Rexists,
then it exists in the universe of discourse. If an entity is not the argument
of Rexists, then we do not know if it exists in such universe or not. This
can be seen in the example:

(7) John wants to fly
dey, ea(want(eq, j, e2) A £ly(ez, j) A Rexists(ep))

The existence of e; (want) is asserted, but the existence of ey (fly) is
not asserted. Therefore, it is not known whether ey exists in the universe of
discourse. One needs to use extra axioms (based on our general knowledge
of wanting and flying) that allow us to infer that, say, es does not exist in
the universe of discourse. The logical form (7) is therefore underspecified
with respect to the existence of es in the universe of discourse.

Hobbs relates a non-reified predicate with its corresponding reified pred-
icate (marked with ’ in his notation) by means of the axiom:

Axiom 1

Yy, xpp(er, -+, 2,) = Je(Rexists(e) Ap'(e, 1, -+, 2yn))]

This axiom states that an unprimed (non-reified) predicate is equivalent
to its primed (reified) predicate plus the assertion that the reified entity
exists in the universe of discourse. Thus, any unprimed predicate can always
be expressed by means of a primed predicate plus Rexists. However, a
primed predicate cannot necessarily be expressed by means of an unprimed
predicate, since a primed predicate by itself does not ensure that the reified
event exists in the universe of discourse.

Logical operators would be liable to reification just in the same way
as predicates. A possible (simplified) expression in Hobbs’ notation of a
sentence with negation and implication would be:

(8) if John is a bachelor, then he is not married
Jdeq, e9, €3, e4(bachelor(ey,j) Amarried(es,j) A not(es,es)
A if(eq,e1,e3) ARexists(eq))

This notation is clearly different from a traditional non-flat expression
that uses logical operators:



(9) if John is a bachelor, then he is not married
bachelor(j) — —married(y)

The question is, if we assume (as Hobbs does) that the logical opera-
tors — and — are equivalent to if and not, can Axiom 1 make (8) and (9)
equivalent? Note that Axiom 1 would introduce existential quantification
inside the components of the implication:

(10) if John is a bachelor, then he is not married
(Je1(bachelor(ey,j) ARexists(er))) —
—(Jes(married(es, j) A Rexists(es)))

Hobbs (Hobbs 2000) proposes the use of specific axioms that allow infer-
ences with logical operators. However, these axioms become very difficult to
use when we have a combination of operators. The case of embedded exis-
tential quantifiers becomes especially difficult, and therefore the equivalence
between (8) and (9) is not clear.

One may argue (as Hobbs might) that (9) is not an adequate logical
form of the example sentence, and therefore (8) and (9) ought to be differ-
ent. However, we would like to keep the possibility of (9) or similar being
adequate. Since Hobbs’ combination of Rexists and Axiom 1 does not al-
low us to establish the relation between a nested form and its flat form,
we do not make use of Axiom 1 in our notation. To avoid confusion and
distinguish our notation from Hobbs’, to express existence in the universe
of discourse we will use True instead of Rexists. The use of the name True
also allows a better parallelism with False, as we will see later.

What we propose is this: Reify all the predicates and logical operators in
the logical expression, and add True(e) for the entity that results of reifying
the top level operator. To ease readability, the expressions in the rest of this
paper will not show the existential quantification over the reified entities
(it is always going to have the widest possible scope), and the predicates
are conjoined by a comma, instead of A. Thus, our proposed representation
of (9) becomes:

(11) if John is a bachelor, then he is not married

bachelor(ey,j), married(es,j), —(es, e2), — (€4, e1,e3), True(ey)

2 Working with the notation

The notation introduced in this paper has several properties that make it
very interesting for some NLP applications. In this part we will briefly



mention some of these properties.

2.1 Partial logical forms

An important feature of our flat forms is that it is possible to use them to
express partial information. Consider, for example:

(12) John may have wanted to eat all the apples in the basket

This sentence contains, among others, a modal verb, a complex tense,
an embedded clause, a quantifier, and a plural. An NLP system may have
difficulty to provide a correct logical form for the sentence. Let us assume
that there is an agreement about the logical form of (12), say:

(13) all(z, apple(z)A in(z,b)
—
may(perfect(want(j, eat(j,z)))))

It is fairly easy to find the corresponding flat form:

(14) True(e1), all(er,z,ea), — (e2,e3,e4), Ales,es,eq),
apple(es,z), in(eg,x,b), may(eq,e7), perfect(er, es),
Want(eSajaeQ)’ eat(ef)ajaq;)

Given (14), it is trivial to produce a partial representation of it, one
need just remove some of the predicates. More importantly, the parser of
a NLP system may fail to provide a full parse of (12) because it ignores,
say, quantification, modality, complex tenses, and PP modifiers. But the
output given by the parser can still be used to form a partial logical form.
For example, the following could be generated from the information of this
hypothetical parser:

(15) eat(eg,j,zp), apple(e5,z), in(667alab)

The new variable a4 is introduced to express that the attachment of the
PP is not resolved (as it could be either x or eg). It is trivial to see that (15)
provides partial information with respect to the complete logical form (14).
We would say that (15) is a partial logical form.



2.2 Inferences

The predicate True becomes very useful for systems that need to make
inferences. Every partial expression that can be inferred to be true can be
marked by adding True over its reified entity. Parallel to this, every partial
expression that can be inferred to be false can also be marked by a new
predicate, say, False. This information can be used in subsequent inference
steps.

The following equivalence rules can be used for inferences over some of
the logical operators:

True(es) A True(es)
False(es) V False(es)
True(ez) V True(es)
False(ez) A False(es)
True(ey) — True(es)
True(ez) A False(es)
False(es)

True(es)

These axioms do not encode inferences about quantification,? but they
suffice for simple inferences.

Note that we are not trying to prove the logical equivalence between
a flat form such as (14) and the nested form (13). We are instead trying
to construct a notation that keeps as many of the inferences as possible.
Therefore, we do not need axioms like Hobbs’ Axiom 1.

2.3 Ambiguity by underspecification

The reified flat forms introduced in this paper have some resemblances with
approaches that treat ambiguity by means of underspecification (Reyle 1993;
Pinkal 1999; Copestake et al. 1997). Like in these approaches, partial ex-
pressions have identifiers that can be used for reference. We could create
dominance graphs by adding dominance predicates over reified entities in the
same way as these approaches use dominance predicates over meta-variables.

2This is still a topic for further research. One could try to use Hobbs’ quantification
mechanism (Hobbs 1983; Hobbs 1996), for example.



As a way of illustration, the following expression could be used to account
for scopal underspecification:

(16) every man dates some woman
man(e;,z) , woman(eq,y), date(es, z,y), every(eq, x,eg),
— (eg, €1, e5), some(eg, y, e10), A(e1o,e2,e7), dominates(es, e3),
dominates(ey,e3), True(eg), dominates(eg, ey), dominates(eg, eg)

Here, both quantifiers some eg and every e4 are dominated by eg (which
is true), and indirectly they dominate the dating event eg via es; and ez,
respectively.

3 Application: Answer Extraction

The most obvious application of this notation is an NLP system that can take
advantage of partial logical forms of natural language sentences. Answer
extraction (AE) systems are examples of such applications. In this section
we briefly introduce AE and how it can take advantage of our notation.
Most of the work in this part is a natural extension of the work done in
ExtrAns, an existing AE system (Molld et al. 1998; Schwitter et al. 1999).

3.1 Answer extraction

Answer extraction systems try to find the smallest parts of contiguous text
that individually provide an answer to an arbitrary question phrased in a
natural language (such as English). Answer extraction is therefore a type
of information retrieval (IR), but AE systems are not typical IR systems.
Typical IR systems provide pointers to documents that are relevant to the
query. These systems are useful for situations where the user needs to get
all the information related to the query. AE systems, on the other hand,
are ideal for situations where the user needs to find a specific answer to
a particular question under severe time constraints. Typical applications
of AE systems include interfaces to software manuals, help-desk systems in
large organisations, and public enquiry systems available over the Internet.
Given the current information overload, the need for this type of applications
is becoming increasingly evident.

AFE systems share many features with question answering (QA) systems.
A full-fledged QA system, however, needs to tackle problems such as world
knowledge, inferences, and language generation. It is still a long way until
the problems of encoding and using world knowledge and inferences are



solved, and language generation is unfortunately an area where not much
research is being done. AE is far less an ambitious task than QA, but a task
that can be used for practical purposes and, more importantly, that can be
used now.

3.2 (Web)ExtrAns

ExtrAns is an application that performs AE over UNIX manpages (Molld
et al. 1998; Schwitter et al. 1999). There is a web-based version that uses
about 500 manpages for the AE task.> A new project, WebExtrAns, has
started in November 1999 that will perform AE over the complete mainte-
nance manual of the Airbus 320. The size of this manual (the size of the
original SGML manual is over 100Mb) will be conclusive in determining the
scalability of such a system.

Both ExtrAns and WebExtrAns share the same architecture. In an
off-line stage, the documents are processed by a sequence of modules that
perform several types of linguistic analysis. Some of these modules are adap-
tations of publicly available software. For example, full-parsing is done by
the Link Grammar (Sleator & Temperley 1993). All the word forms are
normalised by converting them to the root forms, by using a lemmatiser
that is provided together with the GATE tools (Gaizauskas et al. 1996).
Disambiguation is done in several stages (Molld & Hess 2000), including a
corpus-based PP disambiguator (Brill & Resnik 1994). Finally, anaphora
resolution is done by adapting an algorithm devised for the Slot Gram-
mar (Lappin & Leass 1994). Other modules had to be implemented from
scratch. One of them is the preprocessor and tokeniser that splits the text
into sentences and sends them to the parser. Another module is the log-
ical form generator, which constructs the logical forms that are stored in
databases for the AE task (Molla et al. forthcoming).

In an on-line stage, the user questions are processed with the same lin-
guistic modules and the logical forms of the questions are produced. The
answers are found by applying a proof algorithm of the logical forms of the
questions over those of the document sentences. The retrieved sentences
are displayed to the user, with the words that directly answer the question
highlighted according to their contribution to the answer.

A central point of (Web)ExtrAns is the format of the logical forms used,
and how they can be constructed and used for the AE task. Whereas the
technical details of the actual logical forms used in ExtrAns have been ex-

*http://www.ifi.unizh.ch/cl/extrans/



plained elsewhere (Molld et al. 1998; Molld et al. forthcoming; Schwitter
et al. 1999), the following sections explain how the notation introduced in

this paper (which is more general than the notation actually used in the
(Web)ExtrAns projects) can be used for AE.

3.3 Logical forms for answer extraction

The most important feature of our notation for AE is the possibility of
expressing partial logical forms. KEven if the parser provides a thorough
syntactic analysis of the sentences (as the parser used for ExtrAns does),
the resulting syntactic structures may turn out to be too difficult to analyse
by the logical form generator. And even if they can be analysed, there is
no need for such a fine detail in the logical form. This is so because the AE
system will return acceptable results even if the sentences retrieved do not
give an ezact answer to the question. In fact, sometimes a near-miss may
be informative. Below is a question and some possible answers:

(17) which command copies files?

(18) a. cp copies files
b. ¢p copies the contents of filenamel onto filename2

c. if the option -r is specified, cp recursively copies directoryl and all
the files and directories within it

d. cp refuses to copy a file onto itself

The best answer to (17) is undeniably (18a). But (18b) is also an accept-
able answer, although it is saying that cp copies the contents of a specific
file. The next sentence, (18c¢), also contributes to the answer to the question.
One could even argue that (18d) is also an informative sentence, even when
it explicitly says that cp does not copy certain types of files under certain
conditions.

An important piece of information that is retained in all the answers
above is the verb-argument structure of the sentences retrieved. All of the
answers are about commands copying (or not copying) files or parts of them.
The following logical forms are partial logical forms of the answers:

(18?) a. True(eQ), Cp(elax)s COPY(€2,£L',y), file(e3,y)

10



These logical forms ignore much of the information given by the sentence.
For example, tense and aspect, quantification (all, etc), modality, plurals, are
all ignored. Still, the resulting partial logical forms are not trivial to produce,
since one needs to solve anaphoric references and find the arguments of
verbs in embedded clauses. Producing these partial logical forms is feasible
with the current technology, as ExtrAns has demonstrated (Molla et al.
forthcoming).

And more importantly, these logical forms can be used to decide if the
sentence is an answer to the question. This is the topic of the next section.

3.4 Finding an answer to the question

Finding an answer to a question in an AE system becomes relatively easy
if one uses the flat logical forms described in this paper. We can use the
question to produce the partial information that the answer must have. For
example, (17) produces the following partial logical form:

(17°) command(ey, ), copy(es,z,y), £ile(es,y)

Now, provided that we add an axiom that states that cp is a command,
the predicates in (17’) are part of the logical forms of all the answers (18).
Note that we do not add True(ez) to (17°) so that we can find embedded
clauses, such as in (18c) and (18d).*

An answer to a specific question is such that it follows the following
definition:

Definition 1 Let PLFg be the partial logical form of a question Q, and let
PLF, be the partial logical form of a sentence A. Then, A answers Q iff:

PLF, —s PLFo

“An inference rule is also needed to retrieve (18b), namely, that the contents of an
object is identical to the object itself. In (18b) this means that z = y. This and other
inference rules (such as that all UNIX commands including cp are commands) have been
added to ExtrAns.

11



In other words, a sentence A answers a question @ if the logical form of
A is more restricted than the logical form of Q. The partial logical form of
the question is an underspecified version of the partial logical form of the
answer. If we use the notation introduced in this paper, the test cannot be
easier:

Definition 2 Let PLFg be the partial logical form of a question Q, and let
PLF 4 be the partial logical form of a sentence A. Then, A answers Q if
PLF 4 contains all the predicates of PLFg.

Using Definition 2, different types of questions find different types of
sentences. In particular, this mechanism returns acceptable answers for the
following types of questions:

Wh-. The question which command copies files? finds sentences that ex-
plicitly say that a specific command copies files, such as:
(19) a. cp copies the contents of filenamel onto filename2
b. rcp copies files between machines

c. sed copies the filenames to the standard output, edited accord-
ing to a script of commands

d. cp refuses to copy a file onto itself
Yes/no. The question does cp copy files? finds sentences that state that
cp copies files:
(20) a. cp copies the contents of filenamel onto filename2

b. ¢p refuses to copy a file onto itself

c. If directory? does not exist, cp creates it and duplicates® the
files and subdirectories of directoryl within it

Definition 2 can even work for some types of how...? questions. For
example, the question how do I remove a file? finds all the sentences that
specify that files are removed (if we assume that “I” is treated roughly as
“anybody /anything”):

(21) a. rm removes one or more files

®To retrieve (20c) and (21b) we would also need to keep a thesaurus that lists synonymy
relations, such as between copy and duplicate. ExtrAns, for example, keeps a simple
thesaurus with some of the most frequent synonyms in the world of manpages.

12



b. If a single file is compiled and loaded all at once, the intermediate

file is deleted®

c. If pack is successful, filename will be removed

Other types of questions, such as why ... %, or more complex questions
such as what is the best ...? or how many ...? would require less triv-
ial procedures to find the answers because these questions do not directly
determine adequate underspecified versions of partial logical forms of the
answers.

If there are no sentences in the documents that satisfy the implication,
it is still possible to find the best answers by selecting those sentences whose
partial logical forms contain the highest overlap with the partial logical form
of the question. The process would be similar to how one can determine the
similarity between two sentences, which is explained in the next section.

3.5 Evaluating the system: a proposal

It is fairly easy to use our flat logical forms to compare the semantic contents
of two sentences:

Definition 3 A sentence A with partial logical form PLF 4 is semantically
equivalent to another sentence B with partial logical form PLFp if PLF 4
and PLFg unify.

For example, the two following sentences are semantically equivalent:

(22) a. cp copies the files
True(es), cp(er,z), copy(es,z,y), file(es,y)

b. the files are copied by cp
True(62)’ file(elay)’ COPY(Q%%?J): cp(eg,az)

The logical forms unify because e; in (22a) maps eg in (22b), and eg
in (22a) maps ey in (22b).

The true usefulness of our notation is the comparison of sentences that
do not have the same logical forms. Two sentences that are very similar
in meaning will have a high overlap of predicates. It is therefore easy to
compute the semantic closeness of two sentences by simply computing the
best way to unify their logical forms. Given two sentences, A and B, four
indices can be computed:

13



O4: The maximum number of predicates in A that can unify at once with
predicates in B.

Op: The maximum number of predicates in B that can unify at once with
predicates in A.

D 4: The number of predicates that remain in A.

Dp: The number of predicates that remain in B.

For example, let us consider the following sentences in the context of a
sports report:

(23) a. A: Madrid defeated Barcelona in the last match
Madrid(ey, ),
in(eq,e9,€5), last(es, z), match(es, z), True(es)

defeat(ey,x,y)|, Barcelona(es,y),

b. B: Madrid was defeated by Barcelona in the last match
Madrid(ey, ),
in(eq,e9,€5), last(es, z), match(es, z), True(es)

defeat(ey,y,x)|, Barcelona(es,y),

The two sentences generate exactly the same predicates (7 predicates),
but the arguments in defeat (boxed) are different. For that reason, the
logical forms do not unify. The values of our four indices are:

(24) O4=6,03=6,D4=1,Dg=1
These four indices can be combined to form a unique index. For example,
we can use a straightforward formula such as:
(@] @]

~——A B
(25) T = M x 100

Formula (25) would give a value Z = 86% for the indices (24).
O 4 may be different from Op if one of the sentences contains redundant
information. For example:

(26) a. A: the cp command copies files
cp(er,z), command(ey, x), copy(es, z,y), £ile(eq,y), True(es)

b. B: the ¢p command is a command that copies files
Cp(ela fE)v Command(627 fE)v command(e5, Z)v be(eﬁa €z, Z), COPY(€3, 2, y)a
file(eq,y), True(eg)

14



If we assume that be(e,z,z) implies z = z, then both command(es, z)
and command(es, z) in (26b) unify with command(ey,z) in (26a), giving the
following indices:

(27) a. O4=4,08 =5,D4=1,Dg =2
b. T = T76%

It is of course possible to assign different weights to different types of
predicates. For example, the verb of a main sentence could produce a pred-
icate with higher weight than the predicates of sentence complements. This
way we may obtain more intuitive values for the indices.

Sentence comparison can be used for an evaluation of the performance
of QA systems in general. For example, it would be possible to compile a set
of questions for the evaluation. The evaluation team would write the best
answers to each question as complete sentences, very much like a learner
of a new language is supposed to answer questions: what is your name? —
my name is Peter, etc. These answers would be stored as “gold standard”
answers. The results given by the system can now be compared with the
“gold standard” by using the indices explained in this section.

The “gold standard” answers can also be used to evaluate the retrieval
performance of AE systems (such as ExtrAns). The most difficult problem
in evaluating AE systems is to find the set of all the answers available in the
documents. Apart from the obvious problem of searching the documents to
find the candidates, sometimes it is difficult to decide if a particular sentence
actually answers a particular question, and the decision may depend on the
person that does the judgement, or even on the person’s mood at that
particular moment. Instead of using a human, the “gold standard” answers
can be used to help finding the best answers in the documents. Those
sentences in the documents that are close enough to the “gold standard” are
selected. The selection can now be revised manually by an expert (which, as
we have just said, may be problematic, but at least the expert has to look at
less data), or they may be taken as they are. We believe that the evaluation
with these selected sentences would be fairly acceptable, at a fraction of the
cost of a full evaluation by a human.

References

Brill, Eric & Philip Resnik, 1994. A rule-based approach to prepositional
phrase attachment disambiguation. In Proc. COLING 9/, volume 2,
pp-998-1004, Kyoto, Japan.

15



Copestake, Ann, Dan Flickinger & Ivan A. Sag, 1997. Minimal recursion se-
mantics: an introduction. Technical report, CSLI, Stanford University,
Stanford, CA.

Davidson, Donald, 1967. The logical form of action sentences. In Nicholas
Rescher (ed.) The Logic of Decision and Action, pp.81-120. Univ. of
Pittsburgh Press.

Gaizauskas, Robert, Hamish Cunningham, Yorick Wilks, Peter Rodgers &
Kevin Humphreys, 1996. GATE: an environment to support research
and development in natural language engineering. In Proceedings of the
8th IEEE International Conference on Tools with Artificial Intelligence,
Toulouse, France.

Hobbs, Jerry R., 1983. An improper treatment of quantification in ordinary
English. In Proc. ACL’83, pp.57-63, Cambridge, MA.

——, 1985. Ontological promiscuity. In Proc. ACL’85, pp.61-69. University
of Chicago, Association for Computational Linguistics.

——, 1996. Monotone decreasing quantifiers in a scope-free logical form. In
Kees van Deemter & Stanley Peters (eds.) Semantic Ambiguity and Un-
derspecification, chapter 3, pp.55—76. Stanford, CA: CSLI Publications.

——, 2000. The logical notation: Ontological promiscuity.

Lappin, Shalom & Herbert J. Leass, 1994. An algorithm for pronominal
anaphora resolution. Computational Linguistics 20(4): 535-561.

Moll4, Diego, Jawad Berri & Michael Hess, 1998. A real world implementa-
tion of answer extraction. In Proc. of the 9th International Conference
and Workshop on Database and Expert Systems. Workshop “Natural
Language and Information Systems” (NLIS’98), pp.143-148, Vienna.

—— & Michael Hess, 2000. Dealing with ambiguities in an answer extraction
system. In Workshop on Representation and Treatment of Syntactic
Ambiguity in Natural Language Processing, pp.21-24, Paris. ATALA.

——, Gerold Schneider, Rolf Schwitter & Michael Hess, forthcoming. Answer
extraction using a dependency grammar in ExtrAns. T.A.L. 41(1):
127-156.

Parsons, Terence, 1985. Underlying events in the logical analysis of English.
In Ernest Lepore & Brian P. McLaughlin (eds.) Actions and Events:

16



Perspectives on the philosophy of Donald Davidson, pp.235-267. Ox-
ford: Blackwell.

Pinkal, Manfred, 1999. On semantic underspecification. In Proc. 5th Inter-
national Workshop on Computational Semantics, Tilburg. ITK, Tilburg
University.

Reyle, Uwe, 1993. Dealing with ambiguities by underspecification: construc-
tion, representation and deduction. Journal of Semantics 10: 123-179.

Schwitter, Rolf, Diego Molld & Michael Hess, 1999. Extrans — an-
swer extraction from technical documents by minimal logical forms
and selective highlighting. In Proc. Third International Tbilisi Sym-
posium on Language, Logic and Computation, Batumi, Georgia.
http://www.ifi.unizh.ch/cl/.

Sleator, Daniel D. & Davy Temperley, 1993. Parsing English with a link
grammar. In Proc. Third International Workshop on Parsing Tech-
nologies, pp.277-292.

17



