
Ontologically Promiscuous Flat Logical Forms forNLPDiego Moll�aMacquarie UniversitySydneyDiego.Molla-Aliod@mq.edu.auAbstractIn this paper a
at notation for logical forms is described. Thisnotation allows the logical forms to be easy to build, easy to workwith, and able to deal with ambiguity by underspeci�cation. The mainmechanism to convert a logical form into the corresponding
at form isthe rei�cation of all the predicates and operators used in an otherwisenested expression. The resulting
at logical forms are convenient fornatural language processing applications that require the use of par-tial logical forms. In particular, it is shown how partial logical forms(encoded in
at notation) can be used to perform answer extraction.Keywords:
at logical form, rei�cation, underspeci�cation, par-tial logical form, answer extractionIn this paper we explore a notation for logical forms that can be usefulfor several Natural Language Processing (NLP) applications. The main goalis to provide a notation that is easy to build, easy to work with, and ableto deal with ambiguity by underspeci�cation. In Section 1 we introducethe notation. In Section 2 we mention some of the most important featuresof this notation and how the resulting logical forms can be used for NLP.Finally, in Section 3 we explain the use of this notation for a particular NLPapplication, Answer Extraction.
1

1 The notation1.1 The basic ideaThe basic idea is to do like computer programmers do when the program-ming language only allows a function to return the result in one of thearguments: use one of the arguments to collect the result. For example,the instruction (1a) can be substituted by the sequence of instructions (1b),where the functions factorial and exp are changed to make them returnthe value in their �rst argument:(1) a. A := (factorial(25)-exp(12)) * 2;b. factorial(X,25);exp(Y,12);A := (X-Y) * 2;If the programmer wants to rede�ne subtraction and multiplication,then (1b) could even be translated into:(2) factorial(X,25);exp(Y,12);subtract(P,X,Y);multiply(A,P,2);The resulting expression (2) is a completely
at form that produces thesame result as the nested form (1a).1.2 Ontological promiscuityA method to convert a (nested) logical form into a
at form is to reify allthe partial expressions that appear in the logical form, and use the rei�edentities to refer to these partial expressions. In our analogy with computingprograms, these rei�ed entities are the \results" of the partial expressions.Let us start with a preliminary example:(3) a. John ate an apple quicklyb. 9a(quick(eat(j; a)) ^ apple(a))c. 9a; e1(eat(e1; j; a) ^ quick(e1) ^ apple(a))2

The logical form (3c) is a
at form of (3b). To obtain it, we have rei�edthe eating event and by so doing the predicate quick introduced by theadverbial quickly does not need to take the predicate eat as its argument.Instead, the argument is the rei�ed entity e1 that represents the eating event.Reifying events is a common practice in Davidsonian approaches (Davidson1967; Parsons 1985),1 but we go further and reify all the predicates. This isHobbs' ontological promiscuity (Hobbs 1985) carried to its extremes. The
at form of (3b) becomes:(5) 9a; e1; e2; e3(eat(e1; j; a) ^ quick(e2; e1) ^ apple(e3; a))This is a consequence of Hobbs' ontological promiscuity: all the mor-phemes in the sentence are subject to rei�cation. By using ontologicalpromiscuity, one can easily express sentences with adverb modi�ers (or anyother type of modi�ers):(6) a. John ate a pale green apple very quicklyb. 9a(very(quick(eat(j; a))) ^ apple(a) ^ pale(green(a)))c. 9a; e1; e2; e3; e4; e5; e6(eat(e1; j; a) ^ quick(e2; e1) ^ very(e6; e2) ^apple(e3; a) ^ green(e4; a) ^ pale(e5; e4))The relation between ontological promiscuity and the programming tech-nique discussed in the introduction can be seen quite clearly by comparingthe original nested form (6b) and the
at form (6c) with (1a) and (2).1.3 ExistenceA potential complication of the proposed notation is the scope of existentialquanti�cation. Since now all the variables have existential quanti�cationwith the widest possible scope, what happens with entities that should ap-pear in a narrower scope, as is the case with opaque verbs, negation, orimplication?1It may be argued that actually Davidson's events and our rei�cation system belongto di�erent domains. In fact, we may need to use both the event as a new independententity (s below) and the predicate rei�cation (e1 below):(4) a. John sleeps deeply9e1; s(sleep(e1; s ; j); deep(s); john(j))b. John probably sleeps9e1; s(sleep(e1 ; s; j); probable(e1); john(j))This possibility, however, is not considered further in this paper.3

Hobbs himself addresses this complication by making the universe ofquanti�cation an imaginary universe that contains everything that one canthink of. This is what Hobbs calls the \Platonic universe". Those entitiesthat also exist in the universe of discourse are speci�cally marked by a newpredicate, say, Rexists. Thus, if an entity is the argument of Rexists,then it exists in the universe of discourse. If an entity is not the argumentof Rexists, then we do not know if it exists in such universe or not. Thiscan be seen in the example:(7) John wants to
y9e1; e2(want(e1; j; e2) ^ fly(e2; j) ^ Rexists(e1))The existence of e1 (want) is asserted, but the existence of e2 (fly) isnot asserted. Therefore, it is not known whether e2 exists in the universe ofdiscourse. One needs to use extra axioms (based on our general knowledgeof wanting and
ying) that allow us to infer that, say, e2 does not exist inthe universe of discourse. The logical form (7) is therefore underspeci�edwith respect to the existence of e2 in the universe of discourse.Hobbs relates a non-rei�ed predicate with its corresponding rei�ed pred-icate (marked with 0 in his notation) by means of the axiom:Axiom 18x1; � � � ; xn[p(x1; � � � ; xn) � 9e(Rexists(e) ^ p0(e; x1; � � � ; xn))]This axiom states that an unprimed (non-rei�ed) predicate is equivalentto its primed (rei�ed) predicate plus the assertion that the rei�ed entityexists in the universe of discourse. Thus, any unprimed predicate can alwaysbe expressed by means of a primed predicate plus Rexists. However, aprimed predicate cannot necessarily be expressed by means of an unprimedpredicate, since a primed predicate by itself does not ensure that the rei�edevent exists in the universe of discourse.Logical operators would be liable to rei�cation just in the same wayas predicates. A possible (simpli�ed) expression in Hobbs' notation of asentence with negation and implication would be:(8) if John is a bachelor, then he is not married9e1; e2; e3; e4(bachelor(e1; j) ^ married(e2; j) ^ not(e3; e2)^ if(e4; e1; e3) ^ Rexists(e4))This notation is clearly di�erent from a traditional non-
at expressionthat uses logical operators: 4

(9) if John is a bachelor, then he is not marriedbachelor(j) �! :married(j)The question is, if we assume (as Hobbs does) that the logical opera-tors �! and : are equivalent to if and not, can Axiom 1 make (8) and (9)equivalent? Note that Axiom 1 would introduce existential quanti�cationinside the components of the implication:(10) if John is a bachelor, then he is not married(9e1(bachelor(e1; j) ^ Rexists(e1))) �!:(9e2(married(e2; j) ^ Rexists(e2)))Hobbs (Hobbs 2000) proposes the use of speci�c axioms that allow infer-ences with logical operators. However, these axioms become very di�cult touse when we have a combination of operators. The case of embedded exis-tential quanti�ers becomes especially di�cult, and therefore the equivalencebetween (8) and (9) is not clear.One may argue (as Hobbs might) that (9) is not an adequate logicalform of the example sentence, and therefore (8) and (9) ought to be di�er-ent. However, we would like to keep the possibility of (9) or similar beingadequate. Since Hobbs' combination of Rexists and Axiom 1 does not al-low us to establish the relation between a nested form and its
at form,we do not make use of Axiom 1 in our notation. To avoid confusion anddistinguish our notation from Hobbs', to express existence in the universeof discourse we will use True instead of Rexists. The use of the name Truealso allows a better parallelism with False, as we will see later.What we propose is this: Reify all the predicates and logical operators inthe logical expression, and add True(e) for the entity that results of reifyingthe top level operator. To ease readability, the expressions in the rest of thispaper will not show the existential quanti�cation over the rei�ed entities(it is always going to have the widest possible scope), and the predicatesare conjoined by a comma, instead of ^. Thus, our proposed representationof (9) becomes:(11) if John is a bachelor, then he is not marriedbachelor(e1; j), married(e2; j), :(e3; e2), �! (e4; e1; e3), True(e4)2 Working with the notationThe notation introduced in this paper has several properties that make itvery interesting for some NLP applications. In this part we will brie
y5

mention some of these properties.2.1 Partial logical formsAn important feature of our
at forms is that it is possible to use them toexpress partial information. Consider, for example:(12) John may have wanted to eat all the apples in the basketThis sentence contains, among others, a modal verb, a complex tense,an embedded clause, a quanti�er, and a plural. An NLP system may havedi�culty to provide a correct logical form for the sentence. Let us assumethat there is an agreement about the logical form of (12), say:(13) all(x; apple(x) ^ in(x; b)�!may(perfect(want(j; eat(j; x)))))It is fairly easy to �nd the corresponding
at form:(14) True(e1), all(e1; x; e2), �! (e2; e3; e4), ^(e3; e5; e6),apple(e5; x), in(e6; x; b), may(e4; e7), perfect(e7; e8),want(e8; j; e9), eat(e9; j; x)Given (14), it is trivial to produce a partial representation of it, oneneed just remove some of the predicates. More importantly, the parser ofa NLP system may fail to provide a full parse of (12) because it ignores,say, quanti�cation, modality, complex tenses, and PP modi�ers. But theoutput given by the parser can still be used to form a partial logical form.For example, the following could be generated from the information of thishypothetical parser:(15) eat(e9; j; x), apple(e5; x), in(e6; a1; b)The new variable a1 is introduced to express that the attachment of thePP is not resolved (as it could be either x or e9). It is trivial to see that (15)provides partial information with respect to the complete logical form (14).We would say that (15) is a partial logical form.
6

2.2 InferencesThe predicate True becomes very useful for systems that need to makeinferences. Every partial expression that can be inferred to be true can bemarked by adding True over its rei�ed entity. Parallel to this, every partialexpression that can be inferred to be false can also be marked by a newpredicate, say, False. This information can be used in subsequent inferencesteps.The following equivalence rules can be used for inferences over some ofthe logical operators:9e1(^(e1; e2; e3) ^ True(e1)) � True(e2) ^ True(e3)9e1(^(e1; e2; e3) ^ False(e1)) � False(e2) _ False(e3)9e1(_(e1; e2; e3) ^ True(e1)) � True(e2) _ True(e3)9e1(_(e1; e2; e3) ^ False(e1)) � False(e2) ^ False(e3)9e1(�! (e1; e2; e3) ^ True(e1)) � True(e2) �! True(e3)9e1(�! (e1; e2; e3) ^ False(e1)) � True(e2) ^ False(e3)9e1(:(e1; e2) ^ True(e1)) � False(e2)9e1(:(e1; e2) ^ False(e1)) � True(e2)These axioms do not encode inferences about quanti�cation,2 but theysu�ce for simple inferences.Note that we are not trying to prove the logical equivalence betweena
at form such as (14) and the nested form (13). We are instead tryingto construct a notation that keeps as many of the inferences as possible.Therefore, we do not need axioms like Hobbs' Axiom 1.2.3 Ambiguity by underspeci�cationThe rei�ed
at forms introduced in this paper have some resemblances withapproaches that treat ambiguity by means of underspeci�cation (Reyle 1993;Pinkal 1999; Copestake et al. 1997). Like in these approaches, partial ex-pressions have identi�ers that can be used for reference. We could createdominance graphs by adding dominance predicates over rei�ed entities in thesame way as these approaches use dominance predicates over meta-variables.2This is still a topic for further research. One could try to use Hobbs' quanti�cationmechanism (Hobbs 1983; Hobbs 1996), for example.7

As a way of illustration, the following expression could be used to accountfor scopal underspeci�cation:(16) every man dates some womanman(e1; x) , woman(e2; y), date(e3; x; y), every(e4; x; e9),�! (e9; e1; e5), some(e6; y; e10), ^(e10; e2; e7), dominates(e5; e3),dominates(e7; e3), True(e8), dominates(e8; e4), dominates(e8; e6)Here, both quanti�ers some e6 and every e4 are dominated by e8 (whichis true), and indirectly they dominate the dating event e3 via e5 and e7,respectively.3 Application: Answer ExtractionThe most obvious application of this notation is an NLP system that can takeadvantage of partial logical forms of natural language sentences. Answerextraction (AE) systems are examples of such applications. In this sectionwe brie
y introduce AE and how it can take advantage of our notation.Most of the work in this part is a natural extension of the work done inExtrAns, an existing AE system (Moll�a et al. 1998; Schwitter et al. 1999).3.1 Answer extractionAnswer extraction systems try to �nd the smallest parts of contiguous textthat individually provide an answer to an arbitrary question phrased in anatural language (such as English). Answer extraction is therefore a typeof information retrieval (IR), but AE systems are not typical IR systems.Typical IR systems provide pointers to documents that are relevant to thequery. These systems are useful for situations where the user needs to getall the information related to the query. AE systems, on the other hand,are ideal for situations where the user needs to �nd a speci�c answer toa particular question under severe time constraints. Typical applicationsof AE systems include interfaces to software manuals, help-desk systems inlarge organisations, and public enquiry systems available over the Internet.Given the current information overload, the need for this type of applicationsis becoming increasingly evident.AE systems share many features with question answering (QA) systems.A full-
edged QA system, however, needs to tackle problems such as worldknowledge, inferences, and language generation. It is still a long way untilthe problems of encoding and using world knowledge and inferences are8

solved, and language generation is unfortunately an area where not muchresearch is being done. AE is far less an ambitious task than QA, but a taskthat can be used for practical purposes and, more importantly, that can beused now.3.2 (Web)ExtrAnsExtrAns is an application that performs AE over UNIX manpages (Moll�aet al. 1998; Schwitter et al. 1999). There is a web-based version that usesabout 500 manpages for the AE task.3 A new project, WebExtrAns, hasstarted in November 1999 that will perform AE over the complete mainte-nance manual of the Airbus 320. The size of this manual (the size of theoriginal SGML manual is over 100Mb) will be conclusive in determining thescalability of such a system.Both ExtrAns and WebExtrAns share the same architecture. In ano�-line stage, the documents are processed by a sequence of modules thatperform several types of linguistic analysis. Some of these modules are adap-tations of publicly available software. For example, full-parsing is done bythe Link Grammar (Sleator & Temperley 1993). All the word forms arenormalised by converting them to the root forms, by using a lemmatiserthat is provided together with the GATE tools (Gaizauskas et al. 1996).Disambiguation is done in several stages (Moll�a & Hess 2000), including acorpus-based PP disambiguator (Brill & Resnik 1994). Finally, anaphoraresolution is done by adapting an algorithm devised for the Slot Gram-mar (Lappin & Leass 1994). Other modules had to be implemented fromscratch. One of them is the preprocessor and tokeniser that splits the textinto sentences and sends them to the parser. Another module is the log-ical form generator, which constructs the logical forms that are stored indatabases for the AE task (Moll�a et al. forthcoming).In an on-line stage, the user questions are processed with the same lin-guistic modules and the logical forms of the questions are produced. Theanswers are found by applying a proof algorithm of the logical forms of thequestions over those of the document sentences. The retrieved sentencesare displayed to the user, with the words that directly answer the questionhighlighted according to their contribution to the answer.A central point of (Web)ExtrAns is the format of the logical forms used,and how they can be constructed and used for the AE task. Whereas thetechnical details of the actual logical forms used in ExtrAns have been ex-3http://www.ifi.unizh.ch/cl/extrans/9

plained elsewhere (Moll�a et al. 1998; Moll�a et al. forthcoming; Schwitteret al. 1999), the following sections explain how the notation introduced inthis paper (which is more general than the notation actually used in the(Web)ExtrAns projects) can be used for AE.3.3 Logical forms for answer extractionThe most important feature of our notation for AE is the possibility ofexpressing partial logical forms. Even if the parser provides a thoroughsyntactic analysis of the sentences (as the parser used for ExtrAns does),the resulting syntactic structures may turn out to be too di�cult to analyseby the logical form generator. And even if they can be analysed, there isno need for such a �ne detail in the logical form. This is so because the AEsystem will return acceptable results even if the sentences retrieved do notgive an exact answer to the question. In fact, sometimes a near-miss maybe informative. Below is a question and some possible answers:(17) which command copies �les?(18) a. cp copies �lesb. cp copies the contents of �lename1 onto �lename2c. if the option -r is speci�ed, cp recursively copies directory1 and allthe �les and directories within itd. cp refuses to copy a �le onto itselfThe best answer to (17) is undeniably (18a). But (18b) is also an accept-able answer, although it is saying that cp copies the contents of a speci�c�le. The next sentence, (18c), also contributes to the answer to the question.One could even argue that (18d) is also an informative sentence, even whenit explicitly says that cp does not copy certain types of �les under certainconditions.An important piece of information that is retained in all the answersabove is the verb-argument structure of the sentences retrieved. All of theanswers are about commands copying (or not copying) �les or parts of them.The following logical forms are partial logical forms of the answers:(18') a. True(e2), cp(e1; x), copy(e2; x; y), file(e3; y)10

b. True(e2), cp(e1; x), copy(e2; x; z), content(e4; z; y),file(e3; y), onto(e5; e2; w), file(e6; w)c. True(e4), if(e4; e5; e6), � � �, cp(e1; x), copy(e2; x; y),file(e3; y), � � �d. True(e4), cp(e1; x), refuse(e4; x; e6), copy(e2; x; y),file(e3; y), onto(e5; e2; y), and(e6; e2; e3; e5)These logical forms ignore much of the information given by the sentence.For example, tense and aspect, quanti�cation (all, etc), modality, plurals, areall ignored. Still, the resulting partial logical forms are not trivial to produce,since one needs to solve anaphoric references and �nd the arguments ofverbs in embedded clauses. Producing these partial logical forms is feasiblewith the current technology, as ExtrAns has demonstrated (Moll�a et al.forthcoming).And more importantly, these logical forms can be used to decide if thesentence is an answer to the question. This is the topic of the next section.3.4 Finding an answer to the questionFinding an answer to a question in an AE system becomes relatively easyif one uses the
at logical forms described in this paper. We can use thequestion to produce the partial information that the answer must have. Forexample, (17) produces the following partial logical form:(17') command(e1; x), copy(e2; x; y), file(e3; y)Now, provided that we add an axiom that states that cp is a command,the predicates in (17') are part of the logical forms of all the answers (18).Note that we do not add True(e2) to (17') so that we can �nd embeddedclauses, such as in (18c) and (18d).4An answer to a speci�c question is such that it follows the followingde�nition:De�nition 1 Let PLFQ be the partial logical form of a question Q, and letPLFA be the partial logical form of a sentence A. Then, A answers Q i�:PLFA �! PLFQ4An inference rule is also needed to retrieve (18b), namely, that the contents of anobject is identical to the object itself. In (18b) this means that z = y. This and otherinference rules (such as that all UNIX commands including cp are commands) have beenadded to ExtrAns. 11

In other words, a sentence A answers a question Q if the logical form ofA is more restricted than the logical form of Q. The partial logical form ofthe question is an underspeci�ed version of the partial logical form of theanswer. If we use the notation introduced in this paper, the test cannot beeasier:De�nition 2 Let PLFQ be the partial logical form of a question Q, and letPLFA be the partial logical form of a sentence A. Then, A answers Q ifPLFA contains all the predicates of PLFQ.Using De�nition 2, di�erent types of questions �nd di�erent types ofsentences. In particular, this mechanism returns acceptable answers for thefollowing types of questions:Wh-. The question which command copies �les? �nds sentences that ex-plicitly say that a speci�c command copies �les, such as:(19) a. cp copies the contents of �lename1 onto �lename2b. rcp copies �les between machinesc. sed copies the �lenames to the standard output, edited accord-ing to a script of commandsd. cp refuses to copy a �le onto itselfYes/no. The question does cp copy �les? �nds sentences that state thatcp copies �les:(20) a. cp copies the contents of �lename1 onto �lename2b. cp refuses to copy a �le onto itselfc. If directory2 does not exist, cp creates it and duplicates5 the�les and subdirectories of directory1 within itDe�nition 2 can even work for some types of how. . . ? questions. Forexample, the question how do I remove a �le? �nds all the sentences thatspecify that �les are removed (if we assume that \I" is treated roughly as\anybody/anything"):(21) a. rm removes one or more �les5To retrieve (20c) and (21b) we would also need to keep a thesaurus that lists synonymyrelations, such as between copy and duplicate. ExtrAns, for example, keeps a simplethesaurus with some of the most frequent synonyms in the world of manpages.12

b. If a single �le is compiled and loaded all at once, the intermediate�le is deleted5c. If pack is successful, �lename will be removedOther types of questions, such as why . . . ?, or more complex questionssuch as what is the best . . . ? or how many . . . ? would require less triv-ial procedures to �nd the answers because these questions do not directlydetermine adequate underspeci�ed versions of partial logical forms of theanswers.If there are no sentences in the documents that satisfy the implication,it is still possible to �nd the best answers by selecting those sentences whosepartial logical forms contain the highest overlap with the partial logical formof the question. The process would be similar to how one can determine thesimilarity between two sentences, which is explained in the next section.3.5 Evaluating the system: a proposalIt is fairly easy to use our
at logical forms to compare the semantic contentsof two sentences:De�nition 3 A sentence A with partial logical form PLFA is semanticallyequivalent to another sentence B with partial logical form PLFB if PLFAand PLFB unify.For example, the two following sentences are semantically equivalent:(22) a. cp copies the �lesTrue(e2), cp(e1; x), copy(e2; x; y), file(e3; y)b. the �les are copied by cpTrue(e2), file(e1; y), copy(e2; x; y), cp(e3; x)The logical forms unify because e1 in (22a) maps e3 in (22b), and e3in (22a) maps e1 in (22b).The true usefulness of our notation is the comparison of sentences thatdo not have the same logical forms. Two sentences that are very similarin meaning will have a high overlap of predicates. It is therefore easy tocompute the semantic closeness of two sentences by simply computing thebest way to unify their logical forms. Given two sentences, A and B, fourindices can be computed: 13

OA: The maximum number of predicates in A that can unify at once withpredicates in B.OB: The maximum number of predicates in B that can unify at once withpredicates in A.DA: The number of predicates that remain in A.DB: The number of predicates that remain in B.For example, let us consider the following sentences in the context of asports report:(23) a. A: Madrid defeated Barcelona in the last matchMadrid(e1; x), defeat(e2; x; y) , Barcelona(e3; y),in(e4; e2; e5), last(e5; z), match(e6; z), True(e2)b. B: Madrid was defeated by Barcelona in the last matchMadrid(e1; x), defeat(e2; y; x) , Barcelona(e3; y),in(e4; e2; e5), last(e5; z), match(e6; z), True(e2)The two sentences generate exactly the same predicates (7 predicates),but the arguments in defeat (boxed) are di�erent. For that reason, thelogical forms do not unify. The values of our four indices are:(24) OA = 6;OB = 6;DA = 1;DB = 1These four indices can be combined to form a unique index. For example,we can use a straightforward formula such as:(25) I = OAOA+DA+ OBOB+DB2 � 100Formula (25) would give a value I = 86% for the indices (24).OA may be di�erent from OB if one of the sentences contains redundantinformation. For example:(26) a. A: the cp command copies �lescp(e1; x), command(e2; x), copy(e3; x; y), file(e4; y), True(e3)b. B: the cp command is a command that copies �lescp(e1; x), command(e2; x), command(e5; z), be(e6; x; z), copy(e3; z; y),file(e4; y), True(e6) 14

If we assume that be(e; x; z) implies x = z, then both command(e2; x)and command(e5; z) in (26b) unify with command(e2; x) in (26a), giving thefollowing indices:(27) a. OA = 4;OB = 5;DA = 1;DB = 2b. I = 76%It is of course possible to assign di�erent weights to di�erent types ofpredicates. For example, the verb of a main sentence could produce a pred-icate with higher weight than the predicates of sentence complements. Thisway we may obtain more intuitive values for the indices.Sentence comparison can be used for an evaluation of the performanceof QA systems in general. For example, it would be possible to compile a setof questions for the evaluation. The evaluation team would write the bestanswers to each question as complete sentences, very much like a learnerof a new language is supposed to answer questions: what is your name? {my name is Peter, etc. These answers would be stored as \gold standard"answers. The results given by the system can now be compared with the\gold standard" by using the indices explained in this section.The \gold standard" answers can also be used to evaluate the retrievalperformance of AE systems (such as ExtrAns). The most di�cult problemin evaluating AE systems is to �nd the set of all the answers available in thedocuments. Apart from the obvious problem of searching the documents to�nd the candidates, sometimes it is di�cult to decide if a particular sentenceactually answers a particular question, and the decision may depend on theperson that does the judgement, or even on the person's mood at thatparticular moment. Instead of using a human, the \gold standard" answerscan be used to help �nding the best answers in the documents. Thosesentences in the documents that are close enough to the \gold standard" areselected. The selection can now be revised manually by an expert (which, aswe have just said, may be problematic, but at least the expert has to look atless data), or they may be taken as they are. We believe that the evaluationwith these selected sentences would be fairly acceptable, at a fraction of thecost of a full evaluation by a human.ReferencesBrill, Eric & Philip Resnik, 1994. A rule-based approach to prepositionalphrase attachment disambiguation. In Proc. COLING '94 , volume 2,pp.998{1004, Kyoto, Japan. 15

Copestake, Ann, Dan Flickinger & Ivan A. Sag, 1997. Minimal recursion se-mantics: an introduction. Technical report, CSLI, Stanford University,Stanford, CA.Davidson, Donald, 1967. The logical form of action sentences. In NicholasRescher (ed.) The Logic of Decision and Action, pp.81{120. Univ. ofPittsburgh Press.Gaizauskas, Robert, Hamish Cunningham, Yorick Wilks, Peter Rodgers &Kevin Humphreys, 1996. GATE: an environment to support researchand development in natural language engineering. In Proceedings of the8th IEEE International Conference on Tools with Arti�cial Intelligence,Toulouse, France.Hobbs, Jerry R., 1983. An improper treatment of quanti�cation in ordinaryEnglish. In Proc. ACL'83 , pp.57{63, Cambridge, MA.||, 1985. Ontological promiscuity. In Proc. ACL'85 , pp.61{69. Universityof Chicago, Association for Computational Linguistics.||, 1996. Monotone decreasing quanti�ers in a scope-free logical form. InKees van Deemter & Stanley Peters (eds.) Semantic Ambiguity and Un-derspeci�cation, chapter 3, pp.55{76. Stanford, CA: CSLI Publications.||, 2000. The logical notation: Ontological promiscuity.Lappin, Shalom & Herbert J. Leass, 1994. An algorithm for pronominalanaphora resolution. Computational Linguistics 20(4): 535{561.Moll�a, Diego, Jawad Berri & Michael Hess, 1998. A real world implementa-tion of answer extraction. In Proc. of the 9th International Conferenceand Workshop on Database and Expert Systems. Workshop \NaturalLanguage and Information Systems" (NLIS'98), pp.143{148, Vienna.|| &Michael Hess, 2000. Dealing with ambiguities in an answer extractionsystem. In Workshop on Representation and Treatment of SyntacticAmbiguity in Natural Language Processing , pp.21{24, Paris. ATALA.||, Gerold Schneider, Rolf Schwitter & Michael Hess, forthcoming. Answerextraction using a dependency grammar in ExtrAns. T.A.L. 41(1):127{156.Parsons, Terence, 1985. Underlying events in the logical analysis of English.In Ernest Lepore & Brian P. McLaughlin (eds.) Actions and Events:16

Perspectives on the philosophy of Donald Davidson, pp.235{267. Ox-ford: Blackwell.Pinkal, Manfred, 1999. On semantic underspeci�cation. In Proc. 5th Inter-national Workshop on Computational Semantics, Tilburg. ITK, TilburgUniversity.Reyle, Uwe, 1993. Dealing with ambiguities by underspeci�cation: construc-tion, representation and deduction. Journal of Semantics 10: 123{179.Schwitter, Rolf, Diego Moll�a & Michael Hess, 1999. Extrans | an-swer extraction from technical documents by minimal logical formsand selective highlighting. In Proc. Third International Tbilisi Sym-posium on Language, Logic and Computation, Batumi, Georgia.http://www.ifi.unizh.ch/cl/.Sleator, Daniel D. & Davy Temperley, 1993. Parsing English with a linkgrammar. In Proc. Third International Workshop on Parsing Tech-nologies, pp.277{292.

17

