
T.A.L., vol. 41, no 2, pp. 1–25

EXTRANS, AN ANSWER EXTRACTION SYSTEM

Diego MOLLÁ Rolf SCHWITTER Michael HESS

Rachel FOURNIER *

Résumé - Abstract

Les systèmes d’Extraction de Réponses (ER) récupèrent dans des documents
des expressions qui répondent directement à des questions du langage cou-
rant. L’ER pour des manuels techniques exige un haut niveau de rappel et
de précision ; pourtant, ce sont de petites unités de texte qui doivent être ré-
cupérées. C’est pourquoi il est important d’effectuer une analyse linguistique
détaillée. Nous présentons ici ExtrAns, un système d’ER pour des manuels
Unix qui utilise une analyse syntaxique complète, une désambiguïsation par-
tielle et un module de résolution d’anaphores pour générer les formes logiques
minimales correspondant aux documents et à la requête. La procédure de re-
cherche se sert d’un algorithme de démonstration de la requête sur la repré-
sentation en clauses de Horn des formes logiques minimales. Les ambiguïtés
non résolues sont traitées à l’aide d’une mise en évidence graduelle.

Answer Extraction (AE) systems retrieve phrases in textual documents that dir-
ectly answer natural language questions. AE over technical manuals requires
very high recall and precision, and yet small text units must be retrieved. It is
therefore important to perform linguistic analysis in detail. We present ExtrAns,
an AE system over Unix manuals that uses full parsing, partial disambiguation,
and anaphora resolution to generate the minimal logical forms of the docu-
ments and the query. The search procedure uses a proof algorithm of the user
query over the Horn clause representation of the minimal logical forms. Re-
maining ambiguities in the retrieved sentences are dealt with by graded high-
lighting.

Mots Clefs - Keywords

Composants linguistiques en RI, extraction de réponses, formes logiques mi-
nimales.

Linguistic components in IR, answer extraction, minimal logical forms.

*Computational Linguistics Group, University of Zurich. E-mail: {molla, schwitt, hess,
fournier}@ifi.unizh.ch.

c� ATALA 1

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

INTRODUCTION

The need for systems capable of retrieving precise information from tex-
tual documents in an efficient way is becoming more obvious by the day. The
fact that the known methods, such as document retrieval and information ex-
traction, are increasingly inadequate or insufficiently powerful in the task of loc-
alising very precise information, has been recognised by the TREC programme
committee with the formation of the Question Answering Track (Voorhees E. M.
& Harman D. 1999). Since fully-fledged text-based question answering is still
too ambitious for practical purposes, realistic compromise solutions are clearly
needed. We suggest answer extraction as one such solution and introduce
ExtrAns, an implementation of an answer extraction system1.

Document Retrieval (DR) techniques are the prototypical form of inform-
ation retrieval methods, to the point that textbooks about information retrieval
typically cover almost exclusively DR (van Rijsbergen C. 1979; Salton G. &
McGill M. J. 1983). They have the advantage of allowing arbitrary queries
over very large document collections (many gigabytes in size) covering arbit-
rary domains. One of the disadvantages of DR is the very fact that such sys-
tems retrieve entire documents, which is unhelpful if documents are dozens,
or hundreds, of pages long. Typically, DR systems (be they based on Boolean,
vector space, or probabilistic principles) are keyword based, i.e. they take into
consideration only the content words of documents and queries, discarding
all the morphological and syntactic information including all function words.
This is why these systems cannot distinguish the command copies files from
the command files copies (lost ordering information), or export from Germany
to the UK from export to Germany from the UK (lost function word informa-
tion). True, some DR systems can use phrasal search terms (such as com-
puter design), to be found as a whole in the documents, but then a number
of relevant documents (such as those containing design of computers) will no
longer be retrieved. Statistical methods are used occasionally to find inherent
relations between words, such as synonymy (Deerwester S. et al. 1990), or
to determine simple dependencies between the words in a sentence (Strza-
lkowski T. et al. 1997). Some DR systems use partial linguistic information and
even ontologies to create more accurate indexing terms (Woods W. A. 1997;
Strzalkowski T. et al. 1998). However, to the best of our knowledge, no DR
system produces full syntactic parses of either documents or queries. In fact,
the common belief holds that it does not pay off to use deep linguistic analysis
in DR (Lewis D. D. & Sparck Jones K. 1996).

Information Extraction (IE) techniques are similar to DR techniques in
that they, too, are suitable for processing text collections of basically unlimited
size (normally, messages in a stream) covering a potentially wide range of
topics. However, IE systems differ from DR systems in that they identify those
messages in a stream that fall into a (usually very small) number of specific

1This research is funded by the Swiss National Science Foundation, project No. 12–
53704.98.

2

EXTRANS, AN ANSWER EXTRACTION SYSTEM

topics, and extract from those a very limited amount of highly specific data.
This information is placed into a frame-like database record with a fixed number
of predefined role slots, with one type of frame for each type of report. Such
systems typically use some kind of very shallow syntactic analysis because
of run-time requirements (Appelt D. E. et al. 1993; Grisham R. & Sundheim
B. 1996; Chinchor N. A. 1998). Clearly, the kind of information extracted by
these systems is much more precise and specific than what is delivered by DR
systems. On the other hand, IE systems do not allow for arbitrary questions.

Text-based Question Answering (QA) systems would be the ideal solution
to the problem of finding precise and localised information. QA systems read
texts, assimilate their content into knowledge bases, and generate answers to
arbitrary questions phrased in unrestricted natural language. Two well-known
examples of QA systems are Unix Consultant (UC), which performs QA over
a (hand-crafted) data base of facts about Unix (Wilensky R. et al. 1994), and
LILOG (Herzog O. & Rollinger C.-R. 1991), which performs QA over a small
number of travel guide texts in German. QA systems must integrate very deep
syntactic and semantic analysis of both documents and questions, search in
knowledge bases, inference over textual and world knowledge, and generation
of answers in natural language. Some systems (such as UC) even include a
user modelling component that keeps track of previous interactions with the
user and makes sure that the overall dialogue between the user and the ma-
chine sounds natural. Each of these tasks is in itself very difficult to implement
with the current state of the art in technology. As a result, all past and existing
fully-fledged QA systems work only over very narrow domains, for extremely
small volumes of text, and with very high development costs. One may attempt
to produce a reduced version of a QA system, for example, by using a very
simple knowledge representation (Katz B. 1997). To our knowledge, however,
it has not been possible to use such systems with real-world text in practical
applications.

Answer Extraction (AE) lies between text-based QA on the one hand, and
DR and IE on the other. AE systems allow questions in arbitrarily phrased, un-
restricted, natural language, over a collection of texts in equally unrestricted
natural language, but they merely pinpoint the exact phrases in the documents
of the collection which contain the explicit answers to the specific question. AE
systems do not try to perform inferences over the content of the documents
(or world knowledge), and they do not generate answers either. In this respect
they are much more modest than fully-fledged QA systems. It is interesting to
see that the systems which participated in the QA track of the TREC-8 confer-
ence (Voorhees E. M. & Harman D. 1999) did not do QA in the classical sense
but AE as defined in this paper. Other attempts to use DR techniques for AE
are under way (Woods W. A. 1997). There are also attempts to produce AE
over FAQs (Burke R. D. et al. 1997; Winiwarter W. 1999) by trying to match the
user’s query with an existing query in a FAQ, and returning the answer given
in the FAQ.

3

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

Tokeniser

Link Grammar

Pruner

Lemmatiser

Disambiguator

Anaphora

Knowledge Base

NL Query

UNIX Manpages

Display

AE

Minimal
Logical Forms

Horn Clause
Logic

Information flow
Resources

Figure 1: The architecture of ExtrAns

Examples for possible applications of AE methods are interfaces to ma-
chine-readable technical manuals or on-line help systems for complex soft-
ware. In these applications very high retrieval precision on the level of indi-
vidual phrases is mandatory (queries in these domains tend to be very spe-
cific), and high recall is equally vital (technical texts typically explain things
only once). High recall and precision are best achieved if we determine part
of the meaning of sentences (both of questions and texts) and locate relevant
phrases in the documents on the basis of their meaning. This is computation-
ally expensive but we can approach the final goal gradually. We can begin with
a fairly simple yet useful system for technical manuals, since these are moder-
ately sized document collections and they cover a very limited domain, and we
can then refine the system in a stepwise manner to cover wider domains and
larger volumes of data — for example, a recent follow-up of ExtrAns is Web-
ExtrAns, an AE system over XML technical manuals that is using, for the time
being, the maintenance manual of a commercial aircraft. Apart from extending
the coverage, we may also attempt to gradually increase the depth of analysis,
and ultimately we might even arrive at a fully-fledged text-based QA system.
The main goal of this paper is to show that the current state of the art in NLP
technologies makes it possible to implement useful AE systems over technical
manuals.

1. THE EXTRANS SYSTEM

1.1. Overview

ExtrAns finds those exact phrases in a collection of technical documents
that directly answer a user query. Figure 1 gives an overview of ExtrAns’ gen-
eral architecture. The current version of ExtrAns runs over 500 unedited Unix

4

EXTRANS, AN ANSWER EXTRACTION SYSTEM

manual pages (manpages). These highly technical documents are first pre-
processed by the tokeniser of ExtrAns that exploits all formatting information
and domain-specific typographic conventions. For the syntactic analysis of
document sentences and user queries, ExtrAns uses “Link Grammar ” (LG),
which consists of a very fast parser and a grammar of English written in the
spirit of dependency grammars. The LG parser outputs all the alternative de-
pendency structures for a sentence, showing the words that are linked and
the types of the links. From the output of LG, obviously wrong structures are
filtered out by a pruner that relies on a set of hand-crafted rules for the Unix
domain. Since LG does not carry out any morphological analysis, ExtrAns
uses a third-party lemmatiser that generates the lemmas of the inflected word
forms (Humphreys K. et al. 1996). In a next step, different forms of attachment
ambiguities are resolved by a disambiguator trained with data from the man-
pages. Following that, pronominal anaphors are resolved (on purely syntactic
information, in contrast to the disambiguator that uses statistical knowledge).
From these (partially disambiguated) dependency structures ExtrAns derives
one or more Minimal Logical Forms (MLFs) as semantic representation for
the core meaning of each sentence. MLFs have been designed to keep the
balance between expressivity and processability for the AE task at hand. For
processing reasons, MLFs are translated into Horn clause logic and asserted
into the knowledge base. Unlike sentences in documents, which are processed
off-line, MLFs of user queries are computed on-line and are proved by refuta-
tion over the documents. ExtrAns’ AE procedure always finds all proofs for a
user query and assumes that the more often a part of an extracted sentence
was used for the proof the more adequate it is. Adequacy is displayed by
highlighting the pertinent parts of the sentences found, both individually (see
Figure 2 in Section 1.9) and in the context of the whole document. ExtrAns is
particularly user-friendly not only because of this feature but also because it is
very robust. It uses a keyword mechanism for unanalysable parts of sentences
and a graceful fall-back strategy that relaxes the proof criteria in a stepwise
manner if direct hits cannot be found.

1.2. Tokeniser

Since ExtrAns has to be able to cope with unrestricted text, it needs a
very reliable tokeniser. ExtrAns’ tokeniser processes the NAME, SYNOPSIS,
and DESCRIPTION section of the manpages. Apart from identifying regular
word forms and sentence boundaries, the tokeniser has to recognise a set
of domain-specific words. Therefore, the tokeniser uses information from the
SYNOPSIS section together with a set of heuristics to recognise these spe-
cial words and represent them as normalised tokens. The Unix manpages are
encoded in Troff format where command names are printed in boldface and
arguments in italics. As a consequence a considerable amount of formatting
information can be exploited and added to the representation of the tokens. For
example, command names are distinguished from homographic word forms

5

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

(like “eject” in eject is used for those removable media devices that do not have
a manual eject button) and are represented by adding an unambiguous sub-
script to the token (e.g. eject is tagged and represented as eject.com). Such
subscripts are also introduced for words that are used as arguments (e.g. fi-
lename1.arg, device.arg, nickname.arg), path names (e.g. </usr/5bin/ls>.path,
</etc/hostname.le>.path) and command options (e.g. <-c>.opt, <-kbd>.opt,
<-3>.opt).

The tokeniser supplies a unique sentence identifier, the tokenised data
and information about the offset position of every token with respect to the input
sentence and the Troff source file. This information is used later to highlight
phrases in the retrieved sentences.

1.3. Link Grammar

The syntactic analysis module used by ExtrAns, Link Grammar (LG), con-
sists of a very fast parser and a grammar/dictionary with about 60,000 word
forms (Sleator D. D. & Temperley D. 1993). The coverage of the parser was
tested using 2,781 sentences from the manpages and a percentage of 76% full
parses was found. The remaining sentences are partially parsed by systemat-
ically ignoring words, as we will see below. LG returns dependency relations
between pairs of words in a sentence by a set of labelled links called linkage.
By default, the direction of the dependency is not given explicitly in the linkage.
This is a serious shortcoming of LG since information about the direction of the
dependency is indispensable for the anaphora resolution algorithm and for the
construction of the MLFs. Therefore, the output of LG was extended in ExtrAns
by adding the dependency direction to the linkage as the arrows in (1) indicate:

(1) cp.com copies filename1.arg onto filename2.arg

����� ������ �����	
����
����
�� ����
����
����
��
� ���� � �� ��

� ��
���

� ��� � ��	

Such directed linkages are called dependency structures in this paper. In
the example above, the link �� connects the subject ������ to the wall �����.
The wall is a dummy word at the beginning of every sentence and has a link-
ing requirement like any other word. The link �	 connects the transitive verb
�����	 with the subject on the left. Thus, the verbal head is at the right hand
side of the link. The transitive verb and its direct object
����
����
�� that
acts as the head of a noun phrase are connected by the link �. The link ���

connects the verb to the modifying prepositional phrase. Finally, the link �

connects the preposition ���� to its object
����
����
��.
The LG parser is able to handle unknown words by making guesses from

context about syntactic categories. Nevertheless, the result is always better
when the words have been categorised in advance. Therefore, we have ad-
ded about 650 domain-specific words to the LG dictionary. Some words that
were already classified in the default LG dictionary had to be moved to other

6

EXTRANS, AN ANSWER EXTRACTION SYSTEM

categories because they could be used differently in the Unix domain. An ex-
ample is the verb print of the category transitive verbs that had to be moved to
the category transitive verbs that may form two-word verbs to exclude ambigu-
ity because it is often used as print out in the manpages.

In the original LG dictionary, words with multiple entries were distinguish-
ed by means of different subscripts. For ExtrAns, a subscript has been added
to each single word and the subscript set was refined so that it can be used to
tag the syntactic categories of the words and agreement information. To ease
readability, these subscripts do not appear in the linkages, only the subscripts
provided by the tokeniser are shown. Substantial changes had to be made in
the grammar to deal with some specific syntactic structures like post-nominal
modifiers for command names (e.g. � � � an ls.com on such a link � � �) or special
forms of imperatives with openers (e.g. to quit, type q).

LG allows robust parsing by systematically ignoring words until a valid
dependency structure is found. These words are represented in a special form,
with no links attached to them (Grinberg D. et al. 1995). Such “null-linked”
words are not lost, they can be used — as we will see later — by the retrieval
procedure.

1.4. Disambiguator

ExtrAns’ pruner uses heuristic rules to filter out all those dependency
structures that are obviously wrong in an ambiguous sentence. In a sub-
sequent stage, ExtrAns’ disambiguator uses a corpus-based approach (Brill
E. & Resnik P. 1994) to eliminate (some of) those ambiguities that require do-
main knowledge.

Brill & Resnik’s original disambiguator was designed to solve preposi-
tional attachment ambiguity of sentences with a transitive verb and a preposi-
tional phrase (PP). The algorithm decides whether the PP should attach to the
verb or to the direct object. The algorithm bases its decision on four-tuples
(verb, object, preposition, and the object under the preposition) and a set of
training rules that are automatically generated from a training corpus. For ex-
ample, a sentence like cp copies filename1 onto filename2 would lead to the
template � � ����
��� ����
���. This means that there exists a PP at-
tachment in the sentence, and the main verb is ����, the head of the direct
object is
���, the preposition is ����, and the head of the noun phrase in the
PP is
���. There are two fields in front of these four-tuples: The first field
indicates the attachment decision given by the disambiguator. It initially con-
tains a default value � (attachment to the noun) that may be modified by the
disambiguator. The second field is defined in the training corpus only, and it
reflects the correct attachment during the training and the evaluation.

ExtrAns’ requirements are different from the original disambiguator since
the LG parser multiplies out all the possible attachment variations, giving as a
result a list of alternative dependency structures for each sentence. ExtrAns
uses Brill’s disambiguator in the following form: for every dependency struc-

7

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

ture, the attachment information is translated into four-tuples plus two fields
like above where the second field is now used to express the actual attach-
ment decision in the dependency structure. After the disambiguator is run the
first two fields are compared. Equal fields indicate a correct attachment de-
cision in the dependency structure. Only the set of dependency structures that
has the highest ratio of correct attachments passes the filter (Mollá D. & Hess
M. 2000).

ExtrAns includes — besides transitive verbs — all categories of verbs,
multiple PP attachments, gerund and infinitive constructions. First the training
was done with the Treebank corpus (Marcus M. et al. 1993) (the accuracy is
reported to be 81.8%) but it turned out that this corpus was not appropriate
for the Unix domain (the accuracy was only 72,8%). Therefore, the training
for ExtrAns was redone with a subset of 34 manpages (containing a total of
1475 attachment decisions). Because there is no automatic way to collect the
relevant training data, it was necessary to encode them manually by reading
the manpages and writing out the attachment decisions.

Not surprisingly, the rules generated from the manpages are more ac-
curate in our domain (76.6% correct disambiguations), although the number of
training rules (116 rules) for the test set is far smaller than those for the Tree-
bank corpus (1770 rules). For the evaluation we had to split up the subset of
34 manpages into a training set of 17 manpages and a test set of the same
size.

There are other types of ambiguities that cannot be treated by the disam-
biguator. As we will see, in such cases all competing readings of an ambiguous
sentence are asserted into the knowledge base where they are fused, graded
and presented in context during the retrieval procedure.

1.5. Anaphora resolution

Anaphora resolution in the current version of ExtrAns is restricted to pro-
nominal cases. The anaphora resolution algorithm used by ExtrAns relies on
purely syntactic information (Lappin S. & Leass H. J. 1994). Lappin & Leass’
algorithm uses the syntactic representations generated by the Slot Grammar
parser (McCord M. et al. 1992) which contain information about the head-
argument and head-adjunct relations and how these relations are realised (e.g.
as subject, agent, object, indirect object, or prepositional object). Since Slot
Grammar is dependency-based, the relevant information can be emulated in
ExtrAns by checking the link types returned by the LG parser. The imple-
mented algorithm contains among others the following main components: an
intrasentential syntactic filter, a morphological filter, an anaphora binding al-
gorithm, and a salience weighting procedure, very much like the original (Lap-
pin S. & Leass H. J. 1994).

The output of the anaphora resolution algorithm includes a list of equi-
valence classes. The equivalence classes group those words that refer to the
same object.

8

EXTRANS, AN ANSWER EXTRACTION SYSTEM

In contrast to the original algorithm, ExtrAns’ implementation restricts in-
tersentential anaphora resolution only to the previous sentence. There are two
reasons for this decision. First, in the Unix domain a pronoun corefers very
rarely with a noun phrase that is not in the same or in the previous sentence.
Second, computing the salience measure for all (theoretically) possible can-
didates takes a lot of time and space.

Lappin & Leass report an accuracy of 89% for intrasentential cases. We
expect that ExtrAns’ anaphora module has similar accuracy, since it is a direct
implementation of the original algorithm.

1.6. The minimal logical forms

An important requirement of ExtrAns is that it must be fast and robust
enough to be able to cope with the manpage sentences. This must apply not
only to the processing of the manpages but also to the retrieval procedure to
find the answers to the question. The format of the logical forms plays a crucial
role in the latter. The logical forms must be simple so that they are easy to
construct and to use in the retrieval stage. Still, they must remain expressive
enough for the task at hand. For that reason, it is convenient that they allow
the addition of more information in a monotonic way (incrementality), so that
further refinements of the logical forms can be added without having to modify
the notation or destroy any old information.

To fulfill these features, ExtrAns’ logical forms consist merely of conjunc-
tions of predicates where all the variables are existentially closed with wide
scope. This simple notation is easy to build and easy to use. It is also in-
cremental, since further extensions to the meaning can be done simply by
adding more predicates to the conjunction. To make the logical forms express-
ive enough, we resort to reification and a particular interpretation of existence
and of the logical operators.

1.6.1. Reification
By reification we mean that some “abstract” concepts introduced by pre-

dicates become “concrete”. The effect of this extension is to provide handles
that can be used to refer to these concepts later in the discourse. At the cur-
rent stage of ExtrAns we reify predicates derived from open-class words. This
is in contrast with (Hobbs J. R. 1985), who proposes to reify all the predicates
available in a logical form — still, we do not rule out Hobbs’ approach in applic-
ations that require a more detailed logical form representation. The predicates
reified by ExtrAns are classified into three types:

Objects. A noun such as cp introduces the predicate ������������� �!, and
the meaning is “�� is the concept that the object � is ��”. The new
entity �� can be used in constructions with adjectives modifying nouns
intensionally, or in expressions of identity.

9

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

Events. A verb such as copies introduces ������������" �� �#!, and the
meaning is “�� is the concept that � copies �”. � and � represent
the objects introduced by the arguments of the verb copy. Reification
of events is the core of the Davidsonian semantics (Davidson D. 1967;
Parsons T. 1985), and is useful to express the modification of events by
means of adverbs, prepositional phrases, etc.

Properties. Adjectives and adverbs introduce properties. For example, an ad-
jective such as blue introduces the predicate �������$����� �!, whose
meaning is “�� is the concept that � is ��$�”. Reification of properties
is useful when we want to modify an adjective, like in the sentence the
house is pale blue.

Non-reified predicates can be introduced too. For example, the preposition
onto would introduce a predicate like �������� �!.

This notation can be used to encode the Minimal Logical Form (MLF)
of a sentence, that is, a logical form that expresses the minimal information
necessary for the task at hand. Several examples of MLFs are:

(2) cp copies long files
��������	2
 ����
��
�
��
��	
 ����
���
��
���
���	

����
������
��
��	
 ���������
��
��	

(3) cp copies possible files
��������	
 ����
��
�
��
��	
 ����
���
��
���
���	

����
������
��
��	
 �������������
��
��	

(4) cp copies very long files
��������	
 ����
��
�
��
��	
 ����
���
��
���
���	

����
������
��
��	
 ���������
��
��	
 ���������
��
��	

(5) cp copies files quickly
��������	
 ����
��
�
��
��	
 ����
���
��
���
���	

����
������
��
��	
 ��������
�
��
��	

Here we can see reification at work. The adjective long in (2) modifies
the noun files, and accordingly the predicate introduced by the adjective mod-
ifies the object �. However, the adjective possible in (3) is used intensionally.
What is possible is the fileness of �, that is, ��. Accordingly, the predicate
introduced by the adjective modifies ��. Finally, the adverb very in (4) mod-
ifies the adjective long (whose reified concept is ��), whereas quickly in (5)
modifies the verb copies (that is, ��).

2We will discuss the predicate �������� in Section 1.6.2.

10

EXTRANS, AN ANSWER EXTRACTION SYSTEM

1.6.2. Existence and logical operators
Reification can also be used to encode existence of concepts. Reified

concepts may or may not exist in the real world. Existential quantification alone
only guarantees existence in a Platonic universe of possible entities. To ex-
press that an event � actually exists in the world of manpages, ExtrAns uses
a specific predicate (Hobbs J. R. 1996), thus giving %���	��!. In those cases
where there is not enough information for ExtrAns to conclude that an event
exists, nothing is said about it. For example, the copying event in (6) clearly
holds in the world of Unix manpages, whereas one cannot say the same in (7)
and (8), and it is not clear in (9):

(6) cp copies files
��������	
 ����
��
�
��
��	
 ����
���
��
���
���	

����
������
��
��	

(7) cp refuses to copy a file onto itself
��������	
 ����
��
�
��
��	
 ����������
��
���
���	

����
���
��
���
���	
 ����
������
��
��	
 �������
��	

(8) cp does not copy a file onto itself
������	
 ����
��
�
��
��	
 ����
���
��
���
���	

����
������
��
��	
 �������
��	

(9) if the user types y, then cp copies the files
�����
��	
 ����
��
�
��
��	
 ����
���
��
���
���	

����
������
��
��	
 ����
������
��
��	
 ��������
��
���
���	

����
���
��
��	

What holds in (7) is the refusing event ��, but we do not say anything
about the status of the copying event ��. One could argue that �� does not
hold because of the lexical meaning of refuse, and therefore we should also
add ������!. However, for the time being ExtrAns does not decompose lex-
ical meaning and as a consequence the negation cannot be deduced. The
information is therefore left underspecified. If needed, and provided that we
have enough knowledge to assess negation or assertion, this information can
be inferred and added in a later stage.

In the same way as with existence of concepts, all logical operators are
translated as regular predicates over reified concepts. For example, the neg-
ation in (8) is represented as a predicate over the concept of this particular
copying event, and the implication in (9) is a predicate over the concepts of a
particular typing and a particular copying event.

The translation of existence and logical operators into regular predicates
is a means to convert embedded structures into flat structures, allowing the
MLFs to be simple conjunctions of predicates. There are some restrictions
on the expressivity of the MLFs (for example, the current MLF of cp is not the
command that removes files would be equivalent to that of cp is not a command

11

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

but it removes files), but they still remain accurate enough for the task of AE. In
fact, attempting a more complex and exhaustive representation may represent
a hindrance later. For example, (9) is an informative answer to the question
which command copies files?, and it can be inferred straightforwardly with the
current logical forms. If we had converted (9) into a logical form with a logical
implication and we wanted to check if it is a good answer to the question, we
would face the impossible task of trying to decide whether the antecedent the
user types y is true.

1.6.3. Incrementality
Since ExtrAns returns logical forms that are minimal, there is missing in-

formation. For example, tense, aspect, and temporal relations are all ignored.
This is a direct consequence of the domain of Unix manpages for which the cur-
rent work is conceived, where temporal relations are of little relevance. Other
clusters of information are also ignored, such as plurality, modality, and quan-
tification. Each of these topics deserves a wealth of research well outside the
scope of this paper, such as Hobbs’ work on quantification (Hobbs J. R. 1996).

The main reason why we do not want to encode all the information avail-
able in the data is that the logical forms should remain simple. Further com-
plications in the logical forms could prevent a practical application from being
fast and robust enough. To give an example with the sentences introduced
above, (2) to (9) are all informative answers to queries like:

(10) which command can copy files?
which commands copy files?
which command can copy a file?
which command copies all my files?

If one were to implement modality, plurality, and quantification, one would
need to add also the right inference rules to be able to retrieve (2) to (9). In
ExtrAns we spare the effort of trying to encode semantic information that is
not going to be used later or that does not significantly improve the overall
performance of the system. The use of incrementally extensible MLFs allow
us to find the right balance between processability and expressivity.

Using flat forms with reification thus enables us to underspecify and to
construct only the part of the semantic information that we need (the MLFs).
Different tasks require different degrees of detail in the MLFs. If, in a sub-
sequent stage in the ExtrAns project, we decide to perform more ambitious
AE, or even attempt QA, we can enrich the semantic information by adding
more predicates to the MLFs. Another advantage of using this notation is the
possibility of computing the semantic closeness between the question and the
potential answer, as we will see later when we discuss approximate matching.

1.6.4. Implementation
The input of the MLF generator is a set of dependency structures comple-

mented with the list of equivalence classes that are computed by the anaphora

12

EXTRANS, AN ANSWER EXTRACTION SYSTEM

resolution algorithm. The MLF generator converts all of this information into
the MLFs of the sentences. The general procedure is a top-down algorithm
that starts from the head of the sentence and follows the dependencies until
they all are covered. Take, for example, (11):

(11) cp will quickly copy the files

����� ������ &��� '$��(�� ���� �%�
���	
� ���� � �� ��

� ��

� �� ��
� ��

��

� ��
��

The general algorithm is:

1. Starting from the main verb (copy), find the leftmost auxiliary verb (will);

2. Starting from the auxiliary verb, find the head of the subject (cp.com)
and build its logical form, �����������
�� �!;

3. Build the logical forms �������
�����
)� *! of the objects (only one
object in (11));

4. Create an entity for the main eventuality, �+;

5. Build the logical forms of other modifiers �����'$��(����)��+!;

6. Add the logical form of the main event. The final MLF becomes (new
information in boxes):
%���	��+! � �����������
�� �!� ����������+�" �� *#! �

�������
�����
)� *!� �����'$��(����)��+!.

However, several complications in the syntactic structures oblige us to add
particular cases to the general procedure, depending on which part of the sen-
tence we are processing. For example, we need to traverse ��, �	, and ,

before finding the main verb copy in (11). A general difficulty is the existence
of several types of dependency structures that should produce the same MLF.
Examples are the use of a passive versus an active form, different variations of
a sentence with a verb that can take a ditransitive form, or the analysis of ques-
tions. Another difficulty is that sometimes the output of LG does not show all
the deep-syntactic dependencies that exist in the sentences, and these must
be inferred by the MLF generator. For example, the dependency structure
in (12) represents mimencode as the direct object. However, the MLF must
show that mimencode is the subject of use:

(12) The “-b” option tells mimencode to use the “base64” encoding

��� ����	 ������������� �� $	� ���

� �����

� ���� � ��
� � � �

 ����
��������
��
��	
 ��������
��
���
�!�	

����
��"�"��
���
�!
�#	
 �������
�!
��#
��$�	

����
����
�����
��
��$	

13

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

The resulting algorithm becomes very complex and a detailed explanation
is beyond the scope of this paper. The interested reader is recommended to
consult (Mollá D. 1998; Mollá D. et al. forth.).

After computing the MLFs, the information about word equivalences that
results from the anaphora resolution is added to the formulas by making sure
that all equivalent words introduce the same object variable, such as in (7). To
achieve this, only a simple variable replacement is needed.

To enhance robustness, the “null-linked” words produced by LG are con-
verted into keywords by adding a predicate (��&�����! to the MLF. New
keywords are also introduced by the MLF generator whenever it cannot pro-
cess a specific link of a dependency structure.

1.7. Horn clause logic

For processing reasons we use Horn Clause Logic (HCL) to retrieve the
answers. In particular, the logical form of the query is converted into a Prolog
query, which is run against the logical forms of the manpage sentences stored
as Prolog facts. For example, the query does cp copy files? translates into (13),
which succeeds over any of the translations of (2) to (9) above.

(13) %& ����
��
�
'
(
 ����
���
'
�(
)�	
 ����
������
'
)	

To be able to display the sentences with the selective highlighting, every
predicate in the logical form contains a pointer to the sentence identifier which
is provided by the tokeniser, an index indicating the interpretation number, and
a list of pointers to the words that are involved in the predicate. Thus, a more
accurate description of cp copies files (6) is:

(14) ��������	* �����*�+�� ����
��
�
��
��	* �����*�+���

����
���
��
���
���	* �����*�+��
�
��

����
������
��
��	* �����*�+���

As we see, the logical form is encoded as a set of independent Prolog
facts, one per predicate. The variables in the logical form are converted into
skolem constants. This has been done by adding the sentence identifier and
the interpretation number, since all the variable identifiers are always unique
within a sentence interpretation. Thus, the variable � in the logical form is
converted into the Prolog constant ��	������ in the database, and so forth.
To ease readability, skolemisation is not shown in the examples of this paper.

To find all the solutions of the query, ExtrAns uses the built-in Prolog
predicate
���
��. Thus, a more accurate representation of (13) is:

(15) %& ����,����-
.
/�
/�
/��
 �����
��
�
'
(*-*.+/�

����
���
'
�(
)�	*-*.+/�
 ����
������
'
)	*-*.+/�	
 /��	

14

EXTRANS, AN ANSWER EXTRACTION SYSTEM

After running (15) the Prolog variable -�	 is instantiated to:
"���� "	�������"�#�"����)#�")##� ���#

With this information we know that the first interpretation (�) of sentence
	���� (14) answers the query, and the words in position 1, 2, and 3 (the union
of "�#, "����)#, and ")#) are to be highlighted.

To increase efficiency, the result of inferences that can be done in the
off-line stage are also added to the databases. We have seen already that the
tokeniser can recognise command names, arguments, path names, etc. Given
the information provided by the tokeniser, predicates are added accordingly.
For example, the predicate �����������
������ �!�	������."�# is inferred
from cp.com by the logical form generator and it is added accordingly (these
predicates were not shown in the previous examples for exposition purposes).
Other simple inferences can also be made. For example, if a logical form
represents the sentence cp copies files and directories, extra predicates are
added to make sure that queries about copying only files (or only directories)
are successful too.

Finally, the logical forms of the query and the data also contain inform-
ation about noun and verb synonymy. Synonymy information is encoded in
a small WordNet-like (Fellbaum C. 1998) hand-crafted thesaurus that uses a
synset identifier for each set of synonyms. This synset identifier (of the form
	/&��� in this paper) appears in the Horn clauses that are stored in the data-
bases, and also in the Prolog queries3:

(16) cp copies files
��������	*�����*�+�� ����
��
�
��
��	*�����*�+���

����
�� �'
�"",��
��
��	*�����*�+���

���� �'
���
��
���
���	*�����*�+��
�
��

����
�� �'����
��
��	*�����*�+���

(17) which command copies files?
%& ����,����-
.
/�
/�
/��
 �����
�� �'
�"",��
'
(*-*.+/�

���� �'
���
'
�(
)�	*-*.+/�
 ����
�� �'����
'
)	*-*.+/�	

/��	

Using MLFs with synonymy information allows us to generate the Prolog
query (17) from any of the queries in (10) above, and many other variations
with different synonyms. The query would retrieve any of the sentences (2)
to (9) and variations.

1.8. Answer extraction

Various enhancements over the general retrieval procedure have been
made in order to allow ExtrAns to work with larger volumes of data (Mollá D. &

3If a word has sense ambiguity, its synset corresponds to the first sense defined in the
thesaurus. We have not tried to implement another approach because, in the restricted domain
where we are working, very few words have sense ambiguity.

15

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

Hess M. 1999). Several databases are used, one per manpage. When running
the query, only those manpages that are likely to have the answer are preselec-
ted. The preselection criterion is based on whether the manpage contains all
the predicates of the query. Thus, a general operation of set-intersection is per-
formed on the sets of preselected manpages for each predicate in the query.
This basic criterion must be refined to accommodate the possibility of disjunc-
tions in the query, such as when the query has unresolved ambiguities (or
hyponyms, as we will see later). Disjunction in the query translates into per-
forming set-union in the sets of preselected manpages of the members of the
disjunction.

To increase robustness in the results, a fall-back search strategy is added
to the general retrieval procedure. When there are not enough answers with
the default search, the user can try hyponyms. If there are not yet enough
answers, the user can try approximate matching. Finally, if there are still not
enough answers, the user can try keyword search. The user is always asked
if (s)he wants to try the next stage in the fall-back search or stop. In all cases,
the threshold beyond which the user is asked is 5 hits.

Hyponym search is attempted after the standard search with synonyms.
As opposed to synonymy, there is no “hyponym set identifier” that can be used
to replace the synset, and therefore all the hyponyms must be introduced by
means of disjunctions. For example, let us assume that the thesaurus contains
the information that text is a hyponym of file, and download is a hyponym of
copy. Then, the query (17) can be converted into:

(18) %& ����,����-
.
/�
/�
/��
 �����
���'
�"",��
'
(*-*.+/�

������'
���
'
�(
)�	*-*.+/�0 �����'��1���,�
'
�(
)�	*-*.+/�	

�����
���'����
'
)	*-*.+/�0 ����
���'����
'
)	*-*.+/�		
 /��	

Approximate matching is attempted after the hyponym search. Approx-
imate matching is particularly useful when there is no real answer to the user
query because the query is too specific. In this case, a matching algorithm is
performed that computes, for every sentence from the manpages, how well it
fits the user query. Only the best fits are returned to the user.

The fitness degree of a particular sentence is computed according to the
number of predicates in the query that can be satisfied at once. To give an
illustrative example, let us assume that the query which command copies big
files? does not give any direct answer. The predicates used in the query are:

(19) ����
���'
�"",��
'
(*-*.+/� �����'
���
'
�(
)�	*-*.+/�

����
���'����
'
)	*-*.+/� ��������
'
)	*-*.+/�

The set of boxes shows the largest range of predicates that can be jointly
used to retrieve the sentence cp copies files (6). Since three predicates are
used, (6) can be retrieved with score 0.75, that is, three out of four predicates
from the query. If this is the highest score found across all the sentences in the

16

EXTRANS, AN ANSWER EXTRACTION SYSTEM

Sentence Syn. Hypo. Approx.

which command copies files? 3,260
is there a command that creates directories? 22,670
how can I move files? 2,380
how can I read my mail? 8,300
how can I establish a link to a file? 110 180 117,860
which command prints files? 53,040
how do I do to eject a floppy? 93,200
which command brings me to my home directory? 100 160 56,200
how can I stop a process? 880
how do I compile programs? 4,160

Table 1: Response times against selected queries over 500 manpages, show-
ing only the stages necessary for ExtrAns to find an answer. Times in milli-
seconds on a Solaris (Ultra-10) workstation.

manpages, (6) will be retrieved4. This mechanism is somewhat more complex
because the query may also include disjunctions, and therefore a logical form
may generate several scores. Only the best score would be used.

Approximate matching is a way to compute the semantic closeness be-
tween the query and the potential answer. The use of flat forms for represent-
ing the MLFs makes the algorithm for approximate matching fairly straightfor-
ward. If we had used embedded forms, the algorithm would have had to be
far more complicated, since information embedded deeply in the logical forms
would not have been readily available for comparison.

The preselection of manpages in the approximate matching stage must
be less restrictive than in the synonym and hyponym stages, since a manpage
may have the best answer available in the whole set of manpages, without
satisfying all the predicates in the query. Thus, set-union of the partial sets
of manpages is used instead of set-intersection. An obvious result is that the
number of preselected manpages is much higher, and therefore the response
time is longer. Table 1 shows the response times for different queries.

Keyword search is the last resort. The keywords selected are those
words in the query that produce object, event, and property predicates (that
is, all the open-class words). From these, those words that are too frequent in
the manpages are ignored, and the rest are used in a “linguistic” query where
no interdependencies are expressed, targeting only at the objects, events, and
properties in the manpages. In particular, the keyword query of which com-
mand copies files? becomes:

4There is no score threshold. The sentences with the best score are retrieved, even if the
score turns out to be rather low.

17

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

(20) %& ����,����-
.
/�
/�
/��
 � �����
���'
�"",��
'
'	*-*.+/�0

�����'
�"",��
'
'	*-*.+/�0 ������'
�"",��
'
'	*-*.+/�	

�����
���'
���
'
'	*-*.+/�0 �����'
���
'
'	*-*.+/�0

������'
���
'
'	*-*.+/�	

�����
���'����
'
'	*-*.+/�0 �����'����
'
'	*-*.+/�0

������'����
'
'	*-*.+/�	 	
 /��	

The use of keywords is not only restricted to keyword search. Words that
were neither processed by the parser nor by the MLF generator are converted
into keywords by adding a conjunction (not a disjunction) with an object, an
event, and a property, to the Horn clause representation. In this fashion we
ensure that, even if some words of the sentence have not been analysed, they
are still considered in the retrieval procedure.

We are planning to introduce DR techniques in the retrieval procedure.
A clear case where DR is desirable is in the manpage preselection, especially
when approximate matching is needed to find a near miss. Another clear pos-
sibility of integrating DR techniques is in the keyword search which is, after all,
a “bag of words” approach.

1.9. Graphical user interface

All extracted sentences are displayed by the Graphical User Interface
(GUI) of ExtrAns. The GUI can produce three types of interfaces: a no-frills
text interface, an HTML interface for accessing ExtrAns through the Internet5,
and a Tcl/Tk-based window interface. Figure 2 shows the window interface
displaying the first hits for the user query how can I create a directory?.

The specific answers are highlighted and the hits are scored according
to their adequacy. The scoring system is still preliminary and object of our
research. The user can access the complete manpage that contains the sen-
tences by clicking on the manpage name at the left of each sentence. It is
now very easy for the user to figure out by inspecting the context whether an
extracted sentence contains in fact the answer to the question.

The degree of highlight — expressed in a percentage scale in Figure 2
— indicates how confident ExtrAns is that a part of a sentence answers a user
query. This presentation technique for search results was developed to deal
with unresolvable ambiguities and multiple interpretations. In brief, document
sentences may answer a user query in different ways for any of the following
reasons: (i) A document sentence may contain unreducible ambiguities. Al-
though ExtrAns tries to eliminate as many ambiguities as possible, some of
them will always survive. In this case ExtrAns asserts all competing logical
forms for a document sentence and includes all of them in the proof. (ii) A
document sentence can have multiple interpretations. In the case of a string
like bin-mail, binmail — an early program for processing mail messages Extr-
Ans sends two different sentences to the parser; one for bin-mail and one for

5�		
���

�������������������	����

18

EXTRANS, AN ANSWER EXTRACTION SYSTEM

Figure 2: Retrieved sentences for the query how can I create a directory?

binmail. Both interpretations are stored in the knowledge base as independent
logical forms and can lead to more than one correct proof. (iii) A single logical
form can provide multiple answers. It is possible that different sets of facts of
the same logical form can independently answer a user query. This occurs, for
instance, if a sentence has a coordinated structure. For example, the docu-
ment sentence mv moves files and directories can be proved in three different
ways for the query what does the command mv move?: once for file, once for
directories, and finally once for the whole coordinated noun phrase files and
directories. (iv) A user query can be ambiguous, too. When a user query is
ambiguous, different interpretations of the same query may be proved by the
logical forms of a particular sentence.

On the whole, all words of an extracted document sentence that answer
a user query are highlighted. Since the same sentence may answer the query
several times in a different way, each word is ranked according to its frequency
in all the solutions found. Those words that occur in more solutions are high-
lighted with a brighter colour on account of a graded colouring scheme. By this
kind of visualisation, adequacy is seen as a minimal degree of ambiguity in the
extracted answer. This has the big advantage that the user does not need to
perform any interactive disambiguation.

19

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

2. EVALUATION OF EXTRANS

We present in this section a small evaluation of ExtrAns based on a set
of 30 queries over 500 manpages. Table 1 in Section 1.8 shows the first ten of
them. The queries have been selected according to the following criteria:

� There has to be at least one answer in the manpage collection;

� The query asks about how to perform a particular action (e.g. how do I
compile programs?) or how a particular command works (e.g. can rm
delete nonempty directories?);

� The query is simple, i.e. it asks only one question (for example, how can
I move or rename files? is not valid).

Since AE lies between DR and QA, we had to decide what kind of evaluation
procedure we could use to take its peculiarities into account. In the QA area,
evaluations tend to compare the output of a system with an ideal answer, either
by determining this answer a priori and measuring the distance of each can-
didate answer with it (Hirschman L. et al. 1999), or by considering the retrieved
items until one correct answer was found and measuring the score of the an-
swer according to its rank (Voorhees E. M. & Tice D. M. 1999). But AE is not
meant to restrict its output to a unique answer, which is often nearly impossible
to determine anyway. If the user has several possible answers at his/her dis-
posal, (s)he will be able to choose which one corresponds to the present in-
formation need, and the choice is optimal if all answers are listed in the output.
This criterion corresponds to the standard DR measure of recall, i.e. the ratio
between the relevant hits and the total number of relevant sentences in the col-
lection. To determine whether the system is able to filter out the non-relevant
sentences, we also decided to compute precision, i.e. the ratio between the
total number of relevant sentences and the total number of hits.

2.1. Method

In a first step, we searched our collection for sentences that provided
satisfactory answers to our queries. To do this, we defined for each query a set
of keywords enhanced with all the related terms we could think of (synonyms,
hyponyms, truncated forms, nominalisations etc.). These keywords were then
searched for in the set of sentences available to ExtrAns. When a relevant
sentence was found in a manpage, all the sentences in the manpage were
also checked. With this procedure, we believe to have retrieved a reasonably
high amount of answers to each query: it is known that if we provide enough
appropriate keywords to a search engine, recall will be high. Since the retrieved
sentences were then selected manually, we could also expect high precision.
The relevance criterion used for the selection was defined pragmatically. First
of all, the retrieved sentence must contain the element that has been asked for.
Second, the user must be able to recognise this element as being the answer

20

EXTRANS, AN ANSWER EXTRACTION SYSTEM

to the query, otherwise (s)he will not be able to do anything with it. In other
words, a sentence is relevant if it is informative and explicit enough to satisfy
most users. In practice, this principle had to be converted into more specific
assessment rules, which lead to an average of 7 answers found for each query.

We are conscious that such a method cannot ensure the retrieval of all
and only the relevant sentences. Nevertheless, this approximation can be use-
ful for a comparison with another retrieval system. The system chosen for the
comparison is Prise, a DR application developed by NIST (Harman D. K. &
Candela G. T. 1989). Since Prise returns full documents, we used ExtrAns’
tokeniser to find the sentence boundaries and to create independent docu-
ments, one per sentence in the manpages. Then Prise was run with our set of
queries, which lead to an average of 908 hits per query, that is, roughly 30%
of the initial set of sentences in the manpages. This high number of hits is
explained by the fact that Prise retrieves all sentences that contain at least one
of the (truncated) query terms, as long as these are not stop words. But a DR
system like Prise compensates its low precision by ranking the hits that are
assumed more relevant at the top of the list. The sentences with the highest
scores are the ones that contain a sufficient proportion of query terms with re-
spect to their total number of words, be it several times the same query term
or several different query terms (or both)6. Thus if we want our comparison to
be fair, we have to take the sentence ranking into consideration. We did this by
reducing the number of hits considered for the computation of recall and pre-
cision to 100, which enhanced precision without too much penalising recall (in
our evaluation, 73% of the relevant hits belong to the top 100 hits). In order to
refine the analysis of the ranking, we also computed recall and precision with
respect to the � first hits, where � � ��� ��� � � � � ���.

For ExtrAns, we still had to determine which stage was to be taken into
account in the evaluation (see Section 1.8), because the evaluation was done
in batch mode, and no user could assess whether (s)he had got enough an-
swers or (s)he wanted to try the next stage. We set the minimal number of hits
in a stage to one, i.e. if at least one sentence was found in a stage, ExtrAns
stopped and we counted the relevant hits in that stage. With this method, we
got about 15 hits per query.

2.2. Results

Due to the small number of queries and hits returned by ExtrAns, we
found it more convenient not to compute average curves of the recall and pre-
cision pairs, but just to plot these pairs, with an indication of the stage where
ExtrAns stopped. The combined plot of pairs computed for each � did not

6The first parameter (frequency of a term in the document) is less significant when we
consider sentences instead of documents, because the variation of the term frequency in a
sentence is much smaller than in longer documents. The second parameter (number of terms
in the document), however, is more relevant for sentences, because it is more likely that words
that appear in the same sentence are related with each other.

21

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Figure 3: Recall against precision for 30 queries and the top 100 hits per
query. Prise’s results are displayed with a star (�), and ExtrAns’ results with
circles (�) for the default search and with squares (�) for the approximate
matching.

show significant differences with the plot for � � ���: the values for ExtrAns
were nearly the same, and for Prise, the number of recall and precision pairs
increased but the area with the highest density of points remains the same.
We will therefore concentrate on the plot for � � ���.

Figure 3 shows that precision is in general higher for ExtrAns than for
Prise, and that Prise has the best recall values. In the upper right corner, we
can see a higher density of ExtrAns’ values which is likely to shift to the left if
we use a less restricted set of queries. The fact that ExtrAns never stopped
at the hyponym and keyword search is also related to the actual query set.
If the queries were more complex, we would have some recall and precision
pairs corresponding to the keyword search, and this would probably cause a
lower overall precision. We are still improving the first stages, in order to avoid
the keyword search in as many cases as possible. We expect that ExtrAns’
precision will still remain higher than Prise’s in most cases and that recall will
depend on the performance of the first stages.

CONCLUSION

ExtrAns is an implementation of an AE system over the Unix manpages.
The manpages and the user queries are converted into Horn clause repres-
entations of their MLFs and the retrieval procedure consists in trying to prove
the query over the manpage sentences. The construction of the MLFs re-
lies on full parsing, disambiguation, and anaphora resolution, among other lin-
guistic procedures, which makes the process relatively costly in terms of time

22

EXTRANS, AN ANSWER EXTRACTION SYSTEM

and memory. Still, an adequate combination of these linguistic modules with
keyword introduction, document preselection, and a fall-back strategy makes
the system fast and robust enough for moderate numbers of technical docu-
ments such as the Unix manpages. The use of adequate displaying techniques
such as graded highlighting and pointers to the source manpages helps the
user to assess whether the results are good answers to the query. Although
the domain of ExtrAns is that of Unix manpages, many of its modules can
be reused for other domains — as we are currently doing with WebExtrAns.
In principle, only the tokeniser would need major modifications (because it is
based on the specific format of the manpages), plus a list of domain-dependent
terms and the corresponding thesaurus. We have shown that currently avail-
able NLP technologies can be used to implement practical AE systems over
real-world domains in real-world situations. ExtrAns is such a system, and a
web-based interface can be found on the Internet.

The main advantage of ExtrAns against a “bag of words” approach is
that crucial information about the semantic information is kept in the MLFs.
This allows ExtrAns to retrieve fairly accurate answers. ExtrAns, however, is
not a full-blown QA system, and it makes very shallow inferences only. Thus,
queries that require planning and world knowledge (such as why?) would not
give satisfactory answers.

Current research is focusing on the linguistic and the processing side.
The former includes a revision of the MLF notation, the analysis of nomin-
alisations, and other ways of expressing the same information with different
structures. The latter includes coping with larger documents over more varied
domains, possibly by integrating DR techniques. A more exhaustive evaluation
of ExtrAns is also under consideration.

REFERENCES

APPELT, Douglas E. ; HOBBS, Jerry R. ; BEAR, John ; ISRAEL, David ; KAMEYAMA,
Megumi ; TYSON, Mabry (1993) : “SRI: description of the JV-FASTUS system
used for MUC-5”, in Proc. MUC-5, pp. 221–235, Los Altos, CA.

BRILL, Eric ; RESNIK, Philip (1994) : “A rule-based approach to prepositional phrase
attachment disambiguation”, in Proc. COLING ’94, pp. 998–1004, Kyoto, Japan.

BURKE, Robin D. ; HAMMOND, Kristian J. ; KULYUKIN, Vladimir A. ; LYTINEN,
Steven L. ; TOMURO, Noriko ; SCHOENBERG, Scott (1997) : Question An-
swering from Frequently-Asked Question Files: Experiences with the FAQ Finder
System, Rapport technique n TR-97-05, University of Chicago, Dept. of Com-
puter Science.

CHINCHOR, Nancy A. (1998) : “Overview of MUC-7/MET-2”, in Proc. MUC-7, SAIC,
San Diego, CA, �����������������������.

DAVIDSON, Donald (1967) : “The logical form of action sentences”, in The Logic of
Decision and Action, N. Rescher (ed.), Univ. of Pittsburgh Press, pp. 81–120.

DEERWESTER, Scott ; DUMAIS, Susan T. ; FURNAS, George W. ; LANDAUER,
Thomas K. ; HARSHMAN, Richard (1990) : “Indexing by latent semantic ana-

23

Diego MOLLÁ , Rolf SCHWITTER , Michael HESS , Rachel FOURNIER

lysis”, Journal of the American Society for Information Science, vol. 41, n 6, pp.
391–407.

FELLBAUM, Christiane (1998) : “Wordnet: Introduction”, in WordNet: an electronic
lexical database, C. Fellbaum (ed.), Cambrige, MA, MIT Press, pp. 1–19.

FRIEDL, Günter ; MAYR, Heinrich C. (eds.) (1999) : Proc. NLDB’99 – 4th Int. Conf. on
Applications of Natural Language to Information Systems, Klagenfurt, Austria.

GRINBERG, Dennis ; LAFFERTY, John ; SLEATOR, Daniel (1995) :
A Robust Parsing Algorithm for Link Grammars, Rapport tech-
nique n CMU-CS-95-125, Carnegie Mellon University, Available at
����������������������������� ���� ������������� ���!�����.

GRISHAM, R. ; SUNDHEIM, B. (1996) : “Message understanding conference - 6: a
brief history”, in Proc. MUC-6, ARPA, Los Altos, CA.

HARMAN, Donna K. ; CANDELA, Gerald T. (1989) : “A very fast prototype retrieval
using statistical ranking”, SIGIR Forum, vol. 23, n 3/4, pp. 100–110.

HERZOG, Otthein ; ROLLINGER, Claus-Rainer (eds.) (1991) : Text Understanding
in LILOG: Integrating Computational Linguistics and Artificial Intelligence - final
report on the IBM Germany LILOG project, Berlin, Springer-Verlag, Lecture Notes
in Computer Science, volume 546.

HIRSCHMAN, Lynette ; LIGHT, Marc ; BRECK, Eric ; BURGER, John D. (1999) :
“Deep Read: A reading comprehension system”, in Proc. ACL’99, University of
Maryland.

HOBBS, Jerry R. (1985) : “Ontological promiscuity”, in Proc. ACL’85, University of
Chicago, pp. 61–69, Association for Computational Linguistics.

HOBBS, Jerry R. (1996) : “Monotone decreasing quantifiers in a scope-free logical
form”, in Semantic Ambiguity and Underspecification, K. van Deemter ; S. Peters
(eds.), Stanford, CA, CSLI Publications, chap. 3, pp. 55–76.

HUMPHREYS, Kevin ; GAIZAUSKAS, Rob ; CUNNINGHAM, Hamish ; AZZAM, Saliha
(1996) : GATE: VIE Technical Specifications, Rapport technique, University of
Sheffield, ILASH, Included in the documentation of GATE 1.0.0.

KATZ, Boris (1997) : “From sentence processing to information access on the world
wide web”, in AAAI Spring Symposium on Natural Language Processing for the
World Wide Web, Stanford University, Stanford CA.

LAPPIN, Shalom ; LEASS, Herbert J. (1994) : “An algorithm for pronominal anaphora
resolution”, Computational Linguistics, vol. 20, n 4, pp. 535–561.

LEWIS, David D. ; SPARCK JONES, Karen (1996) : “Natural language processing for
information retrieval”, Communications of the ACM, vol. 39, n 1, pp. 92–101.

MARCUS, M. ; SANTORINI, B. ; MARCINKIEWICZ, M. (1993) : “Building a large
annotated corpus of English: the Penn Treebank”, Computational Linguistics,
vol. 19, n 2, pp. 313–330.

MCCORD, Michael ; BERNTH, Arendse ; LAPPIN, Shalom ; ZADROZNY, Wlodek
(1992) : “Natural language processing within a slot grammar framework”, Inter-
national Journal on Artificial Intelligence Tools, vol. 1, n 2, pp. 229–277.

MOLLÁ, Diego ; HESS, Michael (1999) : “On the scalability of the answer extraction
system “ExtrAns””, In Friedl ; Mayr (Friedl G. & Mayr H. C. 1999), pp. 219–224.

MOLLÁ, Diego ; HESS, Michael (2000) : “Dealing with ambiguities in an answer ex-
traction system”, in Workshop on Representation and Treatment of Syntactic Am-
biguity in Natural Language Processing, pp. 21–24, Paris.

24

EXTRANS, AN ANSWER EXTRACTION SYSTEM

MOLLÁ, Diego ; SCHNEIDER, Gerold ; SCHWITTER, Rolf ; HESS, Michael (forth-
coming) : “Answer extraction using a dependency grammar in ExtrAns”, T.A.L.,
vol. 41, n 1.

MOLLÁ, Diego (1998) : ExtrAns: An Answer Extraction System for Unix Manpages
– On-line Manual, Rapport technique, Computational Linguistics, University of
Zurich, ������������"�����#�����$%�.

PARSONS, Terence (1985) : “Underlying events in the logical analysis of English”,
in Actions and Events: Perspectives on the philosophy of Donald Davidson, E.
Lepore ; B. P. McLaughlin (eds.), Oxford, Blackwell, pp. 235–267.

SALTON, Gerard ; MCGILL, Michael J. (1983) : Introduction to Modern Information
Retrieval. International Student Edition., Auckland, AU, McGraw-Hill, Computer
Science Series.

SLEATOR, Daniel D. ; TEMPERLEY, Davy (1993) : “Parsing English with a link gram-
mar”, in Proc. Third International Workshop on Parsing Technologies, pp. 277–
292.

STRZALKOWSKI, Tomek ; LIN, Fang ; PEREZ-CARBALLO, Jose (1997) : “Nat-
ural language information retrieval: TREC-6 report”, in Proc. TREC-6, E. M.
Voorhees ; D. Harman (eds.), NIST-DARPA, pp. 347–366, Government Printing
Office.

STRZALKOWSKI, Tomek ; STEIN, Gees ; WISE, G. Bowden ; PEREZ-CARBALLO,
Jose ; TAPANAINEN, Pasi ; JARVINEN, Timo ; VOUTILAINEN, Atro ; KARL-
GREN, Jussi (1998) : “Natural language information retrieval: TREC-7 report”, in
Proc. TREC-7, E. M. Voorhees ; D. Harman (eds.), NIST-DARPA, pp. 217–226,
Government Printing Office.

VAN RIJSBERGEN, C.J. (1979) : Information Retrieval, London, Butterworths, 2 édi-
tion.

VOORHEES, Ellen M. ; HARMAN, Donna (eds.) (1999) : The Eighth Text REtrieval
Conference (TREC-8), NIST, �������� ����������&����������.

VOORHEES, Ellen M. ; TICE, Dawn M. (1999) : “The TREC-8 question answering
track evaluation”, In Voorhees ; Harman (Voorhees E. M. & Harman D. 1999),
�������� ����������&����������.

WILENSKY, Robert ; CHIN, David N. ; LURIA, Marc ; MARTIN, James ; MAYFIELD,
James ; WU, Dekai (1994) : “The Berkeley Unix Consultant project”, Computa-
tional Linguistics, vol. 14, n 4, pp. 35–84.

WINIWARTER, Werner (1999) : “An adaptive natural language interface arquitecture
to access FAQ knowledge bases”, In Friedl ; Mayr (Friedl G. & Mayr H. C. 1999),
pp. 127–136.

WOODS, William A. (1997) : Conceptual Indexing: A Better Way to Organize Know-
ledge, Rapport technique, Sun Microsystems, Inc.

25

