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Abstract
Clinical guidelines urge medical practitioners to perform Evidence-based Medicine: a practice

that requires practitioners to incorporate the best available evidence from published research

and from clinical practice, when making decisions. Due to the abundance of published medical

research available, practitioners often fail to follow evidence-based guidelines at point-of-care

due to time constraints. As such, this practice can vastly benefit from automatic systems that

can generate short, reliable, evidence-based summaries in response to queries posed by the

practitioners. Analysis of a corpus specialised for text summarisation in the evidence-based

medicine domain suggests that a summarisation system tailored to this domain must be capable

of performing two tasks: (i) query-focused text summarisation and (ii) automatic appraisal of the

evidence. In this thesis, we utilise data from a specialised corpus to address these two facets of

the problem. Our investigations lead to the following three contributions/findings:

1. A model for the automatic generation of evidence grades: We show that a supervised

classification model can be used to perform automatic quality grading of evidence on a

chosen scale. Rule-based approaches can be applied to the text of the medical articles to

extract useful features, which can be utilised in the classification task. Using a sequence of

high precision machine learning classifiers, we achieve recall and grading accuracies that

are comparable to human performance, and significantly better than baseline systems.

2. An approach for the summarisation of information from individual medical texts: We use a

simple extractive summarisation model, which attempts to identify salient sentences by

scoring them based on various statistics. We show that summarisation performance can be

significantly improved by deriving statistics from the specialised corpus, applying target-

sentence-specific scoring, incorporating query-associated information, and incorporating

domain knowledge in several ways. Our extractive summarisation system outperforms

multiple baseline and benchmark systems in our automatic evaluations with a percentile

rank of 96.8%.

3. A possible approach for the generation of bottom-line evidence-based summaries using

individual single-document summaries: Based on our investigations of human authored

summaries and our automatic single-document summaries, we show that content-rich
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single-document summaries may be used for the generation of bottom-line recommenda-

tions from multiple documents. We apply sentence level polarity classification on the single-

document summary sentences and show that automatically identified context-sensitive

polarities may be used to make bottom-line recommendations regarding interventions.

The thesis describes our corpus-based investigation of the evidence-based summarisation process.

Our development and evaluation of models for the core facets of evidence-based summarisation

fill some of the gaps in end-to-end medical question answering research. In executing this

research, we contribute to our general understanding of medical text summarisation approaches.
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1 Introduction

1.1 Overview

Evidence-based medicine is a practice that requires healthcare practitioners to obtain the best

quality clinical evidence from published medical research when answering clinical queries, in

addition to using their own clinical expertise [Sackett et al., 1996]. Due to the plethora of

available online text-based medical research articles, healthcare practitioners usually face the

problem of information overload when attempting to search for, appraise, and extract information

from relevant medical literature. Research has shown that practitioners often fail to pursue

evidence-based answers to their clinical queries primarily due to time related constraints at

point-of-care [Ely et al., 1999, 2005]. As such, there is a strong motivation for text processing

systems that can automate some of the processes involved in this practice. However, unlike

some other domains (e.g., the news domain [Sarker et al., 2013]), research on automatic text

processing in the medical domain is still very much in its infancy. The intent of our research

is to identify automatic approaches for performing some tasks associated with evidence-based

medicine practice. In particular, we explore the possible automation of the processes involved in

the generation of final recommendations in response to clinical queries, given the set of relevant

source documents associated with a query.

Our analysis of a corpus, containing a large number of medical questions and manually authored

evidence-based answers to these questions, reveals the various important aspects of an evidence-

based answer, and also the manual answer generation process. The generation of an evidence-

based answer is a relatively complicated process and begins when a healthcare practitioner is faced

with a clinical question during everyday practice. The practitioner is required to formulate a query

which represents his or her information need, and search a database to obtain relevant research

articles. Once the articles are retrieved, the practitioner must extract the important information

relating to the question posed and synthesise the information from different publications on the
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Chapter 1. Introduction

topic to produce a short, specific recommendation. Simultaneously, the practitioner must appraise

the extracted information to identify the quality of the evidence behind the given answer.

Figure 1.1 provides an example of the result of the step-by-step evidence-based answer generation

approach. The figure shows the question posed by the practitioner, the answers extracted from

various research articles based on the question, a bottom-line answer produced by manually

synthesising the different answers utilising domain expertise, and a grade indicating the quality

of the evidence from which the answer was generated. The query posed attempts to identify the

best strategy for impaired glucose tolerance in non-pregnant adults. Two answers are shown in

the example which were obtained from distinct research papers (the PubMed ID indicates their

identification number in PubMed1). Both papers indicate that lifestyle interventions work best

for this problem. These two answers are manually combined to produce the synthesised answer

which recommends several lifestyle interventions. Finally, the quality of the evidence associated

with the answer is presented, which in this case is B2 on a chosen scale [Ebell et al., 2004]. This

data comes from the ‘Clinical Inquiries’ section of the Journal of Family Practice3, which is a

popular source of real life data from evidence-based medicine practice.

Based on our observation of the data collected from evidence-based medicine practice, we

formulate the process of generating evidence-based answers as a two-step summarisation process

accompanied by a simultaneous sub-process that assesses the quality of the grade of the evidence.

When formulated in terms of input and output, the first step of the summarisation process can be

defined as follows:

Input-1: A clinical query

Input-2: A source article

Output: A summary of Input-2 based on the information needs of Input-1

Similarly, the second step can be formulated as a summarisation process with inputs and the

output as follows:

Input-1: A clinical query

Input-2: Multiple summarised source articles

Output: A multi-document summary of Input-2 based on the information needs of

Input-1

1http://www.ncbi.nlm.nih.gov/pubmed/. Accessed on 26th May, 2014.
2The scale and algorithms for determining the quality of an evidence are described later in the thesis.
3www.jfponline.com/. Accessed on 26th May, 2014.
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1.1. Overview

Question.
What is the best strategy for impaired glucose tolerance in nonpregnant adults?

Extracted Answer 1.
In the Finnish Diabetes Prevention Study, the lifestyle intervention group had
a 12.5% absolute risk reduction compared with the control group (NNT=8).
Successful lifestyle interventions included weight loss of 5% to 7%, decreased fat
intake, increased fiber intake, and 150 minutes of exercise per week. [PubMed ID:
11333990]

Extracted Answer 2.
In the US Diabetes Prevention Program (DPP), 3234 patients with IGT and a
body-mass index (BMI) of at least 24 kg /m2 were randomly assigned to one of the
following groups: placebo, metformin, or intensive lifestyle modification. After
an average follow-up of 2.8 years, there was a 14% absolute risk reduction in the
progression to diabetes in the lifestyle intervention group compared with placebo
(number needed to treat [NNT]=7). Successful lifestyle interventions included
weight loss of 5% to 7%, decreased fat intake, increased fiber intake, and 150
minutes of exercise per week. [PubMed ID: 11832527]

Synthesised Answer.
The best treatment strategy for impaired glucose tolerance IGT and impaired fasting
glucose IFG is lifestyle intervention with a structured weight loss program of diet
and exercise. Patients with IGT and IFG should be counseled to lose 5% to 7% of
their body weight and instructed on moderate intensity physical activity for 150
minutes per week.

Grade for Quality of Evidence: B

Figure 1.1: The various components of an evidence-based answer: A clinical question taken
from evidence-based medicine practice, two brief answers obtained from research articles to
answer the clinical question, a synthesised bottom-line answer, and a grade for the quality of the
evidence.

Finally, the quality of the evidence determination process can also be formulated in terms of input

and output as follows:

Input-1: A clinical query

Input-2: The source articles associated with an evidence-based answer to the query

Output: A grade on some chosen scale indicating the quality of the evidence obtained

for Input-1 from Input-2

3
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Thus, the whole process involves information extraction from text, summarisation of information

to generate bottom-line recommendations, and analysis of lexical information to deduce the

qualities of the extracted evidences. While the first two steps of summarisation need to be

completed in order, the process of generating a grade of evidence for the overall, multi-document

summary can be carried out independently of the other two processes. This is because the grade of

the evidence from which an answer is derived depends largely on the qualities of the publications

containing the evidence. In our model (explained in detail in Chapter 3), therefore, we attempt to

predict the quality grade of the final evidence from the source texts associated with it.

In this research work, we address the problem of automatic summarisation of medical text

for evidence-based medicine. In particular, we address the three related but distinct problems:

information extraction, generation of bottom-line answers, and grading of the quality of evidence.

1.2 Text Summarisation and Evidence-based Medicine

In this section we introduce some of the concepts of Natural Language Processing (NLP) that

are associated with evidence-based medicine. More specifically, we explain how the problem of

generating evidence-based summaries is essentially a text summarisation problem specialised to

this domain. The discussion in this section is intentionally kept brief, and the literature associated

with some of the discussion we present here is cited and elaborated in the next chapter.

1.2.1 Single and Multi-document Text Summarisation

Automatic text summarisation approaches can be classified based on the number of input doc-

uments/items [Mani, 2001]. Single-document summarisation is the simplest case, where the

purpose of the summary is to present the important information in the document in a condensed

manner. The problem, therefore, is to identify important content in a document and present it

as the summary. The problem of multi-document summarisation is more complex than simply

finding and presenting text segments. When summarising information from multiple documents,

the summariser has to make decisions about the ordering and synthesis of information from

multiple documents. For the summaries to be coherent, information must be presented in the

correct order; for the summaries to be precise and concise, presenting redundant information

from different documents must be avoided; finally, inconsistent information present in different

documents must be identified and dealt with. Understandably, summarising multiple documents

automatically is a much more challenging task and requires more customisation based on the

domain.
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1.2.2 Extractive and Abstractive Summarisation

Extractive summaries are simply text extracts that are presented as summaries. Text extracts

can be words, phrases, sentences or text windows of predefined sizes. While such approaches

are sufficient for extracting and presenting relevant content, the extracts are generally a list of

disjoint textual units [Sparck Jones, 1999, 2007]. As such, they may lack sufficient information,

be grammatically incorrect and lead to possible misinterpretation. Alternative methods generate

summaries that have proper structure and are usually grammatically correct. Such summaries

may be generated by organising extracted material into a deliberate form, or by generating novel

text from conceptual or other forms of representation (e.g., a lexical graph). Such summaries are

called abstractive summaries, and this is the type of summaries that humans generally produce.

The automatic generation of abstractive summaries generally requires additional processing

compared to the generation of extractive summaries.

1.2.3 Incorporating Query-focus in Summarisation

The content of an automatically generated summary can be influenced by the presence of a

query [Mani, 2001, Sparck Jones, 2007]. Unlike generic summarisation, where the summary

presents the key information from one or more documents, when summarising based on a query,

only information relevant to the query is extracted and summarised. Thus, the summarisation

approaches that take queries into account are more targeted towards satisfying the information

need of the query. Such approaches are called query-focused summarisation approaches.

1.2.4 Summarisation and Text Classification

Text classification is the task of assigning bodies of text (e.g., documents) to distinct classes

or categories based on the content of the text [McCallum and Nigam, 1998, Kilicoglu et al.,

2009, Kim et al., 2011]. Content based classification techniques generally attempt to extract

relevant content from the text bodies (e.g., words, phrases and so on) and use that information as

features for deciding the category or class for that body of text. Text classification approaches

have been applied to solve various NLP problems including summarisation, where text segments

are classified as summary sentences or non-summary sentences. Text classification has also

been applied, in various domains including medical, for categorising text in terms of quality of

information.

The tasks described in this thesis attempt to let the information seeker (i.e., the healthcare practi-

tioner) specify the information needs through a query. Based on the information needs expressed,

our approaches attempt to perform various tasks associated with evidence-based summarisation,
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including single- and multi-document summarisation, and the automatic prediction of evidence

grades.

1.2.5 Formalising Evidence-based Summarisation

We have suggested that the preparation of evidence-based answers can be thought of as a

step-by-step summarisation process which starts when the information needs are expressed by

the practitioner in the form of a query. The first step of identifying and extracting content

from individual medical documents can be modelled as a query-focused, single-document

summarisation process, which may be abstractive or extractive based on the needs. Since, in

our case, the purpose of this step is to extract key information from source documents, an

extractive summarisation model appears appropriate. The task for this step is to identify the

key information and extract it. The second step, which involves synthesising information from

multiple documents based on the information needs of the query, can be modelled as query-

focused, multi-document summarisation. Again, this can be extractive or abstractive, but is likely

to be the latter. This is because the intent of this step is to generate concluding recommendations

based on the information provided, which requires the synthesis information from each of the

individual extracts. Finally, the task of appraisal of medical articles relevant to a specific query to

estimate a grade for the quality of evidence can be modelled as a text classification problem. The

grade is not assigned to single documents, instead it is based on a number of features which are

obtained from all the relevant input documents combined (i.e., the full set of evidence). Since this

process relies on the source documents from which the evidence is obtained, it is not necessarily

reliant on the summarisation process and can be seen as a parallel process.

Thus, our formulation of the process of generating evidence-based answers to clinical queries

involves automatic text summarisation at different granularities and automatic text classification.

Combining the inputs and outputs associated with the tasks, we model our approaches based on

the following assumptions:

1. The task of evidence-based answer generation involves information extraction, appraisal

and synthesis.

2. The tasks of grading the quality of evidence and summarising information take place in

parallel to each other and the techniques employed for each of the tasks complement each

other.

Importantly, in real life evidence-based medicine practice, the outputs for each of these processes

are reliant solely on the text-based inputs, but, in practice, the transformation of input texts into

evidence-based summaries are performed using the domain expertise of the practitioners. Thus,
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automating these techniques is challenging since vast amounts of domain knowledge must be

incorporated. At the same time, automation is desirable due to the amount of valuable time it can

save. We provide some estimates about the time required to manually perform some of the tasks

associated with evidence-based medicine practice later in the thesis, which indicate how much

time can be saved by the automation of these tasks.

1.3 Research Questions Addressed

A computational account of evidence-based summary generation requires techniques for the

two core issues: generating summary content and generating quality grades for evidence. As

mentioned in the previous section, generating summary content can be viewed as a two-step

summarisation process. In the first step, relevant content is summarised from individual source

documents based on the focus of a given query. This single-document summarisation stage

specifies the importance of various text segments that can be utilised by another multi-document

summary generation step to provide short, bottom-line answers. Assessing the quality of evidence

is a simultaneous process, and the qualities are determined by the practitioners during the answer

generation process. We, therefore, focus on three related problems in this thesis: generating

grades for the qualities of evidence, summarising individual documents based on the information

needs of a query, and generating bottom-line answers to clinical queries as a multi-document

summarisation process.

Solutions to these three problems affect the eventual output of the summarisation system: a short,

evidence-based summary and a grade for the quality of the evidence of the summary. However,

simply evaluating the end product of the summarisation system obscures our understanding

of how solutions to the three problems affect the final summary. Accordingly, to study each

problem effectively, we investigate the three components of the summarisation system — these

are described in more detail in Chapters 4, 5, and 6. We evaluate these components in isolation

from each other, using appropriate data sets, to minimise the number of confounding factors.

As a consequence of this methodology, we structure the thesis to present answers to the core

research questions in evidence-based summarisation. We discuss the general problem of evidence-

based summarisation and its functionality in an end-to-end clinical question answering system,

but do not attempt to create or evaluate such a system. It would require solutions to additional

but peripheral problems such as information retrieval — which is the research area that focuses

on obtaining information resources relevant to information needs from collections of information

sources. However, exploration of such peripheral research areas is outside the scope of the

research described in this thesis. Instead, we focus on the three problems which are key to

evidence-based summarisation; we describe these now in more detail.
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1.3.1 How can the various properties of medical text be utilised to automatically
appraise the quality of evidence on a specialised scale?

The grade for the quality of evidence accompanying a query-focused summary depends on a

number of factors that involve each of the individual source texts associated with the query, and

also all the texts collectively. In our corpus, the possible grades that a summary can have are

A, B, and C, which indicate high, moderate, and low quality answers respectively, according

to the Strength Of Recommendation Taxonomy (SORT) [Ebell et al., 2004]. Using this as our

target scale and the gradings provided in our corpus as target grades, we first explore and identify

important features of the source texts that influence the grades of evidence. The features we

analyse include those that are embedded within the texts and also meta-data associated with the

source texts. We first examine the extent to which various features influence evidence grades.

We apply rule-based approaches to automatically extract some of the features from the source

texts, and then model the problem of evidence-grading as a text classification problem using our

extracted features. We measure the performance of our approach by comparing its accuracy with

some baseline systems, and also by comparing it with human agreement for this problem.

1.3.2 What approaches can be used to generate content-rich, query-focused sum-
maries from single documents?

When provided with a query and a source text, the first problem is to select informative content

from the text based on the information needs of the query. The selected content must be short

and yet have sufficient coverage of the relevant information. In this thesis, we explore extractive

summarisation approaches for the task of content selection. In our approach, we consider

sentences as extractable text segments and produce three sentence extractive summaries from

the source texts. Our summarisation approach is data-driven, since we utilise various statistics

from a specialised corpus. We develop a target-sentence-specific ranking mechanism to perform

extractive summarisation, combine a range of surface, intra-sentence and inter-sentence features,

and incorporate medical domain knowledge in various ways to assign scores to sentences. Our

approach produces a ranked list of sentences for each document. Also, since the lengths of the

target summaries are known (in our case, we use summary lengths of three sentences in line with

related research in this domain [Lin and Demner-Fushman, 2007]), we apply separate scoring

mechanisms for each target sentence (i.e., first, second, or third). This allows us to focus on

different types of lexical content with each of the summary sentences (i.e., each of the three

summary sentences have a different purpose). We evaluate our approach relative to existing

baselines and benchmark approaches, and show that our extractive approach is superior.
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1.3.3 How can a bottom-line recommendation be generated by combining infor-
mation from multiple documents?

Given a clinical query, there are generally multiple documents providing relevant information

that can be used to answer the query. To generate a bottom-line recommendation, the rele-

vant information must be synthesised to assess the information presented in them collectively.

The synthesis of information is perhaps the most difficult because it requires practitioners to

utilise their domain expertise and judge the contribution of each individual evidence. The final

recommendations have to take into account various information such as the effectiveness of

interventions for disorders, side-effects, types of interventions, etiologies, prognoses, manage-

ment procedures, general suggestions and so on. Due to the complex nature of this task, it is

possible that experts often mostly rely on their own expertise for the final decision making, rather

than extracting evidence from literature. Therefore, we commence our work in this area by first

performing an automatic analysis to estimate the extent to which experts use information from the

literature to generate the bottom-line recommendations. We do this by defining several techniques

to measure the degree to which information in the bottom-line summaries in our corpus are

covered by information contained in the source documents. We also apply the same coverage

measurements to determine the validity of a two-step summarisation model and the possible

advantages and disadvantages of such an approach. We analyse the applicability of two popular

existing multi-document summarisation techniques to generate bottom-line recommendations,

and propose an approach using automatic, context-sensitive sentence level polarity classification.

Finally, we discuss possible future directions for the generation of bottom-line summaries using

sentence level polarity classification approaches.

1.4 Research Findings

We focus on the three questions above in order to provide an account of evidence-based answer

generation as a specialised text summarisation process. Our investigations lead to a number of

research findings that constitute novel contributions to the field of medical text summarisation,

and, therefore, to the broader field of computational linguistics. These include novel content

selection and ranking approaches that have potential applications to other domains, an approach

for grading the quality of evidence via text classification, and approaches for performing multi-

document summarisation in this domain. We now briefly present descriptions of the three

contributions and a summary of corresponding evaluation results. These are described in detail in

subsequent chapters.
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1.4.1 An Approach for Automatic Evidence Grading

Using supervised machine learning, we identify important features that influence evidence-grades.

Applying rule-based approaches that use regular expressions, we automatically extract certain

important features from the source texts, such as the Publication Types of the articles. Our

experiments show that such an approach is effective. We combine computationally extracted

features, and features collected directly from the meta-data associated with articles to automati-

cally estimate the grades of evidence-based summaries. We propose a classification strategy that

utilises a sequence of high precision classifiers to perform the classification task. This leads to

our first research finding:

Research Finding 1. Grades indicating the qualities of clinical evidence can be automatically

predicted through the use of supervised machine learning and informative features. The structure

and content of medical abstracts can be exploited by rule-based systems to extract important

features to be used in the supervised machine learning process. We show that by applying

carefully selected features, supervised machine learning can be used for evidence grading. We

also show that our grading system outperforms our proposed baseline and performs comparably

to humans on the same data set.

1.4.2 Extractive Summarisation for Content Selection and Ranking

We apply a classic sentence scoring approach which uses a linear equation of weighted feature

scores for scoring each sentence. We introduce several novelties such as the use of target-

sentence-specific scoring (i.e., applying separate scores depending on the position of the target

sentence in the summary). In addition to using various statistics from our specialised corpus,

we also incorporate domain knowledge in a number of ways including classification techniques

for identifying the rhetorical status of sentences. Furthermore, we customise the summarisation

approach to the type of question posed and show that considering this information improves the

qualities of extractive summaries. This leads to our second finding:

Research Finding 2. The qualities of extractive summaries in this domain can be improved by

utilising statistics from a specialised corpus. The availability of data from a specialised corpus

enables the derivation of various statistics from seen data, rather than intuitions about text in the

medical domain. We also customise the scoring approach to the types of questions and show that

incorporating that information in the summary generation process can benefit summarisation

performance. Additionally, we apply a target-sentence-specific scoring strategy, as opposed

to a generic scoring strategy which gives the same feature score irrespective of the position of

the target sentence in the summary. A target-sentence-specific scoring strategy overcomes the

problem of underfitting that approaches using a generic scoring strategy face. Our extractive

summarisation approach outperforms several well-established baselines within our domain and

10



1.5. Thesis Outline

also several domain-independent summarisation techniques when evaluated on a relative scale.

1.4.3 Multi-document Summarisation for Answer Generation

We perform an in-depth analysis on a corpus specialised in text summarisation for evidence-based

medicine and conclude that it may be useful to consider the summary generation process to be a

two-step process, where the second step involves synthesising information from the output of

the query-focused, single-document summaries mentioned above. We define some quantitative

measures to estimate the validity of such an approach. We also assess the performance of

two existing abstractive, multi-document summarisation approaches to this task of information

synthesis and show why some approaches are likely to work while others are not. Finally, we

show that automatic, sentence level polarity classification techniques can be applied to generate

recommendations relative to interventions, which in turn can be used to generate bottom-line

recommendations. These analyses lead to our final research finding:

Research Finding 3. A significant proportion of the contents of the bottom-line recommendations

prepared by evidence-based medicine practitioners comes from the available medical literature.

Thus, the generation of bottom-line recommendations in response to a clinical query may

be performed automatically via text summarisation approaches. Such an answer generation

technique may benefit from the use of a two-step process, if the first step is capable of extracting

content-rich text and discarding noise. A possible way to use the single-document extractive

summaries is to apply context-sensitive polarity detection techniques.

1.5 Thesis Outline

Chapter 2 provides a detailed overview of relevant literature. The review is divided into two parts.

In the first part, we provide an in-depth explanation of the practice of evidence-based medicine,

the problems associated with the practice, and explain how NLP can solve many of these problems.

In the second part of our review, we explore automatic text summarisation techniques, starting

from classic, domain-independent approaches up to recent approaches specific to the domain of

our interest. We also discuss automatic summary evaluation techniques in this chapter.

Chapter 3 presents a detailed explanation of the data we use. In particular, it discusses our

corpus, which is specialised for summarisation for evidence-based medicine. It also presents

various corpus statistics, the annotation process which was carried out as part of this research,

and examples from the corpus.

Chapter 4 describes our approach to the problem of automatic quality grading of evidence. The

chapter presents our analysis of features, the rule-based approach for identifying the publication
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types of articles automatically, and the combination of a number of useful features in a supervised

machine learning task to predict evidence grades indicating the qualities of evidences.

Chapter 5 details our extractive summarisation approach. It presents our approach in collecting

important statistics from the corpus, the use of target-sentence-specific scoring, the incorporation

of domain knowledge in various forms, and the incorporation of question type information in

our sentence scoring approach. It also provides the evaluation of our system relative to several

well-established baselines.

In Chapter 6, we identify possible approaches for the generation of bottom-line summaries.

We discuss our analysis of the corpus to validate the possibility of a two-step summarisation

process. Finally, we explore two abstractive summary generation techniques, and discuss the use

of context-sensitive polarity classification techniques to generate bottom-line recommendations.

Finally, in Chapter 7, we conclude with a summary of the thesis, outlining future directions and

possible applications of the work.
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2 Literature Review

2.1 Introduction

In this chapter, we review some of the literature that is relevant for the research described in

this thesis. We commence the chapter by providing a detailed description of evidence-based

medicine, how it is supposed to be practised, its evolution over time, its goals, the obstacles

faced by practitioners, and a brief overview of how various Natural Language Processing (NLP)

techniques can aid the practice. This part of the review illustrates the motivation behind specialised

NLP research to support the various aspects of evidence-based medicine practice. Following this

discussion, we focus on the main topic of research in this thesis: automatic text summarisation. We

first provide a brief review of generic summarisation techniques, starting from early approaches

to more recent ones. The discussion presents the state-of-the-art in summarisation/question-

answering technologies in this domain, and points out the gaps in research that need to be filled to

implement end-to-end systems. We then provide a relatively detailed discussion of summarisation

approaches that have been applied to the medical domain, and analyse some recent summarisation

approaches in detail. In particular, we attempt to answer the following questions in this chapter:

• What is evidence-based medicine and what are the major obstacles hindering evidence-

based medicine practice?

• What are the characteristics of text in the medical domain?

• What tools and resources are available for text processing in the medical domain?

• How can NLP techniques help solve some of the problems associated with evidence-based

medicine?

• What is automatic text summarisation and what is its relevance to evidence-based medicine?

13
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• What is the current state-of-the-art in automatic text summarisation, particularly for the

medical domain?

• How can automatic text summarisation approaches for evidence-based medicine be evalu-

ated?

The rest of the chapter is organised as follows: we discuss the practice of evidence-based medicine

in Section 2.2; in Section 2.3 we discuss the tools and resources available to practitioners to

practise evidence-based medicine; in Section 2.4, we discuss some of the obstacles associated

with evidence-based medicine, and provide an overview of the ways in which NLP can help solve

some of the problems; we review some literature associated with automatic text summarisation

in Section 2.5; in Section 2.6 we focus our review on question answering and summarisation

techniques specific to the medical domain; in Section 2.7 we briefly review some evaluation tech-

niques for automatic text summarisation; we conclude the chapter in Section 2.8 by summarising

the key discoveries from the literature review.

2.2 Evidence-based Medicine

The term ‘evidence-based medicine’ was defined initially as “a systematic approach to analyse

published research as the basis of clinical decision making" [Claridge and Fabian, 2005] by

a group of researchers at McMaster’s University. In practice, it involves much more than just

analysing published papers, and a more concrete and widely accepted definition of evidence-based

medicine was coined by Sackett et al. [1996] who explained it as “the conscientious, explicit, and

judicious use of current best evidence in making decisions about the care of individual patients".

Current clinical guidelines urge physicians to practise evidence-based medicine when providing

care for their patients. As the definition suggests, and as will be elaborated later in this section,

evidence-based medicine requires an approach that integrates the best external evidence with

individual clinical expertise and patients’ choice. Good practice of evidence-based medicine

involves finding and appraising current medical evidence before making a decision. Good doctors

use both individual clinical expertise and the best available external evidence, and neither alone

is enough.

The goal of evidence-based medicine is to improve the quality of patient care, particularly in the

long run, through the identification and promotion of practices that work, and the elimination of

ineffective or harmful ones [Selvaraj et al., 2010]. This requires clinicians to be open-minded and

to try new methods that are scientifically proven to be effective, and to discard old methods that are

not [Crawford, 2007]. It must also be mentioned that whatever the evidence, values and preference

judgements are implicit in every clinical decision. This means that according to the evidence-

based medicine philosophy, clinical decisions, recommendations, and practice guidelines must not
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only attend to the best available evidence, but also to the values and preferences of the informed

patient. Values and preferences refer not only to the patients’ perspectives, beliefs, expectations,

and goals for life and health, but also to the processes individuals use to consider the available

options and their relative benefits, harms, costs, and inconveniences [Montori and Guyatt, 2008].

This is a crucial point in the modern definition of evidence-based medicine [Ismach, 2004]. In

essence, evidence-based medicine is rooted in five linked ideas:

1. Clinical decision should be based on the best available scientific evidence;

2. The clinical problem – rather than the habits or protocols – should determine the type of

evidence to be sought;

3. Identifying the best evidence means using epidemiological and biostatistical ways of

thinking;

4. Conclusions derived from identifying and critically appraising evidence are useful only if

put into action in managing patients or making patient-oriented healthcare decisions; and

5. Performance should be constantly evaluated.

Greenhalgh [2006] points out the role of mathematics in evidence-based medicine by defining

it as “the use of mathematical estimates of the risk of benefit and harm, derived from high

quality research on population samples, to inform clinical decision making in the diagnosis,

investigation or management of individual patients”. Numerous other definitions of evidence-

based medicine exist, and this perhaps indicates that it is one of those concepts which cannot be

defined coherently with a single sentence. The philosophy of evidence-based medicine offers

some apparent advantages including an emphasis on learning about the patient’s problems and

making hidden assumptions explicit (e.g., about the preferences of the patient) [Sackett et al.,

2000]. A patient-oriented approach is key to the practice – combining the best patient-oriented

evidence with patient-centred care, placing the evidence in perspective with the needs and desires

of the patient [Slawson and Shaughnessy, 2005]. In the following subsections we provide a brief

history of evidence-based medicine and describe how it is currently practised. In later sections,

we discuss the problems associated with evidence-based medicine practice, the resources and

tools available for text processing in this domain and the solutions that NLP can offer.

2.2.1 History of Evidence-based Medicine

Although a formal approach to evidence-based medicine is relatively new, the underlying concept

has a long history. Claridge and Fabian [2005] provide a brief history of evidence-based medicine
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and describe the various eras or phases during which the practice evolved. Evidence-based

medicine in ancient times consisted mainly of historical and anecdotal accounts of disease

treatments. Records of evidence-based treatments of diseases date as early as the Egyptian

civilisation. However, the modern approach to evidence-based medicine did not commence until

a few hundred years ago. Roughly during the seventeenth century, the renaissance era of evidence-

based medicine began, and, during this time, personal journals and text books detailing disease

treatments became more prominent. During the twentieth century, evidence-based medicine

underwent a transitional phase as the sharing of information through textbooks and peer reviewed

journals became more popular. This was followed by the modern era of evidence-based medicine,

which began around the 1970’s and was primarily driven by rapid technological advancements.

Powerful computers and databases with massive storage capacity allowed the compilation of

large amounts of data which could be used to perform evidence-based medicine. The emergence

of the internet has given a massive boost to information sharing and consequently helped in the

growth of evidence-based medicine by providing healthcare practitioners with access to a vast

amount of data and information. However, the abundance of information has also given rise to

problems in information retrieval and extraction, and solving these problems is an area of active

research.

2.2.2 Evidence-based Medicine in Practice

Formally, the use of evidence in clinical decision making involves “the practice of assessing the

current problem in the light of the aggregated results of hundreds or thousands of comparable

cases in a distant population sample, expressed in the language of probability and risk” [Green-

halgh, 1999]. The practice, therefore, goes far beyond simply using the practitioner’s clinical

expertise, experience and knowledge of medical literature. It involves the efficient use of infor-

mation search strategies to locate reliable and up-to-date information from varying sources and

extraction strategies to efficiently collect and analyse retrieved information. The practice includes

a process formally known as the Critical Appraisal Exercise which involves the following steps

[Sackett et al., 1991, Selvaraj et al., 2010]:

1. defining a patient problem and the information that is required to resolve the patient’s

problem;

2. conducting an efficient literature search;

3. selecting the best of the relevant studies, and applying the rules of evidence-based medicine

to determine their validity;

4. presenting the strengths and weaknesses of the evidence in an effective manner; and
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5. extracting the relevant evidence and applying it to the patient care problem.

Practising evidence-based medicine involves applying these steps in real time. When a clinical

encounter generates a question, it is researched on a real-time basis and immediately incorporated

into the decision making process [Ismach, 2004]. Consequently, these are perhaps the most

important steps in evidence-based medicine practice, and we now look at each of these in more

detail.

Defining a Patient Problem as a Clinical Question

Formulating the patient problem forms the basis for the clinical question, which is used to search

resources for an evidence-based answer. This is the first step in obtaining evidence for patient

care. This is not an easy task and a well formulated question includes information about a patient

(symptoms, signs, test results and knowledge of previous treatments), the particular values and

preferences of the patient and other factors that could be relevant [Greenhalgh, 2006]. All that

information should be summarised into a succinct question defining the problem and the specific

additional items of information needed to solve the problem. Sackett et al. [2000] mention three

important aspects of a good clinical question:

• First, define precisely whom the question is about.

• Next, define which manoeuvre is being considered in the patient or populations (e.g., drug

treatment), and, if necessary, a comparison manoeuvre.

• Finally, define the desired outcome.

Good question formulation can be best explained through an example. Consider the following

two versions of the same question modified from Greenhalgh’s [2006] examples:

• Mrs X has developed light-headedness on these blood pressure tablets and she wants to

stop all medication; what should she be advised to do?

• In a 68-year-old white woman with essential hypertension, no coexisting illness, and no

significant past medical history, do the benefits of continuing therapy with bendrofluazide

(chiefly, reduced risk of stroke) outweigh the inconvenience?

Clearly, the second question provides more important details than the first one. It reveals important

factors such as age, coexisting illnesses, medical history, and so on. Thus, while the first question
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is almost unanswerable without using additional context, the second question provides sufficient

information for a relevant literature search.

There has been substantial research in the area of medical question formulation and query-focused

summarisation, and, in recent years, particularly in the field of evidence-based medicine (e.g., a

recent example of research drive in this area is the CLEF eHealth shared tasks [Suominen et al.,

2013]). This is because it has been shown that the answerability of questions can be largely

increased by better query formulation among other things [Gorman and Helfand, 1995]. The

PICO format, which has four components, has become the accepted framework for formulating

patient-specific clinical questions [Richardson et al., 1995]. The four components are: primary

Problem/Population, main Intervention, main intervention Comparison, and Outcome of inter-

vention. These components reflect key aspects of patient care, are recommended for the practice

of evidence-based medicine and were originally developed for therapy questions, only to be

extended later to all types of clinical questions [Armstrong, 1999]. Studies have shown that this

framework improves the clarity of clinical problems and results in more precise search results

[Booth et al., 2000, Cheng, 2004]. Although the PICO format has gained popularity with time, it

is well known that not all clinical questions (even entirely evidence-based ones) can be mapped

in terms of PICO elements, and this is particularly true for non-therapy questions [Huang et al.,

2006]. There is also evidence that even doctors find it difficult to formulate the questions in

terms of the PICO format [Ely et al., 2002]. Variants of the framework have been proposed (e.g.,

PESICO [Scholosser et al., 2006], PIBOSO [Kim et al., 2011]); they offer more flexibility and

comprehensiveness, and have applications beyond query formulation.

Conducting Literature Search

The medical domain has large amounts of lexical resources, and searching for relevant literature

requires expertise in this area. An early study claimed that there were over 20 million medical

articles1 available, and that, every month, thousands of medical journals were published world-

wide [Katz, 2001]. These articles are scattered over many databases, and obtaining the relevant

lexical resource requires searching these databases. A number of databases, search engines

and other tools are dedicated to providing access to medical literature, as we will see in the

next subsection. Searching for appropriate literature can include searching from raw databases,

databases with search filters, databases of pre-appraised articles, databases of synthesised articles

and even personal contact with human sources. Some research has been carried out on strategies

for retrieving high quality medical articles [Haynes et al., 1994, Hunt and McKibbon, 1997,

Shonjania and Bero, 2001, Montori et al., 2005]. Searching for the correct literature is a rather

tedious task, and it is in fact one of the major problems associated with evidence-based medicine

1The Medline database (discussed later) currently indexes over 22 million medical articles.
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practice [Ely et al., 2005].

Selecting the Best Resources

The selected articles must be closely relevant to the problem at hand, and, at the same time, they

must have a high ‘level of evidence’. The ‘level of evidence’ of a medical publication may depend

on a number of factors such as the publication type and the number of subjects involved in the

study. Checking the relevance of the papers requires a thorough analysis, and a ranking system is

usually employed for examining the ‘level of evidence’ of different sources. Medical publication

types include Systematic Reviews (SR), Randomised Controlled Trials (RCT), Meta-Analyses

(MA), single Case Studies, Tutorial Reviews and many more, including even personal opinions.

Although all of them provide evidence of some form, their levels of evidence vary significantly.

Figure 4.3, slightly modified from the one provided by Gilbody [1996], provides a ranking of

some of the common medical article types (highest ranked on top).

Figure 2.1: Quality of evidence with respect to publication types, adapted from Gilbody [1996].

A detailed analysis of these different types of studies is outside the scope of this survey. Guidelines

are available for healthcare practitioners to obtain necessary information from each of these types

of studies and evaluate their levels of evidence. For example, one of the earliest guidelines is

provided by Sackett et al. [1991]. It provides clear and concise criteria for Randomised Controlled

Trials, Case Control Studies and so on. To date, there are numerous books and other resources

available, providing the required guidelines for selecting articles while practising evidence-based

medicine. Examples of guidelines available online include ASSERT (A Standard for the Scientific
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and Ethical Review of Trials)2, PRISMA (Preferred Reporting Items for Systematic Reviews

and Meta-Analyses)3 and EQUATOR (Enhancing the QUAlity and Transparency Of health

Research)4.

Identifying Strengths and Weaknesses

Once relevant papers are identified, each paper must be studied in detail to extract the evidence it

contains with respect to the problem at hand. Practitioners are particularly interested in studying

in detail what type of study was conducted, on how many subjects, where the subjects came

from, what treatment or other intervention was offered, how long the follow up period was and

what outcome measures were used [Greenhalgh, 2006]. For quantitative tests, analysing the

results of statistical tests is also an important task. To the practitioner, the single most important

detail contained in each article is the explanation of the results, together with information about

their reliability. Thorough analysis of these reveals the strengths of the studies and exposes their

weaknesses or shortcomings. Identification of the strengths and weaknesses provides a clear

indication of the quality of the evidence provided by each article, and hence, aids the practitioner

to make the final decision.

Applying Evidence to Patient Care

Practitioners make their final judgement considering the outcomes presented in the article(s) and

the relevance of the article(s) to the problem at hand. Often, a number of articles suggest the same

solution or a similar one, making it easier for the practitioner to make a decision. However, there

are also cases when chosen articles provide contradictory outcomes. In such cases, practitioners

have to choose between outcomes based on personal experience, the ‘quality of evidence’ of the

articles, the closeness of the articles to the given problem or other sources of evidence. Note that

the ‘quality of evidence’ here refers to the overall quality of the evidence obtained from all the

articles combined, whereas the ‘level of evidence’ of a single article refers to the reliability of

that particular article only. The following subsection further elaborates on this topic.

Generally, countries have mandatory clinical practice guidelines that must be adhered to when

performing evidence-based medicine. Practitioners primarily navigate through these guidelines

when practising evidence-based medicine. As such, it is actually often the providers/developers

of clinical guidelines who are required to perform elaborate literature searches and follow the

approaches mentioned above for the preparation of the appropriate practice guidelines. Thus, the

primary users of the system we describe in this thesis are not only healthcare practitioners, but

2http://www.assert-statement.org. Accessed on 26th May, 2014.
3http://prisma-statement.org. Accessed on 26th May, 2014.
4http://www.equator-network.org. Accessed on 26th May, 2014.
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also, crucially, the developers of clinical practice guidelines.

2.2.3 Quality of Evidence

The quality, strength or grade5 of a recommendation for clinical practice is based on a body

of evidence typically consisting of more than one study. This usually takes into account the

level of evidence of the individual studies; the type of outcomes measured by these studies; the

number, consistency and coherence of the evidence as a whole; and the relationship between

benefits, harms and costs [Ebell et al., 2004]. Various organisations and publications have their

own measure of evidence and, according to a research report [West et al., 2002] produced by

the Agency of Healthcare Research and Quality (AHRQ), more than 100 grading scales are in

use today. The report also proposes that any system for grading the strength of recommendation

should consider three key elements: Quality (the extent to which the identified studies minimise

the opportunity for bias), Quantity (the number of studies and subjects included in those studies)

and Consistency (the extent to which findings are similar between different studies on the same

topic).

There has been research to identify a grading system that is suitable for the practice of evidence-

based medicine. Among other requirements, studies have specified the need for a balance

between simplicity (such that assessing the quality of evidence is not very time-consuming)

and clarity (so that evidence can be easily classified into a specific grade) [Atkins et al., 2004].

Comprehensiveness of grading systems is also seen as an important factor [Ebell et al., 2004]

since they need to be applied to studies of screening, diagnosis, prevention, therapy and prognosis.

Despite the presence of a variety of grading systems, only a minority of them adequately address

these requirements. Carrying out an in-depth review of all the popular grading systems is outside

the scope of this paper. Therefore, we focus, for the rest of this subsection, on the Strength of

Recommendation Taxonomy (SORT) grading scale, which is the grading system we use in this

thesis.

The SORT Grading Scale

SORT was first proposed in 2004 through a collaborative effort by the editors of multiple

family medicine journals with the purpose of providing authors and readers of family medicine

journals with a simple, user-friendly system for the grading of evidence. SORT provides a

uniform recommendation-rating system that can be applied throughout the medicine literature.

Its simplicity and straightforwardness increases its usefulness to practitioners [Weiss, 2004].

5The three words – quality, strength and grade – are used synonymously in this thesis when referring to an
evidence-based recommendation.
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This taxonomy uses only three ratings – A (strong), B (moderate) and C (weak) – to specify

the strength of recommendation of a body of evidence [Ebell et al., 2004]. Grade A reflects a

recommendation based on consistent and good-quality [a good-quality evidence consists of high

quality Systematic Reviews, Meta-Analyses or Cohort Studies with good followup], patient-

oriented evidence. Grade B reflects a recommendation based on inconsistent or limited-quality,

patient-oriented evidence. Grade C reflects a recommendation based on consensus, usual practice,

opinion, disease-oriented evidence, or Case Series for studies of diagnosis, treatment, prevention

or screening. An important aspect of SORT is that it allows grade conversion to other popular

grading scales, such as the ones used by the Centre for Evidence-Based Medicine (CEBM)6 and

the BMJ Publishing Group, enabling authors, editors and readers to move between taxonomies

[Ebell et al., 2004].

Chapter 4 of this thesis focuses on the automatic assessment of the quality of medical evidence

using the SORT scale. Details about this research work, and further details about the SORT

system are provided in that chapter. We use SORT as our target grading scale because of its

flexibility and also because of the availability of annotated data based on this grading scale.

2.3 Resources for Evidence-based Medicine and the Medical Do-
main

Evidence-based medicine requires practitioners to stay up-to-date with the latest medical literature

and use the latest research discoveries. This is a daunting task. There are resources available on

which the healthcare practitioner can rely. In this section, we specify some of the resources and

tools available for this practice.

2.3.1 The Medline Database and Similar Databases

The Medline database is maintained by the National Library of Medicine (NLM), U.S.A., and

it is the most popular source of up-to-date evidence [Taylor et al., 2003]. It indexes over 5,000

journals published in over 70 countries and holds more than 22 million records. Medline is

available online, either via the NLM PubMed7 interface or from commercial vendors who use

their own search engines. PubMed incorporates a lexical resource of medical terms, the Medical

Subject Headings (MeSH)8. There are 26,853 descriptors in the 2013 version of MeSH. There

are a total of 213,00 entry terms that assist in finding the most appropriate MeSH headings.

Queries to PubMed are analysed and expanded with MeSH terms, thus increasing the likelihood

6http://www.cebm.net/?o=5653. Accessed on 26th May, 2014.
7http://www.ncbi.nlm.nih.gov/pubmed. Accessed on 26th May, 2014.
8http://www.nlm.nih.gov/pubs/factsheets/mesh.html. Accessed on 26th May, 2014.
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of finding documents that use variations of the same term. Furthermore, the articles returned

contain meta-data in addition to the MeSH terms, some of which can be useful to determine

the quality of evidence. For example, skilled searchers may specify the publication types of

articles to obtain better quality articles. The database therefore attempts to aid search and retrieval

of relevant articles. Information Retrieval (IR) research in this area relies largely on the extra

information available with each article for efficient and accurate retrieval.

Despite the broad coverage of Medline and its impressive collection, many important medical and

paramedical journals are not covered by this database, particularly journals not published in the

United States. Hence practitioners often have to refer to other similar databases that specialise in

the required areas. The following is a list of databases that are relevant to various areas. Note that

providing details of each database is outside the scope of this thesis, and therefore appropriate

links to the databases are provided as footnotes. The list of databases is by no means exhaustive.

• Allied and Complementary Medicine (AMED)9 – Produced by the British Library, it covers

a range of complementary and alternative medicine including homeopathy, chiropractic,

acupuncture, and so on.

• CINAHL10 – It covers all aspects of nursing, health education, occupational therapy, social

services in health care and other related disciplines.

• Current Contents Search11 – Updated weekly, it indexes journal tables of content on or

before their publication date.

• Embase12 – It is the database of Excerpta Medica which focuses on drugs and pharmacol-

ogy, clinical medicine and other biomedical specialities. It is more up-to-date than Medline,

with more detailed indexing and better European coverage.

• PsycInfo13 – Produced by the American Psychological Association, it covers psychology,

psychiatry and related subjects.

2.3.2 Databases of Synthesised Information

One problem with Medline and other ‘raw’ databases is that they contain articles of varying

quality – from high quality SRs and MAs to informal, unreliable clinical trials. When specific
9http://www.ebscohost.com/academic/AMED-The-Allied-and-Complementary-Medicine-Database. Accessed

on 26th May, 2014.
10http://www.cinahl.com. Accessed on 26th May, 2014.
11http://thomsonreuters.com/current-contents-connect/. Accessed on 26th May, 2014.
12Available from a number of database suppliers including Ovid (http://www.ovid.com. Accessed on 26th May,

2014.)
13Available from a number of database suppliers including Ovid (http://www.ovid.com. Accessed on 26th May,

2014.)
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topics are searched for in these databases, the results returned invariably contain a mixture of

high and low quality articles. Practitioners, particularly those practising evidence-based medicine

seek high quality articles, and therefore have to manually appraise the search results of raw

databases, which is understandably time-consuming. To address this problem, there are databases

that only contain articles that are of high quality and are composed by synthesising multiple

high quality articles. A good example of such a database with synthesised evidence is the

Cochrane Library14. It contains over 4,000 peer-reviewed Cochrane Systematic Reviews, over

5,000 Systematic Reviews listed in the Database of Abstracts of REviews (DARE), and about

a half-million selected published clinical trials in their Central Registry of Controlled Trials.

However, the number of articles contained in this library is minute compared to the total number

of medical articles available, and the scope of topics covered is quite limited [Silagy et al., 1999].

Despite this, the Cochrane Library is very much the first port of call for clinical researchers

looking for quality articles.

Among such high quality databases, there are also guideline databases such as the National

Guideline Clearing House15 and National Institute for Health and Clinical Excellence (NICE)16

that provide evidence-based clinical practice guidelines. Many countries have their own national

clinical practice guidelines, and sometimes their use are mandated by law (e.g., in Finland). There

are also sources that not only synthesise the best available information but also present them in

readily usable formats. The following is a brief, non exhaustive list of such sources:

• Clinical Evidence (CE)17 – Produced in the United Kindom, it synthesises best evidence in

mainstream clinical areas and is published in a book format every six months.

• PIER – It is a US database equivalent to CE maintained by the American College of

Physicians.

• Evidence-Based On-Call (EBOC)18 – It is a database that contains evidence-based sum-

maries for specific conditions and is designed for junior doctors on call.

2.3.3 Other Sources

Practitioners often rely on other sources of information when practising evidence-based medicine.

There are databases containing pre-appraised articles, for example, which are generally fairly

small databases listing clinical research papers that have already been manually appraised.

14http://www.cochrane.org. Accessed on 26th May, 2014.
15http://www.guideline.gov. Accessed on 26th May, 2014.
16www.nice.org.uk. Accessed on 26th May, 2014.
17http://www.clinicalevidence.com/ceweb/conditions/index.jsp. Accessed on 26th May, 2014.
18http://www.eboncall.org. Accessed on 26th May, 2014.
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Journals such as ACP Journal Club, Journal of Family Practice, Evidence Based Medicine and

Evidence Based Mental Health are examples of such sources. Although their coverages are

relatively narrow, the information contained in these sources are very reliable. The Journal of

Family Practice19 has a “Clinical Inquiries" section that contains clinical questions and evidence

based answers to the questions along with the strength of recommendations of the answers

using the Strength of Recommendation Taxonomy. With time, the contents of these sources of

information are increasing, and they are becoming more useful as resources for evidence-based

medicine.

Another resource that has become popular in recent years is UpToDate20 which covers over

8,300 topics in 16 medical specialities and includes more than 97,000 pages of text, graphics,

links to Medline abstracts, more than 385,000 references and a drug database. The UpToDate

community includes over 5,100 expert clinicians who review and update content continuously.

UpToDate is evidence-based and uses a literature-driven updating system; more than 440 journals

are monitored by editors and authors, and, anytime something of importance is published, it is

incorporated into the resource.

In recent years, progress in IR research has greatly improved the performance of search engines

across all domains. There are a number of search engines specialised for the medical domain,

and about.com21 provides an analysis of the top five search engines in the medical domain. The

list includes PubMed, OmniMedicalSearch22, WebMd23, Healthline24 and HealthFinder25.

Generic search engines are also frequently used to search for evidence and they, particularly

Google, have evolved into effective search tools for online full text peer reviewed journals

[Greenhalgh, 2006]. According to a study by Tutos and Mollá [2010] on the use of search engines

for answering clinical questions, Google performs better than any other systems including

PubMed which is specialised on medical text. This clearly demonstrates the strength of generic

search engines and their emergence as a useful tool in medical article retrieval and evidence-based

medicine practice.

19http://www.jfponline.com. Accessed on 26th May, 2014.
20http://uptodate.com/home/about/index.html. Accessed on 26th May, 2014.
21http://websearch.about.com/od/enginesanddirectories/tp/medical.htm. Accessed on 26th May, 2014.
22http://www.omnimedicalsearch.com. Accessed on 26th May, 2014.
23http://www.webmd.com. Accessed on 26th May, 2014.
24http://www.healthline.com. Accessed on 26th May, 2014.
25http://www.healthfinder.gov. Accessed on 26th May, 2014.
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2.4 Problems Associated with Evidence-based Medicine

In this subsection, we briefly review and analyse the problems and barriers faced by evidence-

based medicine practitioners. This review expresses the technological needs of evidence-based

medicine and introduces the possibilities presented by NLP in this area.

Evidence-based medicine practice requires obtaining relevant clinical information from medical

literature and combining the best available evidence. Most problems associated with evidence-

based medicine emerge from this requirement. As already mentioned, there is an abundance of

information available to healthcare practitioners, resulting in practitioners being overwhelmed by

the amount of information available to the point that they often cannot obtain evidence-based

answers to their questions about specific clinical problems [Covell et al., 1985, Williamson et al.,

1989, Ely et al., 1999, Coumou and Meijman, 2006].

There has been a number of studies regarding the problems associated with evidence-based

medicine practice. Ely et al. [2002] conducted a well known research to identify and describe

the obstacles practitioners face when attempting to answer clinical questions with evidence. The

study revealed fifty-nine obstacles which were divided into the following five broad categories:

1. Recognise a gap in knowledge – Practitioners are often not aware of their lack of knowledge

about specific topics and attempt to answer clinical questions based on their own experience

only. Also, practitioners aware of a gap in knowledge sometimes decide to ignore it due to

various reasons such as time pressure.

2. Formulate a question – Questions formulated by practitioners often lack necessary infor-

mation, as already discussed earlier in this chapter, and therefore retrieved results are either

incomplete or not fully relevant.

3. Search for relevant information – Due to the overwhelming amount of information, practi-

tioners often do not know where to search for relevant information or how to search for it

in a limited amount of time.

4. Formulate an answer – Often articles on specific topics provide information without

completely answering the clinical question posed by the practitioner, making answer

formulation difficult. Studies have shown that practitioners prefer receiving summarised

answers rather than searching and formulating answers themselves [Barry et al., 2001].

5. Use the answer to direct patient care – When applying evidence for patient care, the

patients’ preferences, medical history, and other related factors must be taken into account,

and this often poses a problem. For example, a patient’s choice may conflict with the
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best clinical evidence, and such conflicts must be resolved by practitioners [Sanders et al.,

2008].

From the fifty nine obstacles, Ely et al. [2002] also identified six that are considered particularly

salient by practising doctors:

1. the excessive time required to find information;

2. the difficulty to modify the original question, which is often vague and open to interpreta-

tion;

3. the difficulty to select an optimal strategy to search for information;

4. the failure of a seemingly appropriate resource to cover the topic;

5. the uncertainty about how to know when all the relevant evidence has been found so that

the search can stop; and

6. the inadequate synthesis of multiple bits of evidence into a clinically useful statement.

We now look at these obstacles in more detail.

2.4.1 Problems Associated with Time

The time associated with seeking information is largely considered to be the biggest obstacle in

evidence-based medicine practice [Verhoeven et al., 2000, Smith, 1996, Westberg and Miller,

1999, Dorsch, 2000, McColl et al., 1998, Wilson, 1999, Ely et al., 2002, Coumou and Meijman,

2006]. Due to the time-consuming nature of the practice, it has been argued that this approach to

patient care ignores patient values [Graham and Grondin, 2007]. Although the skills of searching

for evidence and critically appraising it are being mastered by growing numbers of doctors, many

cannot keep up. Consequently, there is a widening chasm between what is ought to be done and

what is actually done [Davidoff et al., 1995]. Most busy doctors lack the time or skills to track

down and evaluate evidence, and when searching for evidence, practicing doctors do not have

time to search multiple sites or scroll through long bodies of texts. Nor do they have time to

search multiple textbooks or perform literature searches for most of their questions. They need to

pick the right resource the first time, the information in that resource needs to be readily found,

and all the information must be there [Ely et al., 2002]. Literature search and appraisal may take

hours and even days. According to Hersh et al. [2002], it takes more than 30 minutes on average

for a practitioner to search for an answer. But usually practitioners spend about 2 minutes [Ely

et al., 2000]. Hence, many questions go unanswered.
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Ely et al. [2005] classify this problem as a ‘resource-related’ problem and state that physicians

want rapid access to concise answers that are easy to find and tell them what to do in specific

terms. Physicians have many ad-hoc clinical questions at the moment of patient care but limited

time and resources to search for answers [Yu and Cao, 2008]. Ismach [2004] elaborates on

this issue and explains that, in most cases, such as in the emergency department, time is rarely

available for elaborate or comprehensive literature search. In a lot of cases, practitioners choose

not to pursue answers to clinical questions because of the lack of time available [Ely et al., 2005],

and attempt alternative solutions instead.

2.4.2 Problems Associated with Question Formulation

This is a physician-related problem and is a consequence of the tendency of physicians to

formulate questions in a way that is difficult to answer from general resources [Ely et al., 2005].

Patient-specific questions tend to be vague (e.g., ‘what is this rash?’) [Ely et al., 2002] and

therefore cannot be answered by general resources. Physicians typically ask difficult questions

and hence only pursue evidence for them in a minority of cases [Ely et al., 1999]. The PICO

format, discussed earlier, is sometimes used to aid practitioners formulate their questions. Recent

research in medical information retrieval has focused on query formulation and other aspects of

information retrieval to aid practitioners [Heppin and Jarvelin, 2012, Kelly et al., 2014].

2.4.3 Problems Associated with Search Strategy

The medical literature has been described as ‘unwieldy, disorganised and biased’ [Godlee, 1998],

and searching for specific topics in the vast amount of available information is analogous to

searching for a needle in a haystack. Although electronic databases facilitate searching, the

procedure requires skill and expertise, and, even for an experienced librarian, the search to find

a comprehensive set of documents related to a focused clinical query may take hours. The

first obstacle that doctors face is the uncertainty of where to look for information [Ely et al.,

2002]. Other difficulties related to information seeking include: the presence of a large number

of irrelevant material in search results, the difficulty in finding correct search terms, inefficient

indexes in books and journals and badly organised journal volumes [Verhoeven et al., 2000].

Furthermore, it can be difficult to decide which resources will be most helpful and what should

determine the selection of resources. Also, the search strategy must conform to the amount of

time available, the practitioner’s familiarity with the resources, and the type of question.

Lack of expertise in information searching by practitioners has also been mentioned in the

literature as a major obstacle, and practitioners have often expressed the need for training on this

subject [Wilson, 1999, Wilson et al., 2001]. Studies have also shown that practitioners’ access to
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a computer and the internet varies largely with their location, and this significantly affects the

information search strategy [Wilson et al., 2001, Kalsman and Acosta, 2000, McColl et al., 1998,

Williams and Maj, 2001].

2.4.4 Problems Associated with Source of Evidence

Often practitioners do not have access to the necessary resources required to answer a clinical

question [Young and Ward, 2001]. One of the most common obstacles encountered by practition-

ers when pursuing a clinical question is not finding the needed information in the source selected

[Ely et al., 2005]. Hence, often practitioners are simply unable to find appropriate resources

that can answer their clinical questions. Even for practitioners with adequate access to medical

literature, it is often impossible to find sources of information that fully answer their questions

due to the complexity of clinical questions. Ely et al. [2002] also point out that since general

resources do not allow real time interaction with the searcher, it is not possible for them to use

follow up questions to refine searches.

2.4.5 Problems Associated with the Relevance of Evidence

Looking for evidence for a particular question requires a practitioner to shortlist a set of papers

that seem relevant after an initial search, and then study the papers in detail [Greenhalgh, 2006].

However, the number of relevant documents can vary significantly between topics, and, therefore,

physicians are often left unsure as to when they should stop searching [Ely et al., 2002, Green and

Ruff, 2005]. This is a significant obstacle because often practitioners spend time unnecessarily

searching for evidence when the required evidence has already been found. Alternatively,

practitioners may also rely on incomplete evidence not knowing that better evidence exists.

Furthermore, evidence may be directed at the wrong audience (e.g., patients) and therefore may

not be relevant to doctors [Ely et al., 2002].

2.4.6 Problems Associated with Information Synthesis

Once all the relevant information has been found, it is quite a daunting task to synthesise the

information from different sources. Studies carried out have shown that practitioners frequently

mention difficulties with generalising research findings and applying evidence to individual

patient care [Young and Ward, 2001]. The reasons behind this include the incapability of any of

the sources to completely answer the clinical question, the selected articles not directly answering

the clinical question, and different articles providing contradictory information [Ely et al., 2005,

2002].
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2.4.7 Other Obstacles to Evidence-based Medicine

There are numerous other obstacles to evidence-based medicine in addition to the ones already

mentioned. It has been shown that almost half the questions asked by practitioners are not pursued

at all for various reasons [Ely et al., 2005]. Common reasons include the expectation that no

useful information would be found and the tendency to consult colleagues rather than performing

an actual search [Coumou and Meijman, 2006]. Often, when a question is pursued, the results

returned are not from reliable sources and therefore cannot be used by the practitioner.

2.4.8 Possible Applications of IR and NLP in Evidence-based Medicine

Despite the presence of many barriers, evidence-based medicine practice has gained popularity

over recent years for a number of reasons, including its promise of improving patient healthcare

in the long run. As for the barriers, advances in technology are gradually eliminating them and

making the process more efficient. As mentioned earlier in the chapter, the modern approach

towards evidence-based medicine has been made possible through the presence of electronic

databases and is driven primarily by connectivity via the internet. From the problems and barriers

specified earlier in this section, it can be inferred that the next boost in evidence-based medicine

practice will come from research in NLP.

NLP offers suitable solutions to the problems faced by evidence-based medicine practitioners,

particularly for problems associated with information overload. Practitioners require comprehen-

sive, specific bottom-line recommendations that anticipate and directly answer clinical questions.

They require rapid access, current information and evidence based rationale for recommendations

[Ely et al., 2005]. NLP has the potential of addressing all these requirements. For example,

Query Analysis can be used to understand and expand practitioners’ queries through the use

of domain-specific semantic information. Queries posed by practitioners are often very short

with an average of 2.5 words [Hoogendam et al., 2008], and therefore existing techniques for

ontology-driven query reformulation [Schwitter, 2010] can be built upon to help practitioners

compose and refine queries. Information Retrieval techniques tailored for the medical domain

can be used to increase the recall and precision of literature searches. Strength of recommendation

values can be used to classify documents to make searches more reliable. There has already been

some research in this area with promising outcomes [Karimi et al., 2009, Pohl et al., 2010]. Infor-
mation Extraction techniques which incorporate domain knowledge (e.g., MeSH terms, UMLS)

can be used to extract relevant information, based on practitioners’ questions, from the retrieved

documents. This is also an area that is being explored by medical informatics researchers, and

knowledge-based and statistical techniques have produced promising results [Lin and Demner-

Fushman, 2007]. Furthermore, some research has attempted to extract semantic information and

use that information to represent the main concepts presented in documents [Fiszman et al., 2003,
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2004, 2009]. However, the results obtained using these techniques are still not accurate enough to

be used in fully automatic clinical decision support systems. Research in the area of information

extraction is closely related to that of Document Summarisation. The goal of summarisation in

this context is to summarise the content extracted from multiple documents and present them to

the users (i.e., specific bottom-line recommendations). Summarisation of multiple documents is

a well explored area (e.g., in the news domain), however its application to the medical domain is

still quite limited. Successful summarisation of medical documents and effective presentation of

summarised information to the user are key to the successful development of end-to-end question

answering systems that can be used for evidence-based medicine practice. More specifically,

query-focused multi-document summarisation that incorporates medical domain knowledge is an

area of research that is worth exploring and success in this area will significantly advance the

practice of evidence-based medicine.

Our research on automatic evidence-based summarisation is motivated by these factors. In the

following subsections of this chapter, we review the literature associated with text summarisation,

particularly in the medical domain.

2.5 Automatic Text Summarisation

Before we dive deep into summarisation approaches specific to the medical domain, it is important

to discuss the basics of text summarisation and look at some approaches to summarisation already

proposed. We attempt to achieve this goal in this section. It must be mentioned, however, that this

is by no means a complete survey of automatic text summarisation, since the field of automatic

text summarisation is too large to be discussed in a single survey. Instead, we primarily discuss

important domain-independent techniques and breakthroughs in this area, and approaches that

we utilise in the research work described in this thesis. We have attempted to keep this section

short with references to detailed literature for the interested reader.

2.5.1 Overview

According to Radev et al. [2002], the goal of a summary is to present the main ideas of a document

in less space. Mani [2001] provides a more formal definition and explains that the process of

summarisation involves taking an information source, extracting content from it, and presenting

the most important content to the user in a condensed form and in a manner sensitive to the

user’s or application’s needs. It also involves distinguishing between more and less informative

segments in a document and choosing the informative segments at the expense of the rest of the

documents. Sparck Jones [1999] explains that summarisation is a hard task because it requires

characterisation of a source text as a whole, capturing its important content, where content is a
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matter of both information and its expression, and importance is a matter of what is essential as

well as what is salient. Das and Martins [2007] present three important aspects that characterise

research on text summarisation:

• Summaries may be produced from a single document or multiple documents,

• Summaries should preserve important information, and

• Summaries should be short.

The motivation for building automatic summarisation systems has increased over time due to

the increasing availability of web-based textual information, and the explosion of available

information has necessitated intensive research in this area [Das and Martins, 2007, Fattah

and Ren, 2009, Mani et al., 2000]. The number of online text documents has been increasing

exponentially over the recent years, and this is also true for the medical domain [Hunter and

Cohen, 2006]. Consequently, significant progress in automatic summarisation has been made in

the last decade [Sparck Jones, 2007].

At this point, it is perhaps wise to briefly present the pros and cons of having an abundance

of textual information available. In short, the prime advantage of having a large amount of

available information is the redundancy in it. Research has shown how summarisation systems

can exploit this redundancy [Barzilay and McKeown, 2005, Clarke et al., 2001, Dumais et al.,

2002], particularly when summarising from multiple documents. As will be discussed later,

many summarisation systems rely on redundancy (e.g., frequently occurring words, concepts,

etc.) to generate automatic summaries. In evidence-based medicine, redundancy is beneficial

as it gives stronger evidence on a given finding. As for the cons, the abundance of information

also introduces the need for efficient information retrieval and extraction, both of which are

difficult tasks. In many cases, identification of relevant information requires elaborate manual

searching through redundant information, which is often quite time consuming and therefore

rather inefficient [Barzilay and McKeown, 2005]. It has been realised that added value is

not gained simply through larger quantities of data, but through easier access to the required

information at the right time and in the most suitable form [Afantenos et al., 2005]. This gives

rise to the need for technologies that can gather required information for the users and present

them in a simplified, concise and friendly manner. Thus, we can say that while the large amount

of information is a necessary condition for the development of automatic summarisation systems,

it also introduces the problem of information overload.

In the rest of this section, we provide a brief description of the basic concepts associated with text

summarisation followed by a review of some of the historical and recent approaches to automatic

summarisation.
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2.5.2 Factors of Text Summarisation

Automatic text summarisers must take into account a number of factors to achieve their goals.

Here we discuss some of these factors, knowledge of which is essential to understand the process

of text summarisation. The factors affecting automatic text summarisation can be grouped into

three main categories: input, purpose and output. We primarily draw the following information

from existing literature [Sparck Jones, 1999, Mani, 2001, Afantenos et al., 2005, Sparck Jones,

2007], and provide references to articles containing more detail in specific cases.

Input

The following factors are associated with the inputs of a summarisation system:

Unit - Summarisers can either take as input a single document or multiple documents. Early

research on automatic summarisation focused mainly on single documents, but the availability

of large collections of electronic documents on the same topics and early research in news

summarisation led to the growing interest in multi-document text summarisation. While in single-

document summarisation the summary consists of information extracted from one document,

multi-document summarisation attempts to produce a single summary from a set of related

documents [Radev et al., 2002]. Summarising multiple documents is a more difficult task than

summarising single documents, and, additional algorithms are required to overcome problems

of redundancy (different documents might present identical information which could lead to

repetitions in the summary), inconsistency (the information presented in distinct documents may

not be consistent), and incoherence (information extracted from separate documents may not be

coherent when presented together). In the research work described in this thesis, we explore both

single- and multi-document summarisation.

Language - A summarising system can be mono-lingual, multi-lingual or cross-lingual. In mono-

lingual systems, the input and output are in the same language. Multi-lingual systems are capable

of handling more than one language. In cross-lingual systems, the input and output languages

are different. Our summarisation research focuses on English text only, so it is essentially a

mono-lingual system.

Domain - Summarisation systems can either be domain-specific or domain-independent. Domain-

independent approaches can be applied to documents from various domains without requiring

any changes in the algorithm. While having the benefit of portability to different domains,

domain-independent approaches fail to take advantage of knowledge and resources available to

specific domains. Domain-specific systems, on the other hand, are designed for specific domains

and use all the available resources and knowledge available for the relevant domain. There has
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been significant research in text summarisation specific to domains such as news [Barzilay and

McKeown, 2005, Christel et al., 2002, Papernick and Hauptmann, 2005, McKeown et al., 2002],

scientific [Plaza et al., 2011a], legal [Moens et al., 1997, Farzindar and Lapalme, 2004], and

medical [McKeown et al., 1998, Lin and Demner-Fushman, 2007, Rindflesch et al., 2005].

Text summarisation tasks in restricted domains may also include additional subtasks, depending

on the needs of the end user. For example, news summarisation systems often need to take into

account the dates and times of publication of the articles, so that the summaries can be presented

in chronological order. For the research described in this thesis, we show that an essential sub-task

of the overall summarisation task in the evidence-based medicine domain is to automatically

assess the qualities of the medical evidences (described in Chapters 3 and 4).

Medium - Other than text, input can consist of speech, images, tables, and so on. There has been

some research in the production of combined summaries for sources containing language and

image [Christel et al., 2002, Papernick and Hauptmann, 2005]. A lot of research has also focused

on producing text summaries from non-textual material [Jordan et al., 2004, Maybury, 1995,

McKeown et al., 1995, Yu et al., 2007b].

Structure - This refers to the external structure of documents, such as headings, boxes, tables,

and also structure embedded in text like familiar rhetorical patterns. The structure of documents

can vary between domains. For example, news stories have little explicit structure other than

top headings [Sparck Jones, 2007], while technical articles contain more structure which can

be exploited by summarisation systems [Elhadad and McKeown, 2001, McKeown et al., 1998,

Saggion and Lapalme, 2002, Lin and Demner-Fushman, 2007]. Medical article abstracts may

be structured or unstructured, and this factor plays an important role in the performance of

summarisers.

Meta-data - In some cases, header information or meta-data associated with input documents

play an important role in summarisation. For example, dates of publications are vital for news

items. In the case of the medical domain, databases such as Medline use meta-data to indicate the

key topics in each article. We utilise the meta-data associated with the Medline entries in some of

our tasks.

Other Input Factors - Source of documents, genre (e.g., report, biography, description, etc.)

and Authorship are some of the other input factors mentioned in literature that may affect

summarisation systems.
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Purpose

These factors are associated with the purpose of the summaries. In other words, these factors

determine what a summary is for or what a summary is like.

Summary Type - Summaries can either be extractive or abstractive. The task of extractive

summarisation is the easier of the two. It involves extracting content from the source document(s)

and presenting them as the summary. The extracted content can be words, phrases, sentences or

even paragraphs. It is therefore a process of information extraction. Abstractive summarisation,

in contrast, involves identifying the most salient concepts prevalent in the source document(s),

fusing the concepts and presenting them (usually through natural language generation techniques)

[Afantenos et al., 2005].

Information - Summaries can be generic or user-oriented. Generic summaries only take into

account the information found in the input document(s), while user-oriented summaries attempt

to extract and summarise only the information that is relevant to a user’s query. The query enables

the user to formulate the information needs. Thus, query-oriented summarisation systems are

user-focused, adapting each time to the expressed needs of the users, as viewed through the

query they make [Afantenos et al., 2005]. Query-focused summaries, therefore, have to identify

information needs posed by user queries.

Use - This is the most important purpose factor [Sparck Jones, 2007] and defines the purpose

of a summary. This is the major influence on summary content and presentation [Sparck Jones,

2001]. Even relatively poor summaries produced by a system can be acceptable as long as the

summaries fit their purpose (e.g., they present the information requested by a query). Existing

literature rarely refers to summary use; however, evaluation effort in this research area is now

moving towards purpose-focused evaluation as a lever in system design and summary assessment.

Audience - Summaries must take into account the intended audience. Different summaries can be

generated from the same input sources to suit the requirements of the audience. News material, for

example, has at least two audiences: ordinary readers and analysts [Sparck Jones, 2007]. Elhadad

[2006] produces two kinds of summaries for medical documents: one intended for healthcare

practitioners and thus containing technical terms, and the other for non-medical personnel or

‘laymen’ and containing minimal medical terms.

Time - Time is a critical factor for some summarisation systems. For example, traffic alerts require

timely delivery [Evans et al., 1995], and news summaries have to roll forward with developing

story lines [McKeown et al., 2002]. Furthermore, query-oriented summaries need to be delivered

promptly, and thus, corresponding systems need to be very fast. Ismach [2004], for example,

mentions the need for fast information delivery in cases of medical emergencies.
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Location - Location refers to the devices on which the automatic summaries will be displayed

(e.g., a desktop computer). This is important because this determines features such as the length

of the summary, its content and visualisation.

Other Purpose Factors - Other purpose factors have been identified in the literature including

formality (e.g., legal constraints on the summarised information, author attributions etc.), the

triggers for a summary (i.e., what causes the summary to be created: a user query or some other

trigger) and destination (i.e., the intended recipient of the summary: can be humans or some other

systems).

Output

These factors are associated with the summarised output.

Coverage - Coverage of a set of sources by a summary can either be comprehensive or selective.

Reflective summaries are comprehensive (i.e., summarises the whole source text), while query-

or topic-oriented summaries are selective (i.e., summarises only a portion of the source text that

is relevant to the query/topic) [Sparck Jones, 2007].

Compression - This refers to the amount by which the information from the source(s) are reduced

during summarisation. Compression may be influenced by the requirement of the user [Lin

and Demner-Fushman, 2007] or the limitations imposed by the location (e.g., handheld devices

[Boguraev et al., 2001]).

Structure - The output of a summary may be plain text or the information may be represented

using tables (e.g., Mani et al. [2000]), forms ( , Farzindar and Lapalme [2004]), lists (e.g., Radev

et al. [2000b]) or even complex structures such as hypertext (e.g., White and Cardie [2002]).

Medium - Output medium is in most cases text although, as is the case with input media, output

can consist of other media such as images and audio.

Other Output Factors - There can be a range of other output factors, such as derivation, genre,

language, style. A discussion of each of these is provided by Sparck Jones [2007].

2.5.3 Approaches to Summarisation

Early Summarisation Approaches

To date there has been a considerable amount of research on automatic text summarisation using a

variety of approaches. Providing a complete review of all summarisation systems and approaches
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is not possible, and therefore, we provide an overview of the important advances made in this area

in somewhat chronological order. We cover single- and multi-document summarisation and also

extractive and non-extractive approaches. Almost all the approaches mentioned in this subsection

are collectively covered by several surveys of this research area [Afantenos et al., 2005, Sparck

Jones, 1999, 2007, Das and Martins, 2007, Zweigenbaum et al., 2007, Athenikos and Han, 2009].

The earliest known work on automatic summarisation dates back to 1958 when Luhn [1958]

proposed that the frequency of words could provide a measure of their importance in a document.

In his work, he ranked words based on their frequencies and used the ranking of individual words

in a sentence to calculate their significance, finally selecting the top ranked sentences as the

summary. Baxendale [1958] used sentence position as a feature for selecting important sentences

in a document (e.g., for news sentences, early sentences are more important than later sentences).

Edmundson [1969] extended this work on summarisation and defined the framework for much of

the work on extraction in what is known as the Edmundsonian Paradigm [Mani, 2001]. He used

a linear function of four features to rank sentences for extraction:

W (s) =αC (s)+βK (s)+γL(s)+δT (s) (2.1)

where α,β,γ and δ are manually assigned weights; W is the overall weight of sentence s, C

represents the score given to sentence s due to the presence of cue words (bonus words or stigma

words) extracted from a corpus, K represents the score given for key words (based on word

frequency), L is the score given based on sentence location features, and T is the weight assigned

based on terms in the sentence that are also present in the title. Such a statistical approach to

sentence selection has been very popular in the research community with Earl [1970] being the

first to investigate more varied and elaborate lexically based sentence features. More recently,

numerous statistical approaches using multiple words, noun phrases, main verbs, and named

entities. have been proposed [Barzilay and Elhadad, 1997, Lin and Hovy, 2000, Harabagiu and

Lacatusu, 2005, Hovy and Lin, 1999, Lacatusu et al., 2003, Filatova and Hatzivassiloglou, 2004],

while some research focused on utilising lexical items with ‘importance-signalling’ properties

(e.g., subheadings) [Teufel and Moens, 1997, Chakrabarti et al., 2001] or via the analysis of

topical content [Ando et al., 2000]. The importance of the discourse structure of a text was

realised quite early in summarisation research [Hearst, 1994, Marcu, 1997, 1998, Hahn and

Strube, 1997] and this property has been heavily exploited ever since.

Recent Advances in Automatic Summarisation

Widespread research in automatic summarisation began from the mid 90’s with the Dagstuhl

Seminar [Endress-Niggemeyer et al., 1995], the Association for Computational Linguistics
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Workshop in 1997, and primarily the Document Understanding Conference (DUC)26 program.

DUC was the first sustained evaluation program for automatic summarisation, and it was based

on a broad road map which has been revised several times (further details of the roadmap is

provided by Sparck Jones [2007]). Following the early summarisation research works, research

on summary generation and evaluation techniques have been boosted by the DUC and similar

other regular workshops and initiatives. They include: the NII Test Collection for Information

Retrieval Project (NTCIR)27, the Text REtrieval Conference (TREC)28, and the Text Analysis

Conference (TAC)29, which was initiated from the Text Summarisation track of the DUC and

the Question Answering track of the TREC. Funded by the National Institute of Standards and

Technology (NIST) and other government agencies of the U.S.A., the TAC aims to support

research within the NLP community by providing the infrastructure necessary for large-scale

evaluation of NLP methodologies.

Since the commencement of widespread research on automatic text summarisation, a significant

amount of research has focused on the application of machine learning algorithms for text

summarisation. In most of the initial research, machine learning played a preliminary and support

role — to identify information to be applied at specific process stages [Sparck Jones, 2007].

Early research mostly assumed feature independence and used the Naïve Bayes classifier [Kupiec

et al., 1995, Lin and Hovy, 1997, Aone, 1999] with various features including those used in

the Edmundsonian Paradigm. However, later research introduced the use of richer feature sets

and a range of machine learning algorithms. For example, Lin [1999] used Decision Trees,

Conroy and O’Leary [2001] used Hidden Markov Models, Osborne [2002] applied a Log Linear

Model for sentence extraction, Svore et al. [2007] used Neural Nets, and Schilder and Kondadadi

[2008] used Support Vector Machines. Interested readers can find more information about these

approaches and other important related work in Sparck Jones [2007] and Das and Martins [2007].

While one branch of research focused on machine learning approaches, another branch progressed

research on natural language analysis techniques. Miike et al. [1994] and Marcu [1998, 1999,

2000] use the Rhetorical Structure Theory (RST)30 by building RST source text trees via the

exploitation of discourse marker expressions in particular. They then use these trees to identify

nucleus source clauses to extract for summaries. Polanyi et al. [2004] and Thione et al. [2004],

in contrast, use the PALSUMM model which uses more abstract discourse trees. Barzilay and

Elhadad [1997] show the use of lexical chains — sequences of related words that can span

short or long distances — for single-document summarisation. The use of application-oriented

structures has been more effective than the use of semantic discourse structures, especially within

26http://duc.nist.gov/. Accessed on 26th May, 2014.
27http://research.nii.ac.jp/ntcir/index-en.html. Accessed on 26th May, 2014.
28http://trec.nist.gov/. Accessed on 26th May, 2014.
29http://www.nist.gov/tac/. Accessed on 26th May, 2014.
30See http://www.di.uniba.it/intint/people/fior_file/INTINT05/RST.pdf. Accessed on 26th May, 2014.
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particular domains [Sparck Jones, 2007]. For example, McKeown et al. [1998] and Elhadad and

McKeown [2001] use a template suited to the medical domain; McKeown and Radev [1995] and

Radev and Mckeown [1998] fill up template slots from a database of news information as a first

step to their algorithm for news summarisation; and Sauper and Barzilay [2009], quite recently,

show the use of templates to automatically generate Wikipedia articles.

Multi-document Summarisation

The field of multi-document summarisation was pioneered by the NLP community at Columbia

University with the SUMMONS [McKeown and Radev, 1995, Radev and Mckeown, 1998]

summarisation system developed in 1995. SUMMONS extended the already existing technology

for template-driven message understanding systems. Extractive summarisation systems have been

shown to work well for multiple documents particularly in the news domain, an example being

the MEAD31 [Radev et al., 2000a] system. As mentioned earlier, multi-document summarisation

approaches suffer from the problems of incoherence and redundancy, and a number of approaches

have been proposed in the literature to address these problems. One popular approach to reduce

redundancy is the use of clustering. In this technique, common themes or concepts across

document sets are identified and grouped or clustered together. Once the clusters are created, the

summary can be generated by applying various algorithms that depend primarily on the content

and compression needs. For example, some use a single sentence to represent each cluster in the

final summary [McKeown and Radev, 1995, Radev et al., 2000b, Yih et al., 2007], while some

generate a composite sentence from each cluster through the use of information fusion in order

to combine the most important concepts from multiple sentences within a cluster [Barzilay and

Elhadad, 1997, Barzilay et al., 1999, Barzilay and McKeown, 2005].

The Maximal Marginal Relevance (MMR) measure [Carbonell and Goldstein, 1998] is also

commonly applied to reduce redundancy, particularly for query-driven summarisation. In this

technique, relevant sentences are rewarded and redundant ones are penalised simultaneously by

considering a linear combination of two similarity measures. The technique, thus, produces a

set of relatively non-redundant but relevant sentences in the final summary. MMR was initially

utilised for document retrieval and is given by the following formula:

M MR ≡ ar g maxDi∈R\S[λ(Si m1(Di ,Q)− (1−λ)maxD j∈SSi m2(Di ,D j ))] (2.2)

where Q is a query; R = I R(C ,Q,θ), i.e., the ranked list of documents retrieved by an IR system

given a document collection C and a relevance threshold θ; S is the subset of documents in R

already selected; R\S is the set difference, i.e., the set of unselected documents in R; Si m1 is

the similarity metric used in document retrieval and relevance ranking between documents and a
31Available at: http://www.summarisation.com/mead/. Accessed on 26th May, 2014.
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query; and Si m2 can be the same or a different metric.

Graph based approaches have also been applied to text summarisation [Mani and Bloedorn,

1997, Mani and Maybury, 1999, Erkan and Radev, 2004, Leskovec et al., 2005], with Mani and

Bloedorn [1997] being the pioneers in this area. In their approach, the authors use nodes to

represent words and edges between nodes represent relationships. The summaries generated can

be topic driven, and no textual summary is generated. Instead, the summary content is represented

via entities and relations (nodes and edges). The topic nodes are identified after a graph is created,

and a search for semantically related text is propagated from the topic nodes to other nodes of

the graph, in a process called spreading activation. When summarising a pair of documents,

common nodes represent same words or synonyms, while difference nodes are those that are not

common. Sentence selection from the graph is based on the average activated weights of the

covered words: for a sentence s, its score in terms of coverage of common nodes is given by the

following formula:

scor e(s) = 1

|c(s)|
|c(s)|∑
i=1

wei g ht (wi ) (2.3)

where c(s) = {w |w ∈ Common
⋂

s}. The score for differences is calculated similarly. The

sentences with higher common and difference scores are selected for the final summary. There

have been some graph based approaches to summarisation in the medical domain, and they are

discussed in the next subsection.

Erkan and Radev [2004] presented the LexRank system for multi-document summarisation,

which uses a fully connected and undirected graph for the set of documents to be summarised. A

similar method, suitable for single-document summarisation only, was proposed by Mihalcea and

Tarau [2004]. Other graph based approaches have been proposed, both in the medical domain

[Shi et al., 2007, Reeve et al., 2007, Fiszman et al., 2004] and outside it [Litvak and Last, 2008].

To end this brief review of text summarisation techniques, it is worth mentioning the centroid-

based summarisation technique proposed by Radev et al. [2000a, 2004]. This technique is used

in the MEAD system that has already been mentioned, and unlike a number of other systems,

it does not make use of a language generation module. The summarisation is done in three

stages. The first stage involves topic detection, with the goal to group together news articles that

describe the same event. The centroid for each group or cluster is computed, where a centroid

can be regarded as a pseudo-document that includes those words whose Term Frequency-Inverse

Document Frequency (tf×idf ) scores are above a threshold in the documents that constitute the

cluster. The two terms are given by the following equations:

t fi , j =
ni , j∑
k nk j

; i d fi = log
|D|

|{d : ti ∈ d}| (2.4)
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where ni , j is the number of occurrences of the considered term ti in document d j , and the

denominator is the sum of the number of occurrences of all terms in document d j ; |D| is the total

number of documents in the corpus, and |{d : ti ∈ d}| is the number of documents where the term

ti appears.

The second stage uses the centroids to identify sentences in each cluster that are central to the

topic of the entire cluster. The final score for each sentence is a combination of three scores

(centroid value, positional value and first-sentence overlap) minus a redundancy penalty for each

sentence that overlaps highly ranked sentences.

We now focus on the much narrower yet quite broad domain of medical text summarisation.

2.6 Summarisation and Question Answering for the Medical Do-
main

In this section, we provide an overview of text summarisation and Question Answering (QA)

approaches targeted towards the medical domain. The goal here is to present some of the important

research work in this area and analytically review more recent and promising approaches. The

medical domain itself is quite broad, and so we attempt to adhere to research work that is

relevant for evidence-based medicine. It must be mentioned that, in the recent past, there has

been steady ongoing research in biomedical and medical text processing [Afantenos et al., 2005,

Zweigenbaum et al., 2007]. However, compared to other domains, there is very little published

research in summarisation and question answering [Fiszman et al., 2009]. We first provide a

broad overview of approaches in the medical domain, and then provide a more elaborate analysis

of specific systems that are most relevant to the research described in this thesis.

2.6.1 NLP Tools for Summarisation

There are a number of tools and resources capable of supporting NLP research in the medical

domain. Here we briefly discuss some of the most important ones.

2.6.2 UMLS

The Unified Medical Language System (UMLS)32 is a repository of biomedical vocabularies

developed by the U.S. National Library of Medicine [Bodenreider, 2004]. The purpose of UMLS

is to facilitate the development of computer systems that behave as if they understand the meaning

32http://www.nlm.nih.gov/index.html. Accessed on 26th May, 2014.
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of the language of biomedicine and health. More specifically, it was developed as an effort to

overcome two significant barriers to the effective retrieval of machine-readable information

[Lindberg et al., 1993]: the variety of names used to express the same concept and the absence

of a standard format for distributing terminologies. The UMLS consists of the following three

major components:

• Metathesaurus – This is the major component of the UMLS and consists of a repository

of inter-related biomedical concepts and terms from several controlled vocabularies and

their relationships. It contains over a million biomedical concepts and five million concept

names. It is the largest metathesaurus in the biomedical domain, providing a representation

of biomedical knowledge consisting of concepts classified by semantic type and both

hierarchical and non-hierarchical relationships among the concepts [Aronson, 2001]. Some

examples of the controlled vocabularies are ICD-10, MeSH, SNOMED CT, LOINC and so

on.

• Semantic Network – This provides a set of high-level categories and relationships used to

categorise and relate the entries in the Metathesaurus. Each concept in the Metathesaurus

is assigned to at least one ‘semantic type’ and certain ‘semantic relationships’ may be

present between members of the various semantic types. For example, a disease mention

(e.g., headache) may have an is-treated-by relationship with a drug mention (e.g., aspirin).

• SPECIALIST Lexicon – This is a database of lexicographic information for use in NLP.

Each entry in it contains syntactic, morphological and orthographic (spelling) information.

For example, a query on ‘anesthetic’ would return two entries with the part of speech tags

noun and adjective, and its spelling variants.

SNOMED CT

SNOMED CT33 is the most comprehensive source of medical terminology and is a U.S. standard

for electronic health information exchange. It is accessible through NLM and the National Cancer

Institute (NCI). It is one of the controlled vocabularies used by the UMLS.

MetaMap

The MetaMap34 program was developed at the U.S. National Library of Medicine to map

biomedical text to the UMLS Metathesaurus or, equivalently, to discover Metathesaurus concepts

33http://www.ihtsdo.org. Accessed on 26th May, 2014.
34http://metamap.nlm.nih.gov. Accessed on 14th May, 2014.
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referred to in text. MetaMap uses a knowledge-intensive approach based on symbolic, NLP and

computational linguistic techniques.

SemRep

SemRep35 is a program developed at the U.S. National Library of Medicine. It extracts semantic

predications (subject-relation-object triples) from biomedical text. It has been used for a variety

of biomedical applications, including automatic summarisation, literature-based discovery and

hypothesis generation.

Other Tools

There are other text processing tools that have been used in the past for medical text processing

although their functionalities are not restricted to this domain. The following is a brief list:

• GATE36: It is a Java platform from the University of Sheffield, and, according to their

website, it is capable of solving almost any text processing problem.

• LingPipe37: A useful, Java-based language processing tool that is free for non-commercial

use and is widely used for research.

• OpenNLP38: It is a source for a variety of Java-based NLP tools that can perform a range

of basic and advanced text processing tasks.

2.6.3 Overview of the Medical Domain and Decision Support Systems

A number of factors make the medical domain a complex and interesting one for text processing.

They include: large volume of data (e.g., about 22 million articles in Medline alone); highly

complex domain-specific terminologies (e.g., drug names and disease names); domain specific

lexical, terminological and ontological resources (such as UMLS); software tools and methods for

exploiting the semantic information available (such as MetaMap [Aronson, 2001]); and domain

specific format and typology of questions [Athenikos and Han, 2009]. Text in this domain mostly

consists of clinical notes (often narrative) which are created by healthcare providers with limited

time and also published medical articles describing studies/experiments and their outcomes. Only

the latter type is relevant for evidence-based medicine, since the former cannot be considered as

a form of reliable medical literature and is also generally not publicly available.
35http://semrep.nlm.nih.gov. Accessed on 14th May, 2014.
36http://gate.ac.uk. Accessed on 17th May, 2014.
37http://alias-i.com/lingpipe. Accessed on 18th May, 2014.
38http://opennlp.sourceforge.net. Accessed on 25th May, 2014.
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The integration of technology with medical practice was initiated through the use of Clinical

Decision Support (CDS) systems. Such systems help practitioners make clinical decisions, deal

with medical data or with the knowledge of medicine necessary to interpret such data [Shortliffe,

1990]. CDS systems were introduced about four decades ago, and, according to studies, they have

improved practitioner performance in approximately 60% of the one-hundred reviewed cases

[Garg et al., 2005]. Early CDS systems consisted mostly of applications that facilitated diagnosis,

treatment [Shortliffe et al., 1979, Miller et al., 1982] and the management of patients (e.g.,

through computerised guidelines and alerts) [McDonald, 1976, Barnett et al., 1983]. However,

the capabilities of such applications were quite limited, primarily because they did not have

access to raw medical data [Friedman and Hripcsak, 1999].

Since a lot of medical data is textual, the need to integrate NLP with CDS systems became

more noticeable as the volume of medical data increased. However, this requirement introduced

new challenges as well, since CDS systems that rely on NLP require reliable, high quality NLP

performance and modular, flexible and fast systems, as Demner-Fushman et al. [2009] points out.

Research in this area made rapid progress since the mid 90’s, and today there is a wide range of

NLP-based CDS systems in use (some of these are discussed later in this chapter). A detailed

discussion of CDS systems is outside the scope of this chapter and in the following subsections,

we focus instead on a subset of CDS systems that attempt to provide answers to clinical queries

by summarising the information contained in medical texts. Note that such systems consist of

information extraction, summarisation, and QA components, and we do not distinguish between

these three types. Identifying and presenting evidence in a condensed manner is essentially a task

of summarisation. Hence we refer to these systems/components as summarisation systems. For

QA systems, we primarily discuss their summarisation components. For the interested reader,

Friedman and Hripcsak [1999] provide a review of early NLP-based CDS approaches and a

recent and detailed analysis of CDS systems and NLP for the medical domain is provided by

Demner-Fushman et al. [2009]. Readers unfamiliar with QA may refer to Mollá and Vicedo

[2007] for an overview of QA techniques in restricted domains and Athenikos and Han [2009]

for a review of QA approaches in the biomedical domain.

2.6.4 Overview of Medical Text Summarisation Approaches

Information Extraction Approaches

Early summarisation systems were mostly concerned with extracting relevant information from

structured or unstructured medical text. The Linguistic String Project (LSP) [Sager et al., 1994]

is an example of early medical NLP work. Its primary purpose is the transformation of clinical

narratives into formal representations. The system named ‘Medical Language Processor’ (MLP),

is not a pure summarisation system, although it does apply NLP techniques for information ex-
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traction and content selection. The system performs five stages of processing – parsing, selection,

transformation, regularisation and information formatting. MedLEE [Friedman, 2005] is also

responsible for extracting information from clinical narratives and presenting the information

in structured forms through the use of a controlled vocabulary. It is used for processing various

forms of notes and reports and is integrated with a clinical information system. HiTEx [Zeng

et al., 2006] is yet another, relatively recent, system used for extracting findings such as diagnoses

and family history from clinical narratives through the use of NLP techniques. TRESTLE (Text

Retrieval Extraction and summarisation Technologies for large Enterprises) [Gaizauskas et al.,

2001] is essentially an information extraction system that produces single sentence summaries

of pharmaceutical newsletters through the identification of Named Entities (NEs) followed by

sentence extraction based on the presence of key NEs. Drug and disease names are considered

by this system to be named entities. Hahn et al. [2002] present MEDSYNDIKATE, a natural

language processor that automatically acquires medical information from findings reports. The

contents of the texts are transferred to conceptual representations that correspond to a knowledge

base, and the system incorporates domain knowledge to semantically interpret major syntactic

patterns in medical documents. Xu et al. [2010] propose the MedEx system which uses NLP to

extract medication information from clinical notes with very high recall and precision. Numerous

other information extraction techniques have been proposed for medical texts, with various intents

such as: named entity recognition, adverse drug event detection, negated concept detection, and

many more.

Extractive Summarisation Approaches

Most summarisation systems in this domain applied extractive summarisation approaches like the

initial MiTAP system (MITRE Text and Audio Processing) [Damianos et al., 2002] which was

targeted towards the monitoring of infectious disease outbreaks or other biological threats. MiTAP

monitors various sources of information such as online news, television news, and newswire

feeds. and captures information which are filtered and processed to identify sentences, paragraphs,

and POS tags. The final summary is generated by WebSumm [Mani and Maybury, 1999] as

extracted sentences from the processed text. Johnson et al. [2002] also present an extractive

summarisation approach in which medical documents are clustered into groups, which are then

analysed for features and a cluster signature is generated. The summary is generated by matching

the cluster signature to each sentence of the document to be summarised, and ranked sentences

are presented to the user as a summary. Reeve et al. [2007] propose a single-document, extractive

summarisation approach that combines BioChain [Reeve et al., 2006a], which identifies relevant

sentences using concept-chaining (similar to lexical chaining but applied to UMLS concepts), and

the FreqDist system [Reeve et al., 2006b], which uses a frequency distribution model to identify

relevant sentences. This hybrid approach, called ChainFreq, first uses the BioChain method
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to identify candidate sentences containing strong concepts. The candidate sentences and their

corresponding concepts are then passed to the FreqDist method, which produces a set of summary

sentences from the candidate sentences. In the second step, sentences are selected in a way such

that the frequency distribution of the concepts in the summary is similar to that in the original text.

Other extractive approaches have been proposed with various intents: Mihalcea [2004] presents

an approach for automatic sentence extraction using graph based ranking algorithms; Elhadad

[2006] proposes extractive algorithms for performing user-sensitive text summarisation; and,

more recently, Ben Abacha and Zweigenbaum [2011] put forth some summarisation approaches

for the automatic extraction of semantic relations between medical entities.

Non-extractive Approaches

MUSI is an early system that applies semantic information thoroughly [Lenci et al., 2002]

(MUltilingual summarisation for the Internet). It follows an approach similar to the ones already

mentioned for sentence extraction but also has the capability of producing semantic representa-

tions of the extracted sentences to produce an abstractive summary. In the case of an abstractive

summary, a range of text processing techniques including tokenisation, morphological analysis,

shallow syntactic parsing, chunking, dependency analysis and mapping to the internal representa-

tion is performed. The final summary is produced in French and German with the aid of Natural

Language Generation systems.

Other than the MUSI system, early research in this area did not consider abstractive summarisation.

Importantly, most of the mentioned systems are applicable to single documents, and progress

in multi-document summarisation in this domain has been made over the last few years only.

Recently, a number of abstractive summarisation systems have been proposed (e.g., PERSIVAL

[Elhadad and McKeown, 2001], MedQA [Lee et al., 2006a, Yu et al., 2007a], EpoCare [Niu et al.,

2005, 2006]. We discuss some of these approaches in more detail in the following subsections.

Progress in Medical Summarisation and Question Answering

In recent years, medical document summarisation has progressed in a variety of directions. While

some systems rely on heavy linguistic processing, most make use of domain knowledge and/or

statistical techniques. A variety of document types are now addressed by the different approaches,

and QA systems have been developed specific to this domain.

Clinical notes, narratives and recorded patient information have remained important summari-

sation subjects. Meng et al. [2005] use extractive summarisation to obtain patient information

using semantic patterns, and Vleck et al. [2007] identify information physicians consider rel-

evant to summarising a patient’s medical history in a medical record. More recently, Sarkar
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[2009] presents an approach to summarise published medical documents taking advantage of

domain-specific information provided by UMLS. The proposed approach is extractive, based on

the Edmundsonian Paradigm and uses features such as term frequency, sentence similarity to

document title, position of sentence, presence of domain specific cue phrases, presence of novel

terms (terms not found in either domain-specific or domain-independent vocabulary sources) and

sentence length.

Most work on query-focused summarisation in this domain has been carried out under the broader

research area of QA. Initial QA research has focused on open domain text-based QA. The

field has witnessed a growing interest among researchers in restricted domain QA [Mollá and

Vicedo, 2007]. In contrast to open domain QA, QA in the biomedical and medical domains are

challenged with a more acute need to cater for specialised terminological variation [Zweigenbaum,

2003]. Zweigenbaum [2009] also notes the role of domain-specific knowledge and reasoning

for restricted domain (such as the medical domain) QA. The author states that knowledge

and reasoning are both more necessary and manageable for a restricted domain compared to

an unrestricted domain due to the relative specificity, and the difficulty of limited scoping of

questions.

Some research has focused primarily on question analysis and classification as a first step towards

medical QA [Athenikos and Han, 2009]. Yu and Sable [2005], Yu et al. [2005, 2007a] and

Yu and Cao [2008], for example, study the answerability of clinical questions and attempt to

classify clinical questions based on the Evidence Taxonomy [Ely et al., 1999], and also into

general topics. Terol et al. [2007] present a very similar approach and propose a logic-form based

approach in adapting a generic restricted-domain QA system to the medical domain. The primary

component of this system is the question analysis component that classifies each question to one

of the 10 most generic questions proposed by Ely et al. [2000]. From the question, logic forms

representing the information needs of the question and the answer pattern are derived. The answer

extraction phase, then becomes the problem of finding the relevant concepts from the documents

that can fulfill the needs of the question. The evaluation of the system, however, only evaluates

the question analysis phase and therefore the performance of the overall system remains.

The QA approach proposed by Weiming et al. [2007] is quite different and relies heavily on

semantic information present on the questions and documents. In the answer generation phase,

candidate sentences are first identified from which phrase-level answers are generated by mapping

semantic types and relations in the candidate sentences to those in the question. For each answer

generated by semantic clustering, the system provides the semantic type, associated concepts

and the sentence from which the answer originates. The system has been evaluated for factoid

and complex questions and is shown to have very good recall and precision (77% and 92%

respectively). Finally, Workman et al. [2012] present a dynamic summarisation approach using
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an algorithm called Combo to identify salient semantic predications. It was shown to outperform

several baseline methods in terms of recall and precision.

2.6.5 Detailed Review of Systems: The Evidence-based Medicine Perspective

While discussing approaches in the previous subsection, we attempted to only provide the reader

with a flavour of the various directions in which medical text summarisation has progressed.

We intentionally skipped some important systems and filtered out many. In this subsection, we

discuss in detail the characteristics of a number of systems that perform summarisation of medical

text. For full QA systems, we primarily focus on their summarisation components. This review

not only discusses the capabilities of the systems but also presents their strengths and weaknesses

from the perspective of evidence-based medicine. Table 4.3 provides a summary comparison of

the systems mentioned here.39

39Note that in the table, SemRep represents the summarisation approach using SemRep proposed by Fiszman et al.
[2009].
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MedQA

MedQA40 [Lee et al., 2006a, Yu et al., 2007a] answers definitional questions by producing

paragraph-level answers from Medline and the web. The system uses question classification [Yu

and Sable, 2005, Yu et al., 2005] in an initial stage followed by a shallow syntactic parser and a

standard IR engine for query formulation and document retrieval. Multiple strategies are used for

answer extraction including document zone detection, sentence categorisation using cue phrases

and identification of lexico-syntactic patterns that comprise definitional sentences. Hierarchical

clustering [Lee et al., 2006b] and centroid-based summarisation techniques (already discussed)

[Radev et al., 2000b] are used for text summarisation. Yu et al. [2007a] and Yu and Kaufman

[2007] provide an evaluation of MedQA against three search engines – Google, OneLook and

PubMed – for answering definitional questions and show that Google is very effective in obtaining

definitions, outperforming MedQA.

MedQA has opened new directions in medical text summarisation. It has shown how supervised

classification can be used for intermediate steps in medical text summarisation, such as query

analysis. MedQA, however, does not capture semantic information which plays an important

role for answer extraction and summarisation particularly for this domain. Also the intent of the

system is very different from the requirements of the evidence-based medicine practitioner. Due

to its limited capability and its narrow purpose, its role in evidence-based medicine practice is also

limited. The key limitation of the system is that it can only answer definitional questions, while

the questions that appear in real life evidence-based medicine practice are generally complex

in nature. Despite its limitations, the techniques employed by the system are very useful for

implementing QA systems in this domain.

CQA 1.0

Lin and Demner-Fushman [2007] present a QA system41 that uses a statistical and knowledge-

based approach and is particularly targeted towards the practice of evidence-based medicine. The

proposed system uses PICO representations of questions as queries which are sent to PubMed to

retrieve an initial set of abstracts. From the abstracts, each of the PICO elements (Problem/Popu-

lation, Intervention, Comparison and Outcome) are extracted using various techniques. MetaMap

is extensively used to identify UMLS terms and their categories. The population extractor uses

a series of hand-crafted rules to identify occurrences of population terms in the abstracts, with

preference given to terms occurring earlier in the documents. The problem extractor relies on the

recognition of concepts belonging to the UMLS semantic group ‘DISORDER’. It returns a list of

problems, with the concepts appearing in the title, introduction or first two lines of the sentences

40Available at: http://askhermes.org/MedQA/. Accessed on 26th May, 2014.
41Available at: http://www.umiacs.umd.edu/~demner/. Accessed on 26th May, 2014.
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given higher preference, and the highest ranked problem is chosen as the primary problem. The

intervention and comparison elements are identified in a similar way – by recognition of nine

semantic types (e.g., diagnostic procedure, clinical drug, etc.). In structured abstracts, more

weight is given if the semantic types appear in ‘title’, ‘aims’ or ‘methods’ sections while in

unstructured abstracts, more weight is given if they appear towards the beginning of the document.

Using the extracted knowledge, the authors re-rank the retrieved documents using a document

ranking algorithm that takes into account the knowledge elements, strength of evidence and other

task specific considerations [Lin and Demner-Fushman, 2006]. An outcome extractor extracts

outcome sentences from the retrieved documents using a strategy based on an ensemble of classi-

fiers (a rule-based classifier, a bag-of-words classifier, an n-gram classifier, a position classifier,

an abstract length classifier and a semantic classifier). Each sentence is given a probability based

on the classifier scores, and the top-ranked sentences are chosen. As the final output, the system

simply produces the top ranked sentences from the top re-ranked documents along with the

question and the strength of recommendation. Only basic clinical questions such as ‘What is the

best drug treatment for X’ are addressed. The authors evaluate the performance of the knowledge

extractors against different baselines and also manually evaluate the final output against a baseline

that only presents top sentences from unranked documents.

The CQA 1.0 system is invoked as a module by the InfoBot system that is under development

at the NLM [Seckman et al., 2008]. The techniques applied by the CQA system show the

importance of statistics and domain-specific knowledge for medical text summarisation. There

are several limitations of the system. It relies on PICO frames for queries (instead of natural

language questions), and an information synthesis technique is absent at the end to produce a

single answer from related documents. Furthermore, the algorithm applied to predict the qualities

of evidences does not follow an evidence-based guideline. In our work, we utilise some of the

ideas proposed by the authors of CQA 1.0, and we address some of its limitations.

BIOSQUASH

BioSquash is a question-oriented extractive summarisation system for biomedical documents

[Shi et al., 2007, Melli et al., 2005]. The system has four main components – Annotator Module,

Concept Similarity Module, Extractor Module and Editor Module. The Annotator Module uses a

statistical parser, a named-entity recogniser and a semantic role labeler to annotate the documents

with syntactic and shallow semantic information. The Concept Similarity Module obtains

semantic meanings of biomedical concepts and ontological relations among these concepts.

WordNet42 and UMLS are used to extract concepts. The extractor module performs content

selection in three steps – Content Identification, Text Graph Creation, Concept Significance

42http://wordnet.princeton.edu/. Accessed on 26th May, 2014.
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Identification and Concept Space Covering. The Concept Identification step identifies ontological

concepts, named entities and noun phrases. The Text Graph Creation step then represents

relationships between concepts, even those in separate documents, as edges in a graph whose

nodes are the concepts. The significance of each concept is then determined using the number

of edges it is connected to and also based on the type of concept. Highest ranked propositions

(groups of concepts) are then chosen as candidate sentences, and a penalty function is used to

prevent similar sentences from being selected. The Editor Module reorders candidate sentences

using a 2-phase re-ordering algorithm, and a summary candidate is generated after compressing

the reordered sentences.

The approach presented is quite comprehensive and makes heavy use of domain knowledge

and statistical techniques. The system is evaluated on only 18 questions from TREC-200543

using ROUGE44 and is shown to perform reasonably well. However, such a small test set is not

sufficient to evaluate the full capabilities of the system, and a more comprehensive evaluation is

desirable.

Summarisation using SemRep

Fiszman et al. [2004], Rindflesch et al. [2005] and Fiszman et al. [2009] propose a semantic

abstraction approach to automatic summarisation in the biomedical domain by using SemRep

as a semantic processor to perform source interpretation and predication listing. Summarisation

relies on a user-specified topic. A transformation stage generalises and condenses the list of

predicates generating a conceptual condensate for the input topic. The transformation is carried

out in four phases: Relevance (include predications in the topic of summary), Connectivity

(also include ‘useful’ additional predications), Novelty (do not include predication that the user

already knows) and Saliency (only include the most frequently occurring predications). The

Relevance phase identifies predications on a given topic (e.g., disorders) and is controlled by

a schema represented as a set of predications in which the predicate is drawn from a relation

in the UMLS Semantic Network, and the arguments are represented as a domain covering a

class of concepts in the Metathesaurus. Predications produced by SemRep must conform to this

schema in order to be included in the conceptual condensate; such predications are called ‘core

predications’. The Connectivity phase is a generalisation process and retrieves all predications

that share arguments with core predications. The Novelty phase provides further condensation

by eliminating predications that have a generic argument (e.g., Pharmaceutical Preparations) as

determined by its hierarchical depth in the Metathesaurus. Finally, the Saliency phase calculates

the occurrence of arguments, predicates and predications, and those occurring more frequently

43http://ir.ohsu.edu/genomics/. Accessed on 26th May, 2014.
44ROUGE — Recall-Oriented Understudy for Gisting Evaluation — is discussed in Section 7
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than others in the condensate are kept while the others are eliminated. The final summary is

produced in the form of a graph, and the approach can be applied to both single documents and

multiple documents without requiring any modifications.

One of the drawbacks of the system is that it does not incorporate query information. The system

is evaluated [Fiszman et al., 2009] on its ability to identify drug interventions for diseases only

(other forms of interventions are not taken into account). Therefore, the application domain

of the system is very limited. Furthermore, only clinical trials are used as source documents.

The performance of the system is compared to a baseline that selects drug names based on the

frequencies of their occurrence in source texts. A scoring mechanism called the clinical usefulness

score is used. It rewards the systems for identifying beneficial drug interventions and penalises

them for identifying harmful or not useful ones. To assess the usefulness of drug interventions,

drug listings in Clinical Evidence (CE) articles are used as surrogates for a physician-annotated

reference standard. The system is shown to outperform the baseline in terms of both the clinical

usefulness score and mean average precision (MAP).

The summarisation approach applied by the SemRep system is simple, innovative, and effective.

Its performance illustrates the importance of domain-specific semantic information, and the

usefulness of distributional semantics in automatic summarisation for this domain. Incorporating

query-focus into the summarisation procedure will make the technique more applicable for

evidence-based medicine practice. Summary information requirements must be identified from

clinical questions instead of manually identified topics, and the summarisation component should

be able to identify information other than drug interventions.

EPoCare

The EpoCare (Evidence at Point of Care)45 project [Niu et al., 2003, Niu and Hirst, 2004, Niu

et al., 2005, 2006] is an initiative by the University of Toronto to develop a system that can

automatically answer clinical questions. The project aims to provide fast access at point-of-care

to the best available medical information. The current implementation relies heavily on automatic

identification of PICO elements from both clinical questions and their corresponding answers.

PICO keywords are first identified from the question and used as keywords for retrieval. The

problem of identifying answers to a clinical question is divided into four sub-problems – (i)

identifying roles (PICO elements) in the text, (ii) determining the lexical boundary of each role,

(iii) analysing the relationship between different roles and (iv) determining which combinations of

roles are most likely to contain correct answers. The initial work presented by Niu and colleagues

addresses simple treatment-type questions. MetaMap is used for automatic identification of

45http://www.cs.toronto.edu/km/epocare/index.html. Accessed on 26th May, 2014.
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interventions and problems. The authors note that identification of outcomes is a much more

difficult task, and they identify cue words (nouns, verbs and adjectives) that indicate the presence

of outcomes in sentences. The outcome detection task is further subdivided into two sub-tasks —

outcome identification and lexical boundary determination. In addition to sentence level outcome

detection, the authors suggest that the polarity of outcomes play an important role in determining

which sentences to choose as answers. Four categories of polarities are defined (positive, negative,

no outcome and neutral). The authors use a Support Vector Machines (SVM) to classify sentences

into the four categories and use uni-grams, bi-grams, change phrases, negations and semantic

categories (UMLS) as features. Upon assessment of the effect of different combinations of

features, the authors show that best results are obtained by combining linguistic features with

domain features.

The outcomes of the polarity classification task are used in a multi-document summarisation

approach to automatically find information from Medline abstracts to answer a clinical question.

Presence and polarity of outcomes, position of sentence in abstracts, length of sentences and

Maximal Marginal Relevance (MMR) are used as features in a machine learning algorithm

(SVM) used to solve the summarisation problem. Sentences in Medline abstracts cited by Clinical

Evidence (CE) articles are manually annotated for each clinical query, and sentences obtained

from the automatic approach are compared with these for evaluation. A total of 197 abstracts

from 24 subsections in CE are annotated to give a total of 2,298 sentences.

The outcome detection task is shown to have an accuracy of 83%. The polarity assessment task

is shown to have an accuracy of 79.42%. For the summarisation task, it is observed that the

identification of outcomes and polarity improves performance significantly. However, F-scores

are shown to be very low (<0.50) in all cases. ROUGE is also used for evaluation but shows little

difference in performance of different combination of features.

The outcomes of the EpoCare project show that abstractive summarisation approaches, which

utilise automatic polarity classification of sentences, have the potential to be applied for the

generation of evidence-based summaries. This work is very promising, and future research on the

incorporation of context information (e.g., polarity relative to a context intervention, and contexts

specified by queries) appear lucrative. Due to the promise of this approach, we build on the initial

work of the EPoCare project for the generation of bottom-line, evidence-based recommendations.

Our work related to this is described in Chapter 6.

PERSIVAL

PERSIVAL (PErsonalized Retrieval and summarisation of Image, Video and Language) [Elhadad

and McKeown, 2001] is a medical digital library designed to provide personalised access to
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a distributed library of multimedia medical literature. It is not possible to discuss the whole

project in this review, and hence we focus on the text summarisation component of the system

that produces customised, abstractive summaries for persons from technical and non-technical

backgrounds [Elhadad et al., 2005, Elhadad, 2006].

The summarisation system takes as input three different sources: patient records, medical articles

(about cardiology) that are relevant to the patient and the user query from which the key words

are extracted. The input articles are classified as prognosis, treatment or diagnosis. Relevant

sentences from the ‘Results’ sections of the articles are extracted and stored in tuples of the form:

(Parameter(s), Findings, Relation), where the Relation describes the relation between a parameter

and a finding. The information extraction phase also identifies the degree of dependence of

the parameters, the article and the sentence from which it has been extracted and various other

minor information [Elhadad et al., 2005]. Hand-crafted templates are filled with the extracted

information, and, after identifying the portions of the extracted parameters that are relevant to

the patient records, the templates are merged and ordered by rendering into an internal semantic

representation in the form of a graph. Repetitions (when two nodes are connected via multiple

vertices of the same type) and contradictions (when two nodes are connected by multiple vertices

of different types) are identified from the graphs, and this information is used to create a coherent

summary. The information is then ordered for summary generation: relations related to the user

query are given the highest preference followed by recitations and contradictions, which in turn

are followed by preference based on the relation type (e.g., risk relation is given higher priority

than association relation) and, finally, dependent relations from the same template are presented

together. The final summary is generated with the use of NLG techniques, and all medical

terms are hyperlinked to their definitions. The system is built through close collaborations with

medical experts who check the validity and performance of the approaches at each iteration of

development, and the authors use this informal evaluation at each stage to validate and improve

their system. Each prototype of the system is built as an improvement to the previous one based

on the feedback obtained from the experts.

The summaries generated by the system are not evidence-based, and the intent of the system is to

provide personalised information for users from both technical and non-technical backgrounds.

The approaches applied by this system have the potential of being applied for evidence-based

summarisation.
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AskHERMES

AskHERMES46 [Cao et al., 2011] is a clinical QA system that performs robust semantic analysis

of complex clinical questions and output query-focused extractive (single-document) summaries

as answers. The system allows the users to enter questions using natural language with minimal

query formulation, and to efficiently navigate among all the answer sentences to quickly meet

their information needs. The system is demonstrated to outperform Google and UpToDate when

answering complex clinical questions.

AskHermes operates in five phases: a query analysis module automatically extracts information

needs from the questions and outputs a list of query terms; a related questions extraction module

returns a list of similar questions; an information retrieval module returns the relevant documents;

an information extraction module identifies relevant passages from the source documents; and a

summarisation and answer presentation module aggregates answer passages, removes redundant

information, and automatically generates structured summaries.

In the query analysis phase, a query is first classified into one of 12 general topics [Yu and

Cao, 2008], and then keywords are automatically extracted from the question using Conditional

Random Fields. Following the retrieval of relevant documents, a two-layer hierarchical clustering

is applied to group passages into different topics. Topic labels are assigned to clusters using

query terms and expanded terms from the UMLS. A topic-labeled tree structure is generated

from the first layer of clustering, and a second layer of clustering is applied to provide more

refined categories. Clusters are ranked based on the key query terms appearing in the cluster, and

redundancies are detected and removed using longest common substrings.

AskHERMES is shown to perform comparably to state-of-the-art systems, and its potential in

the field of evidence-based medicine is very promising. One issue is that the lengthy summaries

do not satisfy the requirement of bottom-line recommendations required by practitioners. Due

to the extractive nature of the summarisation, it is difficult to synthesise information from

multiple documents and generate brief summaries. However, the system’s performance suggests

that customising the summary generation process to the type of question may be beneficial.

Furthermore, the authors show that key query terms can be used to determine topics. This

suggests that the semantic types of these key query terms, and the semantic associations they

have with the document terms, may play an important role in query-focused summarisation.

46Available at: http://www.askhermes.org/index2.html. Accessed on 26th May, 2014.
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2.7 Evaluation

The objective of this section is to briefly discuss the evaluation techniques used for automatic

summarisation, approaches attempted in the past and possible approaches for evaluating sum-

maries for evidence-based medicine. Evaluation of automatically generated summaries is a

hard problem [Sparck Jones, 1999, 2007, Das and Martins, 2007]. This is primarily because

of the fact that it is a heuristic problem – there are more than one acceptable solutions, and a

universally accepted standard evaluation is absent. Evaluation measures usually focus on specific

features of the summarised text, which depend largely on the summarisation factors. The features

focused upon by evaluation techniques for generic summaries can be significantly different from

those for query-focused summaries. Evaluation techniques can also vary according to the unit

of summarisation (i.e., single vs. multi-document), domain, type (extractive vs. non-extractive)

and other factors mentioned previously. In this brief section, we focus only on approaches that

have been used or may be relevant for application in evidence-based medicine summarisers. The

interested reader can refer to Lin and Hovy [2002] for a brief discussion on automatic and manual

evaluation techniques.

2.7.1 Extrinsic and Intrinsic Evaluation

Summary evaluation techniques can be divided into two broad categories – extrinsic and intrinsic.

Extrinsic evaluation techniques focus on the purpose of summaries. The objective is to measure

the usefulness of a summary for a specific task. The single feature that plays the most important

role in determining the usefulness of a summary is its content, and numerous evaluation techniques

use this feature as an indication of the qualities of summaries. Recall, precision, F-score,

coverage and other similar measures [Lin and Hovy, 2002] have been frequently used in the

past as simple evaluations of content relevance (e.g., Weiming et al. [2007], Niu et al. [2003],

Niu and Hirst [2004], Niu et al. [2005, 2006]). More sophisticated techniques have also been

applied for extrinsic evaluation. An example is the assessment of the answerability of questions

(that can be answered from the source text) from summarised text: Morris et al. [1992] used

educational reading comprehension questions; Minel et al. [1997] and Teufel [2001] use more

sophisticated questions about argument structure; SUMMAC [Mani et al., 2002] used questions

about significant source content that should be answerable from summaries. Such an evaluation

approach can be useful for summarisers targeted towards evidence-based medicine, as discussed

later.

Intrinsic methods concentrate on the summary itself, trying to measure features such as coherence,

cohesion, grammaticality, readability and other important features. Intrinsic methods for extrac-

tive summaries assess features such as discourse well-formedness, while those for non-extractive
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approaches must also assess sentence well-formedness. Although in some domains, such as

news, intrinsic evaluation plays an important role, for a query-focused summarisation system for

evidence-based medicine, we believe it to be much less important. The reasons are discussed

later in the section.

2.7.2 Evaluation Techniques

Both manual and automatic evaluation techniques are used for evaluating summaries. The

following are some common techniques used in both methods of evaluation.

Gold Standards

Gold standards (also known as human reference summaries) are often used for evaluating

automatic summarisation primarily because humans can be relied upon to capture important

source content and to produce well-formed output text [Sparck Jones, 2007, Suominen et al.,

2008]. The expected output summaries are manually created by human experts, who are often

experts in a specific domain. The created summaries therefore contain the necessary content and

become the target performance for systems. Evaluation then compares the generated summaries

with the gold standard summaries. This can be done automatically or manually, and is itself a

research problem. The more similar a generated summary is to the gold standard, the better it

is considered to be. In evaluation of early extractive summarisation approaches, the automatic

summaries were compared against extracted gold sentences picked by human experts. Since then,

this technique has expanded to evaluating domain-specific summarisation systems where gold

summaries are generated by domain experts, and often customised comparison techniques are

used. Automatic comparisons against gold summaries are also used, such as ROUGE [Lin and

Hovy, 2003], which has been used to evaluate a number of the summarisation systems mentioned

in this paper. Further details about this evaluation system are provided later.

For years, the absence of gold standard data has been an obstacle to summarisation research in the

medical domain. Due to this reason, there has been very little research on analysing the contents

of human summaries and data-driven summarisation approaches. Absence of gold standards has

also made automatic, relative evaluation of systems difficult.

Baselines

Baselines can be considered to be the opposite of gold standards in that they indicate the minimum

level of required performance by a summarisation system. For extractive summarisation, various

baselines such as n random sentences have been used. A more appropriate baseline for news
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summarisation was introduced by Brandow et al. [1995] who used the first n sentences. With

these baselines, the minimum performance required by a system is to select n sentences that

better summarise the source than the baseline. Similar baselines have been established for

summarisation in various other domains. For example, Lin and Demner-Fushman [2007] propose

an outcome extractor that is compared against a baseline of ‘last n sentences’ (since outcomes

presented in a medical paper usually appear towards the end of the abstract). Baseline measures

of tf.idf type have also been used in the literature and even for evidence-based medicine [Fiszman

et al., 2009]. In such baselines, the summarisation units (sentences, words, n-grams) are chosen

based on their tf.idf values. A standard baseline for summarisation systems across domains and

even within specific domains, however, still does not exist.

Topic-oriented Evaluation

Topic-oriented evaluation techniques are specialised to the topic and intent of the summarisation

task. A number of topic-oriented evaluation schemes have been proposed in the literature,

both within the medical domain and outside. A recent example of a topic-oriented evaluation

mechanism is the ‘Clinical Usefulness Score’ (CUS) [Fiszman et al., 2009], a unique evaluation

of generated summaries. The CUS is a categorical performance metric. In calculating this score,

interventions extracted by a system are assigned to one of four high-level categories depending on

how they match the interventions in a predetermined reference standard. The goal is to give credit

to a system for finding beneficial interventions and, similarly, penalise it for finding harmful

interventions. The high-level categories and the corresponding reference standard categories are

— best (beneficial), ok (trade-off between benefits and harms), bad (harmful) and other (unknown).

Overall CUS for a topic is calculated as follows:

CU S = wbest ×bs1 +wok ×os1 −wother ×os2 −wbad ×bs2 (2.5)

where bs1 is the BEST score, bs2 is the BAD score, os1 is the OK score and os2 is the OTHER

score. The scores are simply the number of drugs identified that fall into each of the four

categories divided by the total number of drugs identified for the whole topic. The weights are

manually assigned.

2.7.3 Manual Evaluation

Due to the difficulty associated with evaluating automatic summaries, manual evaluation is still

a common practice. There is more confidence in manual evaluation (compared to automatic
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evaluation) since humans can infer, paraphrase and use world knowledge to relate to text units

with similar meanings but worded differently. In such evaluations, domain experts (often several

for a single summary) read and grade summaries, usually using some chosen scale. Manual

pairwise comparison of generated summaries with gold standard summaries is also frequently

used. Most of the systems mentioned in the last subsection of the previous section have undergone

some form of manual evaluation, or at least involved human experts for the preparation of a

gold standard (e.g., [Lin and Demner-Fushman, 2007]). However, agreement among human

summarisers is generally quite low, and the process of manual evaluation is quite expensive.

Human judgements have been shown to be unstable and inconsistent as well [Lin and Hovy,

2002]. As a result, alternative automatic evaluations having high correlation with human scores

are usually used.

Nenkova and Passonneau [2004] present the pyramid approach for manual summary evaluation.

According to the authors, instead of attempting to elicit reliable judgement from humans, this

evaluation method is calibrated to human summarisation behaviour. Summary content is divided

into summarisation content units (SCU), and SCUs representing the same semantic information

are annotated in each source document. Once annotation is complete, each SCU is given a weight

equal to the number of summaries in which the SCU appears. Next, the SCUs are partitioned into

a pyramid in which each tier contains SCUs of the same weight and higher tiers contain SCUs of

higher score (i.e., SCUs appearing in more human summaries). Therefore, an optimal summary

is expected to contain SCUs from the top tier followed by (if length permits) SCUs from the next

tier and so on. Finally, the score assigned to an automatically generated summary is the ratio of

the sum of the weights of its SCUs to the sum of the weights of an optimal summary with the

same number of SCUs.

A slightly earlier approach presented by van Halteren and Teufel [2003] is similar: in it atomic

semantic units, called factoids, are used to represent the meanings of sentences. The approach

requires the generation of a large number of summarised articles from which the gold standard

can be obtained by identifying the most frequently occurring factoids. As an example, the authors

show that to generate a 100 word summary of a news article (from 50 sample summaries), all

factoids appearing in at least 30% of the summaries had to be included. Hence, gold standards

of different lengths can be generated by varying the factoid threshold. Although this approach

ensures very high agreement among the manual summarisers, its requirement of a large number

of sample summaries makes it quite an expensive approach.
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2.7.4 Automatic Evaluation

ROUGE

Lin and colleagues [Lin and Hovy, 2003, Lin, 2004] introduced a set of metrics called Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) that have become very much the standards

of automatic evaluation. The intent of the various ROUGE measures is to find the similarity

between automatically generated summaries and reference summaries. One of the metrics,

ROUGE-N, is an n-gram based recall oriented statistic and can be used with multiple reference

summaries. The statistic is calculated using the following formula:

ROUGE −N (s) =
∑

r∈R <φn(r ),φn(s) >∑
r∈R <φn(r ),φn(r ) > (2.6)

where <.,.> denotes the inner product of two vectors, R = {r1, ...,rm} denote a set of reference

summaries, s denotes a summary generated automatically by a system, and φn(d) denotes a

binary vector contained in a document d . Thus, the metric simply attempts to measure the extent

to which the generated summary contains the same information as the reference summaries.

Other ROUGE metrics apply different techniques with the same primary intent. For example,

ROUGE-L attempts to find the longest common subsequence (LCS) between two summaries,

with the rationale that summaries with longer LCSs are more similar. Another ROUGE metric,

known as ROUGE-S, is a gappy version of the ROUGE-N metric (for n = 2) and matches ordered

bi-grams of the generated summary with reference summaries.

The various ROUGE metrics have been shown to have good correlation with human-produced

rankings of summarisers. Since the introduction of ROUGE, its popularity has seen its widespread

use in evaluating automatic summarisation systems across various domains, including systems for

evidence-based medicine, such as the BIOSQUASH and EPoCare systems (as already mentioned).

BLEU

BLEU [Papineni et al., 2002] is an automatic evaluation approach that was originally used for

machine translation and has been shown to be promising for automatic summary evaluation as

well [Lin and Hovy, 2002]. In this technique, automatically computed accumulative n-gram

matching scores (NAMS) between a model unit (MU) and a system summary (S) are used as

performance indicators of the system (only content words are used in the n-grams). A number

of combinations of n-grams are used to compute NAMS, and the technique is shown to have

satisfactory correlation with human scores.
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Information-theoretic Evaluation

Lin et al. [2006] introduce an information-theoretic approach to the automatic evaluation of

summaries based on the divergence of distribution of terms between an automatic summary

and a set of reference summaries. The approach only attempts to evaluate content coverage

of the summary through the use of a statistical framework. For a set of documents D, the

authors assume that there exists a probabilistic distribution with parameters specified by θR that

generates reference summaries from D, and the task of summarisation is to estimate θR . Similarly,

the authors assume that every system summary is generated from a probabilistic distribution

with parameters specified by θA. The process of summary evaluation then becomes the task

of estimating the distance between θR and θA. The authors present a number of variants of

divergence measures (e.g., Jensen-Shannon divergence (JS), Kullback-Leibler divergence (KL))

for this and show that this technique is comparable to ROUGE for the evaluation of single-

document summarisation and better than ROUGE in evaluating multi-document summarisation

systems.

Louis and Nenkova [2008] also present an evaluation approach based on the same principles. In

their approach, they compare the term distributions in the summaries and the original texts using

KL and JS divergence, cosine similarity, as well as uni-gram and multinomial models of text. JS

divergence is shown to perform best with a high correlation with human measures.

Kabadjov et al. [2010] present yet another information-theoretic evaluation approach that com-

bines an n-gram co-occurrence based measure with a measure of content similarity. The amount

of content shared between a pair of texts is measured on the basis of the average semantic

similarity between a set of concepts within the first model text and the set of concepts within

the second text. Similarity is measured based on Resnik’s semantic similarity measure [Resnik,

1995] using the MeSH taxonomy. The approach is capable of capturing complex phenomena such

as hypernymy and synonymy and complements the evaluation based on n-gram co-occurrences,

resulting in a better and more reliable evaluation metric.

ParaEval

The motivation behind this evaluation technique is the lack of semantic matching of content in

automatic evaluation. The authors of this evaluation technique [Zhou et al., 2006] explain that

an essential part of semantic matching involves paraphrase matching and this evaluation system

attempts to perform that. ParaEval applies a three-level comparison strategy. At the top level, an

optimal search via dynamic programming to find multi-word to multi-word paraphrase matches

between generated and reference summaries is used. In the second level, a greedy algorithm is

used to find single-word paraphrase matches among non-matching fragments in the first level.
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Finally, literal lexical uni-gram matching is performed on the remaining text at the third level.

The authors show that the quality of ParaEval’s evaluations closely resembles that of ROUGE.

2.7.5 Discussion of Evaluation Techniques for Evidence-based Medicine

If summarising for evidence-based medicine is a hard task, evaluating summaries is even harder.

A summarisation system for evidence-based medicine should be capable of extracting evidence

from medical articles and additionally assess the grade of the evidence. The evaluation should

be able to determine if the evidence is correctly extracted and also if the extracted information

correctly answers the practitioner’s query. Therefore, the single most important aspect of the

summary is its content and a strong focus on extrinsic evaluation is required. Intrinsic evaluation

to assess aspects such as coherence and readability are perhaps not very important. This is exactly

what Sparck Jones [1999] suggested — a stronger focus on the purpose of summaries.

For the automatic evaluation of summaries, approaches based on n-gram co-occurrence such as

ROUGE are the most frequently used. Although these approaches are very robust and efficient,

their main drawback is that if two summaries were produced using non- or almost non-overlapping

vocabulary, yet conveying the same information, the similarity score such summaries would

be assigned by purely n-gram based metrics would be too low and, hence, unrepresentative of

the actual information they share. This is definitely not desirable for evaluation, particularly

in the medical domain where relations such as synonymy and hyponymy play important roles.

Furthermore, making relative comparisons between different summarisers is difficult using

automatic evaluation approaches such as ROUGE. Thus, approaches that incorporate domain

knowledge, semantic similarities, and comparisons between summarisation systems are required.

Research on the evaluation of summarisers for evidence-based medicine is still very much in its

infancy. However, recent works in this area such as that of Fiszman et al. [2009] have made useful

contributions by ensuring that evaluation techniques assess the performance of the summariser in

the light of its goals.

2.8 Chapter Conclusion

In this chapter, we provided an overview of evidence-based medicine and described how sum-

marisation of text can aid practitioners at point-of-care. We discussed in detail the obstacles that

evidence-based medicine practitioners face, as indicated by various research papers on the topic.

Based on the obstacles faced by practitioners, we argued that there are various NLP tasks that

can support evidence-based medicine and improve patient care in the long run. Following our

review of the domain, we provided an overview of automatic summarisation, its intent and some

important contributions to automatic summarisation research. We discussed that unlike automatic
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summarisation research on some domains such as news, the medical domain has not received

much research attention. We also explained that domain-independent summarisation techniques

lack sufficient domain knowledge, incorporation of which can be vital for summarisation research.

We reviewed several recent summarisation systems that are customised for the medical domain.

Our detailed review of these systems revealed numerous promising approaches, including the

clever use of domain-specific information and distributional semantics. Our survey indicates

that combining some of the useful approaches from existing literature, and building on from

these already explored techniques, may produce encouraging results for text summarisation in

this domain. Our survey reveals that an important factor limiting summarisation research in

this domain is the lack of suitable corpora/gold standard summaries. Therefore, it is likely that

automatic summarisation research in this domain will benefit from the creation of specialised

corpora. Furthermore, our survey also revealed that comparing the relative performance of each

system is quite impossible because of the unavailability of standard corpora and evaluation

criteria.

The survey provided in this chapter sets the context for the research described in this thesis.

The survey shows that the first requirement for summarisation research in this specific domain

is to analyse the content requirements for evidence-based summaries. Such analysis work

requires data that is generated from real life evidence-based medicine practice. In Chapter 3, we

describe the corpus we use for our research — a corpus that is specialised for evidence-based

medicine summarisation. We describe the design and annotation of the corpus and its possible

uses. Through an analysis of the data, we identify the important aspects of evidence-based

summarisation and discuss that, in this domain, summarisation involves text compression plus an

appraisal of the quality of the evidence.
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3.1 Introduction

In Chapter 1, we discussed the task of summarisation for evidence-based medicine, and we

provided a detailed review of the literature in the areas related to this task in Chapter 2. In the

review, we argued that summarisation research in this domain is likely to benefit from the creation

of specialised corpora. Our review of specific systems in this domain depicts the weaknesses

of existing summarisation systems in the medical domain. It also shows how the creation and

evaluation of systems is hindered by the lack of specialised data.

In our research, we utilise a specialised corpus to develop our data-driven summarisation ap-

proaches. In this chapter, we introduce this corpus. The corpus was collected semi-automatically

from a renowned source of evidence-based medicine information, and edited and annotated

manually. In the remainder of this chapter we provide a detailed description of the corpus,

including the choice of our data source, data collection techniques, annotations, and the various

possible uses of the data. The chapter explains how we use the corpus to analyse the requirements

of an evidence-based summariser.

Our target domain and research tasks require a corpus that is very specialised and yet flexible

for use in various tasks. Our domain of interest is evidence-based medicine, an important and

specialised sub-domain of the broader medical domain. To investigate the tasks associated

with evidence-based answer generation, and to explore possible approaches for performing this

task, we require data from real life evidence-based medicine practice where question-oriented

medical summaries are generated by domain experts. In particular, we require these queries,

human-authored answers to clinical queries, and source documents from which the answers have

been derived. While there is an abundance of data for automatic summarisation tasks in other

domains, to the best of our knowledge there is no corpus suitable for such a specific task, as
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explained by Mollá [2010]. There are sources of clinical questions with their answers that could

be used as development and evaluation corpora, such as the Parkhurst Exchange collection1, but

to our knowledge, none of the answers in these collections contain explicit pointers to primary

literature. There are also other corpora in the medical and biomedical domains that are suited

for specific natural language processing tasks, such as the BioScope2 corpus, which is annotated

for negations, speculations, and their linguistic scopes. However, such corpora are not capable

of supporting research on automatic medical Question Answering (QA). Also, analysing such

corpora does not reveal the specific tasks and sub-tasks associated with evidence-based answer

generation. Due to the importance, and the lack of, corpora for biomedical question answering

research, the BioASQ challenge3 recently introduced question-answer data suitable for such

research4.

Because of the unavailability of suitable data for our research, our research group built a corpus

using data from the Clinical Inquiries section of the Journal of Family Practice5 (JFP) and the

Medline database. The corpus design and creation are described by Mollá [2010], and Mollá and

Santiago-Martinez [2011]. The author of this thesis was part of the research group involved in

the creation of the corpus, and one of the three annotators of the corpus, as explained later in this

chapter. The corpus is suitable for the following tasks:

• Query-focused, single-document summarisation;

• Query-focused, multi-document summarisation;

• Automatic grading quality of evidence;

• Automatic clustering of medical text; and

• Medical Information Retrieval (Possibly).

In this thesis, we utilise the corpus for the first three tasks above. Chapters 4, 5, and 6 describe

the details of these tasks. In this chapter, we provide examples from the corpus and verify the

suitability of the corpus for these tasks. Based on the structure of the corpus, and our analysis of

it, we present a model for our task of evidence-based summarisation. Our model is influenced by

the content and structure of the corpus, which contains sample data from real life evidence-based

medicine practice. In particular, the specialised data in the corpus reveals that summarisation for

evidence-based answer generation involves, in addition to text summarisation, a process for the

1http://www.parkhurstexchange.com/searchQA. Accessed on 26th May, 2014.
2http://www.inf.u-szeged.hu/rgai/bioscope. Accessed on 26th May, 2014.
3http://bioasq.org/. Accessed on 26th May, 2014.
4Note that this data set was not available when we commenced our research on evidence-based text summarisation.
5http://www.jfponline.com. Accessed on 26th May, 2014.
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appraisal of evidence. We show how the task of grading the quality of evidence can be modelled

as a text classification problem with three classes. For the single-document and multi-document

summarisation tasks, we provide examples from our corpus showing how the summarisation

tasks can be modelled and evaluated.

The rest of this chapter is organised as follows: in Section 3.2, we describe the Clinical Inquiries

section of the JFP, the source from which we obtain the data for our corpus; in Section 3.3,

we detail the data collection strategies from both the JFP and the Medline database, and the

annotation of the data; in Section 3.4, we provide some important statistics from our corpus and

some examples depicting the uses of the corpus; and in Section 3.5, we briefly present the models

we propose for the tasks addressed in this thesis.

3.2 The Journal of Family Practice

The Journal of Family Practice is an American medical journal focusing on the family practice

domain. Each monthly issue of the journal contains a section called Clinical Inquiries, and all the

data for our corpus is collected from this section. The data collection process and the annotation

is explained by Mollá and Santiago-Martinez [2011]. We now explain the structure and content

of this section of the journal, and its applicability to research on automatic evidence-based answer

generation.

The Clinical Inquiries section of the JFP is a reliable source of information regarding real life

evidence-based medicine practice. The articles in this section, being evidence-based answers to

clinical queries, are similar in terms of structure. Each article has the same goal: to provide a

systematic analysis of the best available medical evidence in response to a clinical query. Thus,

preparation of each article in this section requires domain experts to analyse the best available

medical evidence, summarise the relevant evidence, and derive bottom-line recommendations.

As a collection, these articles are attractive to work with as they have a number of features

amenable to the study of evidence-based summarisation. Importantly, each article contains both

single- and multi-document summaries, allowing for the creation of a corpus that can flexibly

support research in both forms of text summarisation. Furthermore, the Clinical Inquiries articles

contain additional information such as grades indicating the qualities of the evidences. This

makes it possible for the corpus built from this data source to support research in related but

relatively unexplored areas of evidence-based medicine, such as the automatic appraisal of

evidence. Data from this section of the JFP also enables the analysis and replication of the various

tasks associated with evidence-based medicine practice.

Figures 3.1 and 3.2 in pages 70 and 71 show the important parts of an article from the Clinical
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Inquiries section of JFP6. As the figures show, an article in this section contains:

1. A clinical question. This appears as the title of each Clinical Inquiry article. In figure 3.1,

the clinical query is: Which treatments work best for hemorrhoids?.

2. The bottom-line, evidence-based answer(s) or recommendation(s). A single question may

have more than one bottom-line answer, since the question may be answered according

to distinct pieces of evidence. The intent of each bottom-line answer is to summarise the

evidence from medical literature, associated with the question. Thus, these summaries

generally synthesise information from multiple medical publications and state the best

possible action to address the medical problem(s) mentioned in the question.

In the example shown in figure 3.1, there are three bottom-line answers associated with the

question. Each of the three bottom-line answers focus on a separate topic. In this case, the

first bottom-line answer proposes an intervention for thrombosed external hemorrhoids,

the second for prolapsed internal hemorrhoids, and the third answer provides a summary

of nonoperative techniques.

3. For each part of the evidence-based answer, a grade indicating the quality of the evidence

associated with that answer. This grade is also known as the Strength Of Recommendation

(SOR). The purpose of the grade is to indicate the reliability/quality of the synthesised

bottom-line answer on the chosen scale. The reliability/quality of a synthesised answer

depends on the body of evidence associated with it. A brief justification behind the choice

of the grade is generally provided. The presence of evidence grades with each bottom-line

answer suggests that appraising the quality of evidence is a vital subtask in evidence-based

summary generation.

In figure 3.1, the first bottom-line answer is given a grade B, while the other two answers

are assigned A grades. The first evidence is obtained from Retrospective Studies, which

is of lower quality compared to the Systematic Reviews from which the second and third

answers have been obtained.

4. Detailed justifications for the evidence-based answers. The detailed justifications provide

more information about the clinical studies that provide the evidence for the bottom-

line answers. Generally, they contain some background information about the studies

in addition to the outcomes. The detailed justifications typically contain nuggets of

summarised information from individual documents. These summaries are authored by

human experts and provide the query-relevant information in a condensed format.

6The original article can be found at http://www.jfponline.com/index.php?id=22143&tx_ttnews[tt_news]=174638.
Accessed on 26th May, 2014.
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In figure 3.1, the detailed justifications are shown in the Evidence Summary section. It can

be seen from the figure that for each study that is discussed, some background information

along with the outcome information is provided. For example, the following extract

is taken from a single Retrospective Study, and suggests that surgical interventions are

recommended over conservative interventions.

A retrospective study of 231 patients treated conservatively or surgically found

that the 48.5% of patients treated surgically had a lower recurrence rate than

the conservative group (number needed to treat [NNT]=2 for recurrence at

mean follow-up of 7.6 months) and earlier resolution of symptoms (average 3.9

days compared with 24 days for conservative treatment).

5. References to published medical research papers from which the information in the detailed

justifications have been obtained. Thus, these referenced articles are the source texts from

which information have been condensed and extracted to produce the detailed justifications.

Figure 3.2 shows the references of the Clinical Inquiry article. From the figure, it can be

seen that the detailed justification mentioned above comes from a paper titled Thrombosed

external hemorrhoids: outcome after conservative or surgical management.

The articles in Clinical Inquiries section of the JFP are very carefully constructed reviews. The

relevant documents are identified via exhaustive literature searches by medical experts. Mollá

and Santiago-Martinez [2011] point out that there are several significant advantages of using data

from this resource, rather than direct systematic reviews such as the Cochrane Reviews7, as a

source for this corpus:

1. The format is relatively uniform across all inquiries. Therefore, it enables a semi-automatic

method to convert the data to a corpus that can be used by a machine.

2. The text in each inquiry is much more compact than in a Cochrane review, making the

target text closer to what a busy healthcare practitioner would want to read.

3. The procedure to find answers in the Clinical Inquiries section of the JFP is more methodi-

cal than some other sources of evidence-based text.

4. The presence of short answers followed by longer explanations makes this resource suitable

for summarisation at various levels.

In the next subsection, we explain the data collection process, the annotation of the data, and the

creation of the corpus in detail.

7http://www.cochrane.org/cochrane-reviews. Accessed on 26th May, 2014.
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Figure 3.1: Extract from a sample article in the Clinical Inquiries section of the Journal of Family
Practice showing the title, bottom-line summary and detailed justifications.
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Figure 3.2: Extract from a sample article in the Clinical Inquiries section of the Journal of Family
Practice showing the detailed justifications and references at the bottom of the article.
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3.3 Data Collection and the Corpus

The collection of data from JFP to produce the corpus involved several steps namely: automatic

extraction and conversion of text, and manual annotations. In this section, we first provide an

overview of the corpus itself and then discuss some of the data collection details. We commence

by providing an overview of the corpus using formal notations that we reuse later on in the

chapter.

3.3.1 Corpus Overview

The corpus is encoded in XML format and consists of a set of records, R = {r1 ... rm}. Each

record, ri , represents a Clinical Inquiry article from the JFP, and contains one clinical query, qi ,

so that we have a set of questions Q = {q1 ... qm}. Each ri has associated with it a set of one

or more bottom-line answers to the query, Ai = {ai 1 ... ai n}. Each bottom-line answer has a

grade, gi j , associated with it, so that each record contains a set of grades, Gi = {gi 1 ... gi n}. For

each bottom-line answer of ri , ai j , there exists a set of human-authored detailed justifications

(single-document summaries) Li j = {li j 1 ... li j o}. Each detailed justification, li j k , is associated

with at least one source document abstract di j k . Thus, the corpus has a set of source documents,

which we denote as Di j = {di j 1 ... di j o}.8 Figure 3.3 diagrammatically illustrates the structure

of a sample record from the corpus. In the figure, there are two bottom-line summaries associated

with the question (each with a grade indicating the quality of evidence). Each bottom-line

summary is associated with two detailed justifications, which in turn are associated with one

source text each. This structure of the corpus was chosen because it is ideal for both single- and

multi-document, query-focused, text-to-text summarisation.

We now briefly look back at how the data for the corpus was collected.

3.3.2 Data Extraction

Data were collected from all the publicly available Clinical Inquiries articles of the JFP (dating

from the year 2001 to 2010), after obtaining permission from the publishers. The questions,

bottom-line answers, evidence grades, detailed justification texts and references were all automat-

ically downloaded and stored in a database.

8Note that if there are more than one source documents for a justification, the number o in di j o should be greater
than or equal to the number empho in li j o .
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Figure 3.3: Structure of a sample record from the corpus.

3.3.3 Annotation of Detailed Justifications

The source text from the JFP articles did not provide explicit connections from each justification

to the specific bottom-line answer, as can be seen from the extract shown in Figure 3.1. Therefore,

the corpus had to be prepared by manually identifying the detailed justifications associated with

the bottom-line summaries. We utilised a web-based annotation tool9 that, for each article,

displays the question and each of the answer parts. Each bottom-line summary has associated

empty text areas where the annotator could copy and paste all the detailed justifications associated

with that bottom-line summary.

The total number of pages to annotate was distributed among three annotators, one of whom is

the author of this thesis. A small percentage of the pages was annotated by all annotators (the

9The annotation tool was designed by a research programmer. Details are provided in Mollá and Santiago-Martinez
[2011].
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Figure 3.4: Screenshot 1 of the annotation tool.

annotators did not know beforehand which of the pages were annotated by all), to check for

inconsistencies. The annotation process was done in several stages, with periodic checks on the

common pages to detect and solve systematic inconsistencies in the annotation criteria. During

those checks the annotators agreed on a set of criteria, an extract of which is:

1. Remove phrases connecting to text outside the answer justification and modify anaphora

to make the text self-contained. For example, change ‘In another study’ to ‘In a study’

or ‘The second study’ to ‘A study’. An example of this is provided in the figures 3.4 and

3.5 (the relevant text is indicated by the red squares in the figures). The phrase ‘In a 1991

meta-analysis’ (shown in figure 3.5) is added as detailed justification 1_1 (shown in figure

3.4) after removing the term ‘1991’.

2. Remove general text not directly associated with a referenced document or a bottom-line

answer.

3. If there are multiple references associated with a justification, split it into separate justifica-

tions whenever possible. In the process, some of the text may need to be copied so that
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Figure 3.5: Screenshot 2 of the annotation tool.

each justification is self-contained.

4. If a paragraph directly associated to a bottom-line answer does not have any references,

manually check if it can be added to the previous or the next paragraph which contains a

reference.

These criteria mostly addressed the need for each answer justification to be self-contained, and

to match an answer justification to one reference only whenever possible. After inspection of a

random sample of the common pages, the annotators agreed that the variations in the annotations

were acceptable. Figures 3.4, 3.5, and 3.6 show three screenshots of the annotation tool. The

sample record is different to the one shown in Figure 3.1. Figure 3.4 shows the question, the

bottom-line answer along with two manually edited detailed justifications, each of which refer

to a specific source document from which the information was obtained. Figure 3.5 is the next

screenshot showing available text area for insertion of more detailed justifications and some text

from the JFP article. Figure 3.6 shows the bottom of the annotation page with the references

information, where annotators have the option of correcting errors with PubMed IDs or SORs

before saving their work.
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Figure 3.6: Screenshot 3 of the annotation tool.

3.3.4 Extracting Reference Information via Crowdsourcing

In addition to all the information available from the JFP, our target task of summarisation requires

the source texts associated with the detailed justifications. Each Clinical Inquiries article contains

multiple bibliographical references to medical publications. Although a small number of those

point to online sources, the majority are full bibliographical references pointing to traditionally

published resources such as medical journals or magazines. We wanted to obtain as many of the

associated source articles as possible. Since most medical articles are regularly logged into the

PubMed database, we chose to obtain electronic copies of the article abstracts from there. It was

not possible to obtain full articles since we did not have access to all the venues from which they

were available. The easiest way to obtain an electronic copy of an article abstract is to download

it from the PubMed website using the article’s PubMed ID. Therefore, completing the corpus

required identifying the PubMed IDs of the abstracts.

We used crowd-sourcing to obtain as many of the associated abstracts as possible from PubMed.
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Figure 3.7: Screenshot of a sample record from the corpus.

The crowdsourcing task was created using Amazon Mechanical Turk10, and the task of the

turkers was to manually identify the PubMed IDs for the articles referenced in the JFP. Detailed

descriptions about the design of this task is provided by Mollá [2010] and Mollá and Santiago-

Martinez [2011]. The final accuracy of the annotation task was manually checked on a random

sample of 100 references by double checking them. No errors were detected. Finally, once all

IDs were found, the abstracts were automatically downloaded from PubMed and added to the

corpus. We chose to download the articles in XML format, which contains useful meta-data, the

abstract text and additional annotations such as classification tags and MeSH terms. Note that it

was not possible to obtain all the abstracts. The next section discusses various important statistics

10https://www.mturk.com/mturk/. Accessed on 26th May, 2014.
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Figure 3.8: Screenshot of a sample PubMed abstract from the corpus.
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associated with the corpus in more detail.11

Figure 3.7 shows the actual corpus in XML format. Figure 3.8 presents a screenshot showing the

structure of a PubMed abstract. The abstract (PubMed ID: 12230591) is also chosen from the

same record. A sample of a full abstract is provided in Appendix A.

3.4 Statistics and Use of Corpus

The final statistics of the corpus are as follows:

• Number of records: 456;

• Number of bottom-line answers associated with the records: 1,396;

• Number of bottom-line answers with quality grades specified: 1,225 (171 answers did not

have any associated quality grades);

• Number of detailed justifications associated with the bottom-line answers: 3,036; and

• Number of unique referenced articles (PubMed abstracts) associated with the detailed

justifications: 2,908; 797 referenced articles are associated with more than one detailed

justification.

On average, each record has 3.06 bottom-line answers; each bottom-line answer has 2.17 as-

sociated detailed justifications; each detailed justification has 1.22 references. There are 6.57

references, on average, for each question. Despite our best efforts, we failed to locate a number of

the source documents on Medline. All such cases were noted and recorded in the corpus. In total,

312 (10.7%) referenced documents could not be found on Medline. Furthermore, in a number

of cases, although the referenced documents were found in Medline, the XML versions of the

documents did not contain any text from the abstract. There were a total of 311 (10.7%) such

cases.

The distribution of the quality grades is: 345 for A, 535 for B, 330 for C, 15 for D12. A total of 171

bottom-line summaries do not have any quality grade assigned, and therefore, these entries are

unusable for research in automatic grading of evidence. However, their applicability to automatic

summarisation research does not change.

Figures 3.9 and 3.10 illustrate the distributions of bottom-line summaries, detailed justifications,

references, and quality grades in our corpus.

11The author of this thesis was not involved in the crowd-sourcing experiments.
12SORT only has the grades A, B, and C, but some authors used the grade D to specify very poor evidence.
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Figure 3.9: Distributions of bottom-line summaries, detailed justifications, and references in our
corpus.

From the perspective of this thesis, the corpus has two primary uses: text summarisation and

evidence quality appraisal. The tasks and the suitability of the corpus for them are discussed
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Figure 3.10: Distributions of references and quality grades in our corpus.

below:

Evidence-based summarisation.
The intended primary use of the corpus is to perform automatic, evidence-based text summari-

sation. The design of the corpus enables the development and testing of single-document text

summarisation. For this task, the abstracts can be used as source texts and the human-authored

detailed justifications can be used as the gold standard. Since the questions are also available in

the corpus, they can be used for performing query-focused, single-document summarisation.

Figure 3.11 shows an example of information in our corpus that can be used for single-document

summarisation. The figure shows the question, the human-authored detailed justification (to the

bottom-line answer which is not shown in the example), and text from the referenced abstract.

The target of automatic summarisation in this case is to identify and extract information from the

source texts that most closely resembles the human-authored summaries.
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Question.
What are the best prophylactic drugs for migraine?

Detailed justification (single-document summary):
A study of the extended-release form of divalproex sodium demonstrated a 4-week
reduction in headache rate to 1.2 from a baseline of 4.4, compared with a decrease
of 0.6 for placebo (95% confidence interval [CI] of treatment difference, 0.2-1.2).

[PubMed ID: 12058094]

Source text (abstract):

OBJECTIVE: To evaluate the efficacy and safety of extended-release divalproex
sodium compared with placebo in prophylactic monotherapy treatment of migraine
headache.

METHODS: This was a double-blind, randomized, placebo-controlled, parallel-
group study. Subjects with more than two migraine headache attacks during a
4-week baseline were randomly assigned in a 1:1 ratio at each center to receive
either extended-release divalproex sodium or matching placebo once daily for 12
weeks. Subjects initiated treatment on 500 mg once daily for 1 week, and the dose
was then increased to 1,000 mg once daily with an option, if intolerance occurred,
to permanently decrease the dose to 500 mg during the second week. Reduction
from baseline in 4-week migraine headache rate was the primary efficacy variable.
Migraine headaches separated by a less than 24-hour headache-free interval were
counted as single migraines in calculating migraine headache rates. Tolerance and
safety were also evaluated.

RESULTS: The mean reductions in 4-week migraine headache rate were 1.2 (from
a baseline mean of 4.4) in the extended-release divalproex sodium group and 0.6
(from a baseline mean of 4.2) in the placebo group (p = 0.006); reductions with
extended-release divalproex sodium were significantly greater than with placebo
in all three 4-week segments of the treatment period. No significant differences
were detected between treatment groups in either the overall incidence or in the
incidence of any specific treatment-emergent adverse event; 8% of subjects treated
with extended-release divalproex sodium and 9% of those treated with placebo
discontinued for adverse events.

CONCLUSIONS: Extended-release divalproex sodium is an efficacious, well-
tolerated, safe, and easy-to-use once-a-day prophylactic antimigraine medication.

Figure 3.11: An example of single-document summarisation from our corpus, showing the
question, the summary and the source abstract. Note that as can be seen from the example, not all
the information contained in the detailed justification is contained in the abstract. It is likely that
this information originates from the full text of the article.
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The corpus is also suitable for performing evidence-based multi-document summarisation. For

this task, the bottom-line answers are the target summaries, and all the abstracts associated

with the bottom-line summary are the source texts. Figure 3.12 provides an example from our

corpus. The bottom-line summary is associated with two detailed justifications (not shown in the

example), which in turn cite two research publications. The target of the summarisation task is

therefore to synthesise information from the source texts to generate the bottom-line summaries.

Evidence Appraisal.
The literature associated with evidence-based medicine suggests that the appraisal of evidence

is an integral component of evidence-based decision making. It is also a time-consuming

component of the medical practice. Data in our corpus suggests that the appraisal of evidence

can be considered to be an important subtask of the overall summarisation process. However,

there has been minimal research on the systematic quality assessment of medical evidence. Our

corpus contains annotations for the qualities of the evidences associated with the bottom-line

answers. The grades assigned use the Strength of Recommendation (SOR) taxonomy [Ebell

et al., 2004] and the grade assignment process involves the systematic assessment of the source

documents to identify key information indicating the evidence grade. As explained earlier, the

quality grade for a bottom-line recommendation depends on the evidence associated with it. Our

corpus contains the evidence associated with each recommendation in the form of the PubMed

articles (di j k). We, therefore, use information from these articles to predict evidence quality

grades for the bottom-line recommendations.

Figure 3.13 gives an example of the type of information in our corpus that can be used for the

automatic grading task. The figure shows the question, the grade assigned to a bottom-line

summary associated with the question (the bottom-line summary is not shown in this case), and

the source abstracts responsible for the grade assigned. The target of this task is therefore to

analyse the information in the source texts to deduce the quality of the evidence presented in

them. Note that the input information for this task may be identical to the summarisation task.

Because their inputs are the same, in our evidence-based summarisation model, the two tasks of

evidence appraisal and text summarisation are executed in parallel. We model the problem of

automatic grading of evidence as a text classification task and attempt to solve it using machine

learning algorithms.

3.5 A Model for Automatic, Evidence-based Summarisation

Now that we have explained the data contained in our corpus, we formalise the tasks associated

with evidence-based summarisation and provide an overview of our summarisation model. Based

on our analysis of the corpus, we divide the task of evidence-based summarisation to generate
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Question.
What are the best therapies for acute migraine in pregnancy?

Bottom-line answer (multi-document summary):
Three treatment studies suggest that nonpharmacological therapies (combinations of
skin warming, relaxation, biofeedback, and physical therapy) were effective for pain
relief. [PubMed IDs: 8600478, 2401622]

Source text 1 [PMID: 8600478]:
Concerns about the effects of maternal medications on the growing baby limit the
use of medication treatment for benign conditions, such as recurring headaches,
during pregnancy and lactation. Nonpharmacological therapies hold particular
promise for pregnant women due to the limited medication options. No controlled
studies, however, have reported on the efficacy of nonpharmacological treatments
for pregnant women. The first study evaluated the effectiveness of a combined
nonpharmacological treatment (CT) consisting of relaxation, skin-warming
biofeedback, and physical therapy for pregnant women with chronic headaches.
In a second study, the CT protocol was compared with an attention control (AC)
that received headache education and skin-cooling biofeedback. The first study
resulted in significant symptom improvement in 79% of subjects, with an overall
72.9% reduction in headaches. In the second study, both groups improved with
treatment; however the CT group was more likely to experience significant headache
relief (72.7%) than the AC group (28.6%, chi 2(1) = 4.97, p < .03). Significant
improvement was maintained at a 6-month follow-up for over 50% of patients. It is
concluded that the combined nonpharmacological treatment was more effective than
an attention control in reducing headaches during pregnancy. This treatment was
effective regardless of predisposing variables.

Source text 2 [PMID: 2401622]:
This study investigates the use of biofeedback, relaxation and psychotherapy on
five patients with severe, vascular headaches that occurred during the course of
pregnancy. The subjects received between four and twelve sessions of treatment
overall. The subjects all showed a marked reduction or complete cessation
of headaches during treatment, the term of pregnancy, and during a follow-up
evaluation months after the birth of the child. Possible alternate explanations for
improvement are discussed along with the study’s limitations. This preliminary
investigation strongly suggests that psychological treatment may be a particularly
useful intervention for management of headaches that occur in pregnant women.

Figure 3.12: An example of multi-document summarisation from our corpus, showing the
question, the bottom-line summary and two source abstracts.
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Question.
What are the best therapies for acute migraine in pregnancy?

SORT grade:
C – based on poor-quality cohort and Case Control Studies. [PubMed IDs: 8600478,
2401622]

Source text 1 [PMID: 8600478]:
Concerns about the effects of maternal medications on the growing baby limit the
use of medication treatment for benign conditions, such as recurring headaches,
during pregnancy and lactation. Nonpharmacological therapies hold particular
promise for pregnant women due to the limited medication options. No controlled
studies, however, have reported on the efficacy of nonpharmacological treatments
for pregnant women. The first study evaluated the effectiveness of a combined
nonpharmacological treatment (CT) consisting of relaxation, skin-warming
biofeedback, and physical therapy for pregnant women with chronic headaches.
In a second study, the CT protocol was compared with an attention control (AC)
that received headache education and skin-cooling biofeedback. The first study
resulted in significant symptom improvement in 79% of subjects, with an overall
72.9% reduction in headaches. In the second study, both groups improved with
treatment; however the CT group was more likely to experience significant headache
relief (72.7%) than the AC group (28.6%, chi 2(1) = 4.97, p < .03). Significant
improvement was maintained at a 6-month follow-up for over 50% of patients. It is
concluded that the combined nonpharmacological treatment was more effective than
an attention control in reducing headaches during pregnancy. This treatment was
effective regardless of predisposing variables.

Source text 2 [PMID: 2401622]:
This study investigates the use of biofeedback, relaxation and psychotherapy on
five patients with severe, vascular headaches that occurred during the course of
pregnancy. The subjects received between four and twelve sessions of treatment
overall. The subjects all showed a marked reduction or complete cessation
of headaches during treatment, the term of pregnancy, and during a follow-up
evaluation months after the birth of the child. Possible alternate explanations for
improvement are discussed along with the study’s limitations. This preliminary
investigation strongly suggests that psychological treatment may be a particularly
useful intervention for management of headaches that occur in pregnant women.

Figure 3.13: An example of the use of our corpus for automatic grading of evidence.
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bottom-line recommendations into three subtasks:

1. Automatic grading of evidence.

2. Single-document, query-focused summarisation.

3. Multi-document, query-focused summarisation.

Automatic grading of evidence is an important subtask of the evidence-based answer generation

process. It requires a careful analysis of the evidence relative to the query. This evidence consists

of source documents presenting details about relevant studies which can be used to answer the

clinical query. Therefore, we incorporate this task in our automatic summarisation research. In

our approach, we model this task independently of the summarisation task. In terms of inputs

and outputs, the task can be defined as follows:

Inputs: The query (qi ) and the set of source abstracts (Di j ) associated with the

bottom-line answer (ai j ).

Output: A prediction of the quality grade (gi j ) for the evidence associated with the

bottom-line answer (ai j ).

We describe our efforts to automatically grade the quality of medical evidence in Chapter 4.

We model the task of generating single-document summaries as a sentence level extractive

summarisation task. The intent is to generate abstracts that most closely resemble the human-

authored detailed justifications. In terms of inputs and outputs, the task can be defined as

follows:

Inputs: The query (qi ) and a source abstract (di j k) that is cited in the detailed

justification (li j k) associated with the question.

Output: A summary (si j k ) of the abstract (di j k ) with respect to the query that most

closely resembles the human-authored detailed justification (li j k).

Chapter 5 of this thesis focuses on the generation of single-document summaries.

In Chapter 6, we address the problem of multi-document text summarisation. In particular, we

study the possibility of utilising the automatically generated single-document summaries, rather

than full abstracts, as source texts for this task. We investigate possible approaches by which

information from multiple documents can be fused to generate a bottom-line answer. In terms of

inputs and outputs, this task can be defined as follows:
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Inputs: A query (qi ) and a set of single-document summaries ({si j 0...si j o}) associ-

ated with that query.

Outputs: A prediction of the bottom-line recommendations ({ai 0...ai n}) associated

with qi .

Details about the models and the approaches we apply are provided in the associated chapters.

For the purposes of this research, we address these three problems in isolation from each other

and design evaluation approaches for each of these subtasks. Where applicable, we provide the

analysis details and results to explain the validity of our models. Figure 3.14 shows a high-level

view of our summarisation model. The figure depicts that the bottom-line recommendation

generation step (described in Chapter 6) is dependent on the single-document summarisation task

(described in Chapter 5). The task of quality appraisal or evidence-based grade recommendation

(Chapter 4) can be assumed to occur simultaneously. This is because the evidence quality

appraisal step attempts to determine the quality of a collection of studies from which the evidence

is obtained and it relies on the information provided by the source abstracts. In other words, the

grade recommendation component and the summarisation component of our model receive the

same inputs. The processing they perform, however, are different because of the distinct intents

of the two components.
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Figure 3.14: The overall summarisation model.
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4 Automatic Appraisal of Clinical Evi-
dence

4.1 Introduction

In Chapter 1, we mentioned that our model for the generation of evidence-based recommendations

involves two major tasks: summarisation of evidence and appraising the quality of evidence.

Appraisal of the quality of evidence is an important task in the process of evidence-based answer

generation, and its purpose is to indicate the reliability of the recommendations that are made

based on the available evidence. In Chapter 2, we have briefly discussed the task of clinical

evidence appraisal and the grading of the quality of evidence in the context of evidence-based

medicine. The detailed review of evidence-based medicine practice, provided in that chapter,

established the importance of the task of evidence appraisal, and illustrated the strong motivation

to automate the process in order to save time. Evidence-based medicine requires the identification

and use of the best available evidence, and the grades indicate the qualities of the best available

evidences. The quality of the best available evidence, however, differs depending on the topic.

This is because the volume of research performed on distinct topics can vary. Topics that

have received more research attention in the past are likely to contain better quality evidence,

compared to topics that have received little. These grades also give an indication of the maturity

of research on specific medical topics, suggesting whether further research is needed for the topic.

Currently, quality grading is a manual process, requiring the manual analysis of various factors

that influence the qualities of medical evidence. The process is time-consuming, and adds to the

time requirements of the practice. Thus, the automation of this process is desirable.

In this chapter, we describe our efforts to automate the process of grading the quality of clinical

evidence on a chosen scale. Our scale of choice is the Strength of Recommendation Taxonomy

(SORT) [Ebell et al., 2004]. From a high-level perspective, our approach relies on identifying key

factors that influence evidence grades, and then utilising those factors to estimate the evidence

grades. We analyse features that are suggested to be useful in existing literature, and features that
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are specifically mentioned to be useful in SORT. In terms of input and output, we formulate the

task of evidence quality grading as follows:

Input-1: A clinical query

Input-2: Text from multiple source articles

Output: A SORT grade indicating the quality of the evidence contained in Input-2

Despite the importance and necessity of grading the quality of evidence in evidence-based

medicine practice, the possible automation of this process has not received much research interest.

There has been some research on assessing the qualities of medical publications. However, prior

to our work, no work focused on grading against a specialised grading scale such as SORT. Some

related research work has recently incorporated the task of evidence appraisal into the summary

generation process. For example, Lin and Demner-Fushman [2007] assign evidence grades to

their query-focused summaries, but their approach does not take into account a target scale for the

grade generation/evaluation process. Our work is the first of its kind in this area, and therefore,

we compare the performance of our system against simple baselines and human agreement. The

availability of a specialised corpus allows us to analyse the relationships between various factors

associated with clinical evidence, and the extent to which the final grades are influenced by these

factors. Furthermore, the availability of manual, bias-free annotated data enables us to study

supervised classification approaches to recommend evidence grades automatically.

The rest of the chapter is organised as follows. In Section 4.2, we discuss in detail the task of

grading the qualities of evidence, and we describe the SORT grading system. In Section 4.3,

we present the results of our initial experiments on analysing the factors that influence evidence

grades based on the SORT criteria. In Section 4.4, we discuss our experiments of information

extraction from medical publications and the final grading of evidence. In Section 4.5, we present

a comparison of the performance of our model and system to the grades given by human experts.

We conclude with the contributions and findings of this chapter in Section 4.6.

4.2 Grading the Quality of Evidence and the Strength of Recom-
mendation Taxonomy

In our review of the literature for evidence-based medicine practice in Chapter 2, we explained

that the key idea behind this practice is to identify the best available clinical evidence associated

with a clinical query before making a decision. This requires exploring the clinical research

literature relevant to a topic and identifying the conclusions obtained. The amount of research

literature available varies with respect to the topics. While some topics may have received a large

amount of structured clinical research, others may not have been explored thoroughly, and the
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best evidence regarding those topics may still be insufficient or incomplete. In other words, the

reliability of the evidence associated with different topics may vary depending on the amount

of research the topics have received. Also, sometimes, findings from different studies are not

consistent, making the evidence unreliable. When making evidence-based recommendations,

practitioners have to take these and other factors into account, and assess the reliability of the

extracted evidence. Thus, when extracting evidence from medical publications regarding a topic,

practitioners also have to appraise the quality of the evidence associated with the topic. This

quality of evidence depends on all published research relevant to a specific topic, and, therefore,

may be based on a single study or a collection of studies. Typically, however, the quality of

evidence is based on a body of evidence consisting of more than one study. This is also depicted

by the distributions of references for bottom-line summaries shown in Figure 3.9 of Chapter 3 (i.e.,

a very small proportion of bottom-line summaries have only one associated source document).

Due to the importance of identifying and specifying grades indicating the qualities of evidences,

standardised grading scales have been proposed in the literature. These grading scales generally

specify various criteria based on which the grade of an evidence is presented on a discrete scale.

In our corpus, the grades are presented using a scale known as the Strength of Recommendation

Taxonomy (SORT). SORT was first proposed in 2004 through a collaborative effort by the editors

of multiple family medicine journals with the purpose of providing authors and readers of family

medicine journals with a simple, user-friendly system for the grading of evidence. SORT was

designed to provide a uniform recommendation-rating system that could be applied throughout

the medicine literature. It is simple and straightforward, and, therefore, easy for practitioners to

use during everyday practice. This taxonomy uses only three ratings – A (strong), B (moderate)

and C (weak) – to specify the strength of recommendation of a body of evidence. Explanations

of these grades have been provided in Chapter 2. We review them in more detail here, before we

dive deeper into our experimental details:

• Grade A – This reflects a recommendation based on consistent and good-quality, patient-

oriented evidence. A collection of studies is considered to be consistent if the results

of most of the studies are found to be similar, have explainable differences or if the

recommendation is supported by high quality and up-to-date Systematic Reviews or Meta-

Analyses; a good-quality evidence consists of high quality Systematic Reviews, Meta-

Analyses, Cohort Studies with good followup, or high quality Randomised Controlled

Trials; patient-oriented evidence measures outcomes that matter to patients: morbidity,

mortality, symptom improvement, cost reduction, and quality of life.

• Grade B – This reflects a recommendation based on inconsistent, limited-quality, patient-

oriented evidence. A collection of studies is considered inconsistent if there is considerable

variation among study findings and inexplicable differences among them, or if the evidence
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does not directly favour the recommendation. Limited-quality evidence consists of lower-

quality Meta-Analyses, Cohort Studies and Clinical Trials, Case Control Studies and so

on.

• Grade C – This reflects a recommendation based on consensus, usual practice, opinion,

disease-oriented evidence, or Case Series for studies of diagnosis, treatment, prevention or

screening. Disease-oriented evidence measures intermediate, physiologic, or surrogate end

points that may or may not reflect improvements in patient outcomes (e.g., blood pressure,

blood chemistry, etc).

Further details about the grades can be found in the paper by Ebell et al. [2004]. The paper

also provides specific guidelines that must be followed when grading evidence on this scale.

These guidelines present elaborate procedures customised to different types of studies such as

diagnosis, treatment, prevention, screening, and prognosis. Furthermore, the authors provide

two algorithms for grading qualities of (i) bodies of evidence, and (ii) individual studies. These

algorithms are shown in Figures 4.1 and 4.2 respectively. In the following sections, we address

the possibility of automatically generating evidence grades using lexical features and meta-data

from the documents in our corpus.

4.3 Factors Influencing Evidence Grades

We commence our work on automatic grading of evidence by performing an analysis of the

factors that influence the quality of evidence. We focus on features from individual source

documents and apply them to predict the associated quality grades. In Chapter 3, we explained

how our corpus is suited for this task, and we utilise various information encoded in the corpus to

perform this analysis. In particular, we use the grades encoded in our corpus as the gold standard,

and we analyse the extent to which these grades can be automatically predicted using various

other information also encoded in the corpus.

Ebell et al. [2004] mention a number of factors that are relevant for grading evidence based

on the SOR taxonomy. These factors include: quality of evidence of the individual studies,

types of evidence presented in the studies (i.e., patient- vs. disease-oriented), and consistency of

outcomes presented in different studies. Besides analysing the effects of some of these factors, we

also experiment with other factors that have been shown/suggested to be useful in the literature.

Such factors include: publication venues of the individual documents (e.g., journal names), and

publication dates.

Research work related to this task has focused mostly on automatic quality assessment of medical

publications for purposes such as retrieval and post-retrieval re-ranking, where approaches
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Figure 4.1: Algorithm for determining the strength of a recommendation based on a body of
evidence. Source: Ebell et al. [2004].
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Figure 4.2: Algorithm for determining level of evidence for an individual study. Source: Ebell
et al. [2004].
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based on word co-occurrences [Goetz and von der Lieth, 2005] and bibliometrics [Plikus et al.,

2006] have been proposed for improving the retrieval of medical documents. These approaches,

however, do not integrate evidence-based recommendations for appraisal. Tang et al. [2009]

propose a post-retrieval re-ranking approach that attempts to re-rank results returned by a search

engine. The results may or may not be published research work. Their approach is only tested in

a specific sub-domain (i.e., Depression) of the medical domain. Kilicoglu et al. [2009] focus on

identifying high quality medical articles and build on the work by Aphinyanaphongs et al. [2005].

They apply machine learning and obtain 73.7% precision and 61.5% recall. These approaches

and related research generally model the problem of quality assessment as a binary classification

task, where each article may either be of good or bad quality. Also, the approaches are suitable

for single documents only. Our research work has two primary differences with existing research

on automatic quality assessment: (i) we use a more standardised and specialised scale, with the

intent of automatically recommending evidence-based grades; (ii) our approach is for bodies of

evidence, which may be single documents or multiple documents on the same topic.

Ebell et al. [2004] suggest that the publication types of medical articles are good indicators of

their qualities. Literature in the medical domain consists of a large number of publication types

of varying qualities1. For example, a Randomised Controlled Trial is of much higher quality

than a case study of a single patient. Evidence obtained from the former is thus more reliable.

Greenhalgh [2006] mentions some other factors that influence the grade of an evidence, such as

the number of subjects included in a study and the mechanism by which subjects are allocated

(e.g., randomisation/no randomisation), but the latter is generally indicated by the publication

type (e.g., Randomised Controlled Trial) of the article. Lin and Demner-Fushman [2007] also

acknowledge the importance of publication types in determining the quality of clinical evidence.

They use a working definition of the ‘strength of evidence’ as a sum of the scores given to journal

types, publication types and publication years of individual publications. Their scores are used

for citation ranking, not evidence grading, and therefore their results cannot be compared to

ours. However, their research does suggest that the journal names and publication years have an

influence on the qualities of individual publications, which in turn may influence the grade of

evidence obtained from them.

4.3.1 Analytical Methods

In this analysis, we model the problem of evidence grading as a text classification problem, where

the grades are considered to be classes for source articles (evidence) associated with them. This

formulation enables us to assess the validity of two propositions:

1A list of publication types used by the U.S. National Library of Medicine can be found at http://www.nlm.nih.
gov/mesh/pubtypes2006.html. Accessed on 26th May, 2014. This list is not exhaustive.
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1. Evidence grading may be modelled as a text classification problem.

2. Features may be extracted from source documents to automatically predict the qualities of

the evidences they present.

We perform this analysis using the grade annotations in our corpus. We use a sample consisting

of parts of the records that have the evidence grades A, B, or C associated with them. We ignore

recommendations that either have no grades associated with them or have non-standard SOR

grades, such as the grade D2. For each recommendation having one of the abovementioned grades,

we collect information associated with them from our corpus.

Our data set for these experiments consists of 1,132 evidence-based recommendations generated

from a total of 2,713 medical documents. Of the 1,132 recommendations, 330 are of grade A,

511 of grade B and 291 of grade C. Based on the guidelines provided by Ebell et al. [2004], and

suggestions from the related literature, we focus on analysing the effects of the following features

in determining the evidence grades:

1. The publication types of the individual publications associated with the recommendations.

In our corpus, the publication types associated with bottom-line recommendations are

generally mentioned (as is the case with the articles from the JFP from which the corpus

has been collected)3. For the cases where the publication types are not mentioned, we

attempt to manually identify the publication types of the documents associated with the

recommendations and use that information in our analysis. The publication types used by

the JFP do not fully intersect with the publication types used by the Medline database. We

discuss this in detail later in this chapter.

2. The publication years of the associated documents. Related literature suggests that recent

publications are more relevant/reliable than older publications [Lin and Demner-Fushman,

2007]. To assess if that really is true, we incorporate this information in our analysis. We

obtain publication years of the documents from the PubMed XML files associated with the

bottom-line recommendations and use them as numeric features.

3. The publication venues. We include this feature to assess if studies published in high-

impact journals give better quality evidence compared to studies published in venues of

lower impact. Past research suggests that the qualities of individual studies may depend

on the publication venues, and, therefore, this information is likely to affect the overall

evidence grade [Lin and Demner-Fushman, 2007]. Information about the publication

venues are also encoded in the PubMed XML files present in our corpus.
2Although D is not a standard grade in SORT, some JFP contributors used this grade to indicate very low or unclear

levels of evidence.
3An example of this can be found at: http://www.jfponline.com/pages.asp?aid=8103 (Accessed on: May 13, 2014)
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4. The titles of the articles. The titles of the articles present useful information such as the

topics of the studies, and, often, other information such as disorders, interventions and so

on. The titles are also obtained from the PubMed XML files.

Note that, for this preliminary analysis, we refrain from using text from the actual abstracts. This

is because using word n-grams from the abstracts introduces a large number of features, making

the analysis of other features difficult. We utilise lexical information from the abstracts in the

work described later in this chapter.

Due to the large number of possible publication types that medical articles can have, we group

together publication types having low frequency and similar quality levels, since it is not possible

to accommodate all publication types. This grouping is performed manually. Our final set consists

of 11 groups of known publication types, each having a different quality level, and 1 group of

unknown types, as shown in Figure 4.3. Based on our collected data, we consider 45.1% — the

accuracy when all instances are classified as B (the majority class) — as the baseline for our

experiments.

We study the distribution of publication types over the SOR grades. This distribution is shown in

Figure 4.3. In the Figure, Other Study refers to low frequency studies (e.g., Observational Study),

Other Clinical Trial refers to all clinical trials other than Randomised Controlled Trials, and

Unknown refers to articles with unidentified publication types. A clear pattern in the distribution

of publication types over SORs can be seen. For SOR A, evidence primarily comes from

Randomised Controlled Trials, Systematic Reviews and Meta-Analyses, and the numbers drop

significantly for other publication types. For SOR C evidence, most of the evidence comes from

publications presenting Expert Opinion, Case Series/Reports, and Consensus Guidelines. The

distribution for SOR B has the largest spread with Cohort Studies having the highest frequency.

The distributions suggest that the publication types play an important role in determining the

SOR.

4.3.2 SOR Prediction from Publication Types

To test the extent to which SORs can be predicted from the publication types, we perform basic

experimentation using supervised machine learning. We model the grading of evidence as a

single-label text classification problem with three classes. Since the SOR grades are provided in

our corpus, we apply various supervised machine learning algorithms for the task. Due to the

mentioned importance of medical publication types [Ebell et al., 2004], we first experiment using

only the publication types of the articles as features. Each instance in our model represents an

evidence-based answer composed of the SOR class and a vector containing the counts of each of

the 12 publication types shown in Figure 4.3. Therefore, the task of each classifier is to predict
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Figure 4.3: Distribution of publication types across SORs.

the class of each instance given the associated publication type information.

We use two-thirds of our data for training and the remaining as held-out test data. For both sets,

we keep the proportions of instances belonging to the three classes the same as their proportions

in the whole data set. We perform our experimentation using the software package Weka4. Weka

provides implementations of a range of classifiers organised into generic groups, and in our

preliminary analysis, we experiment on our training data with multiple classifiers belonging

to each generic group. We choose five classifiers that produce good results on our training

data and have also been shown to produce good results on similar problems in the past. The

five chosen classifiers are (the names used in Weka shown in parenthesis): Bayes Net, Support

Vector Machines (SMO), K-Nearest Neighbour (IBk), Multinomial Logistic Regression (Logistic)

[Le Cessie and Van Houwelingen, 1992]5, and C4.5 Decision Tree (J48) [Quinlan, 1993].

For specific classifiers, we perform simple parameter tuning and choose parameter values that

produce the best results for stratified 10-fold cross validations on the training set. For the Bayes

Net classifier, we use the K2 search algorithm [Cooper and Herskovits, 1992] for local score

metrics and the simple estimator for estimating conditional probability tables. For the SMO

algorithm, we use John Platt’s [1998] sequential minimal optimisation algorithm and solve our

multi-class problem using pairwise (1-vs.-1) classification. We use an RBF kernel for the SMO

classifier, normalising all attributes and using a grid search to find good values for the parameters

4http://www.cs.waikato.ac.nz/ml/weka/. Accessed on 26th May, 2014.
5The Weka implementation of this algorithm is slightly different from the original implementation. Details can

be found at: http://www.java2s.com/Open-Source/Java-Document/Science/weka/weka/classifiers/functions/Logistic.
java.htm. Accessed on 26th May, 2014.
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Classifier Accuracy (%) 95% CI Parameters

Bayes Net 66.578 61.6-71.3 K 2,Si mpleE sti mator
SMO 68.449 63.5-73.1 γ= 1.0,C = 27

K-Nearest Neighbour 68.717 63.8-73.4 K = 7
Logistic Regression 67.380 62.4-72.1 ..
C4.5 68.182 63.2-72.9 con f i denceF actor = 2−1

Table 4.1: Accuracies, 95% confidence intervals and specific parameter values for various
classifiers, using only publication types as features.

γ and C. To find the best value of K for the K-Nearest Neighbour algorithm, we search through

all odd values of K from 1 to 101. For the C4.5 Decision Tree classifier, we search between 2−5

and 2−1 to find the best value for the confidence factor parameter.

4.3.3 SOR Prediction from other Factors

In addition to the use of publication types as features, we use the journal titles, publication

years, and article titles as features. While journal titles and publication years have been used

for assessing quality in the past [Lin and Demner-Fushman, 2007], article titles have not been

used. However, we suspect that titles may help to identify the qualities of individual publications,

since they sometimes provide useful information about how the studies are carried out (e.g., ‘A

Double-blind, Placebo-controlled Trial’). In our model, we represent the titles and journal names

using uni- and bi-grams. Prior to generating the n-grams, we process the titles by removing stop

words, lowercasing the words, stemming the remaining words using the Porter stemmer [Porter,

1980] and removing words occurring less than five times across the whole data set. We repeat the

experimental procedures mentioned above with various combinations of these feature sets.

4.3.4 Analysis Results

Using only publication types as a feature set, we obtain classification accuracies of approximately

66 - 69% (over 20% improvement over the baseline) with various classifiers on our held-out

test set. Table 4.1 shows the accuracies of the five abovementioned classifiers along with 95%

confidence intervals6 for the accuracies and important parameter values for specific classifiers.

There is no statistically significant difference between the accuracies of the different classifiers,

meaning that the most important role to determine classification accuracy is played by the features

used, not the type of classifier.

A manual content analysis of the incorrect classifications reveals that there were few errors

6Calculated using the package R’s binom.test function (http://www.r-project.org. . Accessed on 26th May, 2014).
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between A and C, which is exactly what is expected based on their very different distributions of

publication types. The most common errors are between SOR A and B, and SOR C classified as

B. Our manual analysis reveals that errors are caused primarily by factors such as sizes of studies,

consistency and types of outcomes, which our classifiers do not take into account. For example,

an essential condition for an evidence to be of grade A or B is the presence of patient-oriented

outcome, irrespective of the type of study. At the same time, for certain types of publications,

such as Cohort Studies, the sizes of the studies significantly influence their quality. Unaware of

this information, our classifiers classify all evidences obtained primarily from Cohort Studies as

grade B. Furthermore, evidence obtained primarily from Meta-Analyses and Systematic Reviews

are graded as A, irrespective of the consistency or types of outcomes presented in the studies.

Lastly, due to the smaller number of C grade instances, the classifiers often tag C grade evidence

as B.

Features Accuracy (%) 95% CI Classifier

Journal, Pub. Year, Title and Pub. Type 63.636 58.5-68.5 C4.5
Pub. Type and Pub. Year 66.578 61.6-71.3 C4.5
Pub. Type and Title 67.380 62.4-72.1 C4.5
Pub. Type and Journal 63.904 58.8-68.8 C4.5
Journal, Pub. Year and Title 50.802 45.6-56.0 SMO
Journal and Pub. Year 46.257 41.1-51.5 SMO
Title only 51.070 45.9-56.2 SMO
Pub. Year only 47.594 42.4-52.8 Bayes Net
Journal only 47.326 42.2-52.5 Bayes Net

Table 4.2: Accuracies, 95% confidence intervals, and best performing classifiers for various
feature sets.

Our experiments suggest that adding factors such as journal names, publication years and article

titles to the publication types do not significantly influence the SORs. Table 4.2 shows the

highest accuracies obtained using various combinations of feature sets, the 95% confidence

intervals and the classifiers with the best results. From the table it is evident that the absence of

publication types as a feature set causes significant drops in accuracy. Although incorporation

of article titles as a feature set produces marginally better accuracies compared to our baseline,

no significant improvements are achieved when this feature set is combined with publication

types. The other feature sets, alone or in combination with each other, do not give a statistically

significant improvement over the baseline.

Our experiments show that significant improvements over the baseline accuracy can be obtained

using supervised classification. Based on this preliminary analysis, we conclude that evidence

grading may be modelled as a text classification problem, which can potentially be solved using

supervised machine learning. In the analysis, only the publication type feature appeared to be
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useful, while the other features did not provide any significant improvements. Also, we only

use a small number of manually specified features for this task. In a fully automatic evidence

grading task, more features can be extracted from the texts of the abstracts associated with the

evidence-based answers. Since the publication types appear to be most useful, we address the

problem of automatically detecting the publication types of medical articles and applying that

information for classification. We then combine the automatically extracted publication type

information with other lexical features to automatically grade qualities of evidence.

4.4 Automatic Grading of Evidence

In our approach for fully automatic appraisal of medical evidence, we first address the issue of

automatic feature extraction. Our preliminary analysis, described above, shows that information

about the publication types of medical articles play a vital part in determining the evidence

grades automatically. We, therefore, attempt to devise a strategy to automatically determine the

publication types using lexical information from the abstracts of the articles, and the meta-data

accompanying the texts in the PubMed abstracts. Following that, we attempt to perform fully

automatic grading of evidence using a combination of various automatically extracted features.

We detail these approaches in this section.

4.4.1 Identifying Publication Types of Medical Articles

The XML files representing source abstracts in our corpus have, in addition to the titles and the

texts, some associated meta-data. These meta-data are added to the articles when indexing them

on PubMed. Each abstract has at least one PublicationType tag, the intent of which is to state

the publication type of the article. However, not all publication types that we require are present

in the PubMed articles. For example, PubMed does not have a specialised tag for Systematic

Reviews. The Review tag is used to represent both Systematic Reviews and non-systematic

Reviews. In many cases, simply the default Journal Article tag is used for the articles. There

is also no specialised tag for Cohort Studies, although a large number of articles in our data set

belong to that broad category. Because of these reasons, we can not rely fully on the meta-data

associated with the articles to identify the publication types.

We apply a simple, rule-based approach to automatically identify several important publication

types. We combine the publication types identified by this approach along with the publication

type information provided as meta-data. In our approach to identify the publication types, we

only use texts from the article titles and abstracts. Abstracts, and often titles, of medical articles

contain information about the types of studies and therefore provide evidence of their publication

types. Figure 4.4 presents three examples of evidence of Randomised Controlled Trials. The first
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example shows evidence from title. The second and third are examples of sentences from article

abstracts that contain evidence. The important contents of the sentences are shown in bold.

Evidence of publication type in title:

A randomised controlled trial of self-help interventions in patients with a primary care diagnosis
of irritable bowel syndrome.

Evidence of publication type in abstract:

Prospective randomised controlled trial of low risk women admitted in spontaneous labour,
with intact membranes.

In this study, 200 participants who met the diagnostic criteria for cervicogenic headache were
randomised into four groups: manipulative therapy group, exercise therapy group, combined
therapy group, and a control group.

Figure 4.4: Examples of evidence of publication type in title and abstract texts. The first example
shows how the title can provide evidence of publication type. The second and the third examples
show how abstract sentences can provide evidence about the publication type.

Our approach relies on regular expressions to identify relevant patterns (evidence) from titles

and abstracts. We provide details of our approach in the following subsections. In addition to

developing regular expressions for publication types that do not have specific tags in PubMed,

we implemented some expressions for publication types that have specific tags. This is for two

reasons:

i often multiple publication types are assigned to a single article, and our expressions were

aimed at detecting the most relevant tag for an article; and

ii in some cases, the tags assigned on PubMed may not be consistent, and applying our

regular-expression based classifier, the publication type can be detected with more accuracy

for certain publication types.

An example of (i) may happen when an article is tagged as a Randomised Controlled Trial,

Controlled Clinical Trial, and Clinical Trial in the PubMed meta-data. Using our rule-based

approach, if the article is found to be a Randomised Controlled Trial, only that tag is kept and the

others are discarded. Details of this is provided later in this section when we discuss our features

for the machine learning classifiers in detail. As an example of (ii), we found a number of cases
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Evidence of randomisation for Randomised Controlled Trials:

random.*alloc
random.*chose
chose.*random
random.*assign
assign.*random
random.*appli
appli.*random
desig:.*random
animal.random
random.*animal
patien.*random
subjec.*random
randomi[sz].*group
parallel[\W]*group
group.*random
random.*doub.*blind
random.*open[\W]*label
randomi[sz]e.*trial
doubl.*blin

Evidence of no or unacceptable randomisation:
coin\W*flip
non\W*random
odd\W*even
uncontrol\W*stud

Figure 4.5: Sample patterns used for detecting Randomised Controlled Trials. Patterns used for
detecting unacceptable randomisation techniques are also shown.

where an article was tagged as Multi–Centre Study only, while it was actually a Multi-Centre

Randomised Controlled Trial. The intent of the rule-based approach, in this case, is to tag the

article as a Randomised Controlled Trial since that is the most relevant for our work.

We develop regular expressions to classify articles by manually studying the titles and abstracts of

articles belonging to several publication types. We collect our development set from a mixture of

sources. For articles which have associated PublicationType tags in PubMed (e.g., Randomised

Controlled Trials and Meta-Analyses), we retrieved about two hundred of each type. We study

each article individually, identify the evidence of publication type and develop patterns to pick up

the evidence. During the development of the rules, we use an incremental approach similar to

the Ripple Down Rules [Compton and Jansen, 1988] philosophy – after adding a new regular
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Evidence of Meta-Analyses (in title or text) of article:
‘meta[-]analys’

Evidence of Systematic Reviews:
sytemat.*rev
cochr.*medlin
search.*cochr
search.*embas
search.*medlin.*datab
cinahl.*search
literat.*embas
medic.*liter.*rand

Evidence of Cohort Studies:
retrospect.*stud
foll.*prospect
cohort.*stud
retrospect.analys
patien.*foll.*year
foll.*cohort
retrospect.*trial
prospect.*analys

Evidence of Practice Guidelines:
guidel.*diag.*treat
clinic.*guidel

Evidence of Consensus Development Conferences:
consens.*confer
consens.*statem
consens.*devel
reac.*consens

Evidence of Review (non-systematic):
postmar.*survei.*surv
retrospec.*char.*rev

Figure 4.6: Sample patterns used for detecting specific publication types.
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expression we test its effect on our development set and add more expressions based on the

articles that are not correctly identified. We utilise this strategy for Meta-Analyses, Randomised

Controlled Trials, Consensus Development Conferences, Practice Guidelines, and Reviews. For

example, in the case of Randomised Controlled Trials, we primarily develop expressions to detect

evidence of randomisation in the abstracts. Once evidence of randomisation is found, we also

develop expressions (from false positives) to detect evidence(s) of unacceptable randomisation7.

Some of the expressions we use to identify Randomised Controlled Trials and unacceptable

randomisation techniques are shown in Figure 4.5 (the list is not exhaustive).

For articles without an associated PublicationType tag in PubMed (e.g., Systematic Reviews),

obtaining a large development set is considerably more difficult. We therefore use a mixture

of secondary sources of evidence such as the Journal of Family Practice and the Cochrane

Library for obtaining about fifty of each and develop our expressions from that set. In our

corpus, the publication types of the cited articles are often given, and we use those annotations

as our gold standard. Furthermore, we study search techniques suggested by PubMed8 for the

efficient retrieval of Systematic Reviews and develop expressions based on their suggestions. We

also develop expressions based on search keywords and techniques suggested in the literature

for obtaining articles of specific publication types [Hunt and McKibbon, 1997, Montori et al.,

2005]. Developing rules is easier for publication types of higher qualities (e.g., Systematic

Reviews). This is primarily because articles belonging to these publication types often have

standard discourse structures, and also, almost invariably, clearly state the type of publication in

the abstract or the title. The same is not true for publication types of lower qualities.

We apply this approach for Systematic Reviews and Cohort Studies. We also attempt to apply

this technique for Case Series, Case Control Studies, and some other publication types. However,

due to the inconsistent nature of the abstracts of articles belonging to these publication types, and

the variety of ways in which the abstracts are written, the accuracies achieved by our preliminary

experiments are low. Therefore, for such lower quality publication types, we primarily rely on

the PublicationType tags provided by PubMed. Figure 4.6 shows some of the regular expressions

used for detecting Systematic Reviews, Meta-Analyses, and some other publication types (the

list is not exhaustive).

We apply a decision list to identify the publication types of articles. Each article is initially

assigned an empty tag and passed through a sequence of tests, each responsible for checking for

patterns indicating a specific publication type. At any stage of the sequence, both the PubMed

PublicationType tag and the regular expressions corresponding to a specific publication type

7Details about unacceptable randomisation techniques for Randomised Controlled Trials and other publication
types can be found at http://www.nlm.nih.gov/mesh/pubtypes2004.html. Accessed on 26th May, 2014.

8The techniques can be found at http://www.nlm.nih.gov/bsd/PubMed_subsets/sysreviews_strategy.html. Accessed
on 26th May, 2014.
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are utilised to check if an article belongs to that category. For the regular expression matching,

the title of the article is first checked, and, if no evidence is found, the abstract is checked. If

sufficient evidence of a particular publication type is found (with no further evidence of negation),

the article is tagged and removed.

The sequence in which the operations are applied is very important as the number of false positives

may increase significantly if the sequence is changed. For example, if Systematic Reviews and

Meta-Analyses are not removed before searching for Randomised Controlled Trials, many of the

former are falsely tagged as the latter. This is because abstracts of Systematic Reviews and Meta-

Analyses are often produced by collecting information from multiple Randomised Controlled

Trials, and they usually mention the number and types of studies being reviewed/analysed (e.g.

We conducted a systematic review of five double-blind, randomised controlled trials to investigate

... ). Thus, both these publication types generally mention other publication types and must be

removed early on in the sequence. The following list elaborates the actions performed at each

stage of the sequence:

1. Check for evidence of Meta-Analysis

2. Check for evidence of Systematic Review (regular expressions only)

3. Check for evidence of Review (non-systematic) and Consensus Development Conference

4. Check for evidence of Guideline/Practice Guideline

5. Check for evidence of Randomised Controlled Trial

6. Check for evidence of other forms of clinical trials (meta-data only)

7. Check for evidence of Cohort Studies (regular expressions only)

8. Check for evidence of other forms of studies (e.g., Evaluation Studies, Cross-sectional

Studies, Multi-centre Studies, Case Reports, etc.).

In all cases, the meta-data is checked first (if available), then the title and finally the abstract

text. While checking the abstract of an article for evidence, each sentence is searched separately.

We have attempted other approaches such as searching the whole abstract and using a sliding

window. However, we have found sentence level searching to produce the best results primarily

because evidence of publication or study type is usually stated or described in a single sentence

of an article abstract. Once a pattern match occurs, the entire abstract is searched again to identify

patterns that negate the evidence in specific cases (such as unacceptable randomisation techniques

in the case of Randomised Controlled Trials), and the article is only tagged if no evidence of

negation is found.
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To evaluate the performance of our approach, we required a set of test articles that were different

from the development set and at the same time completely reliable. To achieve this, we use

the articles in our corpus (obtained from JFP) that are explicitly mentioned by the JFP authors

to belong to specific publication types. We do not use articles that were used to prepare the

development set. Importantly, the chosen articles are not actually written by JFP authors, but

are cited by them within JFP articles which provide evidence-based answers to clinical queries.

Hence, the chosen articles come from a variety of sources, and this enables us to test our approach

on a diverse article collection. As explained in Chapter 3, the article abstracts (along with the

title, text, and meta-data) were collected for our corpus from Medline, and we add them to the

test set after manually annotating them based on the JFP classifications. Relying on JFP for the

test data also allow us to include articles from a wide range of medical topics, thus ensuring that

our approach is not topic dependent. To further prevent bias, all articles identified are added to

the test set regardless of their structure/content, and the abstracts of the articles are not reviewed

during the annotation process. Such a labourious annotation process is necessary due to the lack

of substantial reliable annotated data.

In our initial test set, we use a total of 294 articles including 111 Systematic Reviews and

Meta-Analyses, 100 Randomised Controlled Trials and 83 articles belonging to a mix of other

publication types. Our intent is to evaluate the performance of our approach for these three

publication types only (since these are generally associated with the SOR grade A). Including a

set of articles belonging to various other publication types is necessary to ensure that our approach

does not only correctly tag Systematic Reviews, Meta-Analyses, and Randomised Controlled

Trials, but also ignores other types of articles. The recall, precision and F-score values are

shown in Table 4.3. Note that in the table, we do not separate between Systematic Reviews and

Meta-Analyses because these two publication types are essentially the same (i.e., Meta-Analyses

are types of Systematic Reviews). For Systematic Reviews and Meta-Analyses, our approach

produces perfect precision but fails to identify one Systematic Review. Our approach tags a total

of 97 articles as Randomised Controlled Trials, of which 96 are correctly identified.

Publication Type Recall Precision F-Score

Meta-Analysis and Systematic Review 0.990 1.00 0.995
Randomised Controlled Trial 0.960 0.990 0.975

Table 4.3: Automatic classification results for Systematic Reviews, Meta-Analyses, and Ran-
domised Controlled Trials. Sample size = 294.

In the case of Randomised Controlled Trials, the falsely tagged article is a Review (non-

systematic) which mentions ‘one randomised, placebo-controlled study’ and is therefore picked

up by our rules. As for the four Randomised Controlled Trials that are not identified, none of their
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abstracts contain any evidence of randomisation although for one of the Randomised Controlled

Trials, there is clear evidence of randomisation in the full article text. In the case of Systematic

Reviews and Meta-Analyses, the unpicked article is a Systematic Review in which the abstract

does not contain any detail of the study type.

Following this, we perform experiments to evaluate the accuracies for other publication types.

The number or articles in each category, however, is lower. We use a total of 78 Cohort Studies, 17

Consensus Development Conferences (CDC), 31 Practice Guidelines (PG), 92 Non-randomised

Clinical Trials (Other CT), and 89 other studies (Other). Table 4.4 presents the performance of

our approach for these publication types. It can be seen that the F-scores for these publication

types are lower than those for the higher quality publication types.

Publication Type Recall Precision F-Score

Cohort 0.81 0.78 0.795
CDC 0.76 0.92 0.832
PG 0.90 0.86 0.883
Other CT 0.84 0.79 0.814
Other 0.78 0.65 0.711

Table 4.4: Automatic classification results for Cohort Studies, Consensus Development Confer-
ences (CDC), Practice Guidelines (PG), Non-randomised Clinical Trials (Other CT), and other
publication types (Other). Sample size = 307.

The results indicate that a rule-based approach such as ours is very effective in classifying

high quality publication types, such as Systematic Reviews, Meta-Analyses, and Randomised

Controlled Trials. The high F-scores can be attributed to the fact that articles belonging to these

three publication types are very structured (since there are very specific guidelines that must be

followed when writing these articles), and therefore, their titles and abstracts almost invariably

contain sufficient evidence of the type of publication, which can be automatically identified.

The recall and precision values decrease for other publication types, particularly those of lower

qualities. However, for most of these publication types (other than Cohort Studies), the PubMed

PublicationType tag is generally correctly specified. Thus, with these two information combined,

it is possible to detect the abovementioned publication types fairly reliably.

4.4.2 Features and Methods for SOR Classification

In line with our preliminary research work, we model the problem of evidence grading as a

supervised classification problem with three classes and attempt to solve it via machine learning

algorithms. We use the data from the 2011 ALTA shared task [Mollá and Sarker, 2011]. The task
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was based on the problem of automatic grading of evidence, and the data set was prepared from

our corpus. The data for the shared task consisted of a set of ‘evidences’ with the SORT grade

for each. Each evidence was represented as a list of publications (PubMed IDs) from which the

evidence had been generated. Information for each publication was provided in the form of an

XML file per publication obtained from PubMed9. Two sets of such data were provided initially

for training (677 evidences) and development time testing (178 evidences), and an additional set

was used for testing the final system (183 evidences). Bottom-line summaries with no associated

abstracts and abstracts containing no text were not included in this data set. Figure 4.7 illustrates

how the data in the shared task was provided. In the figure, the first column is the instance ID, the

second column is the grade, and the following columns represent the PubMed IDs of the abstracts

associated with each instance. All these abstracts have the same structure as the one shown in

Appendix A.

Figure 4.7: Sample data from the 2011 ALTA shared task.

Based on the findings of our preliminary experiments, we use publication types and article titles

as feature sets. In addition, we introduce word n-grams from the article abstracts as a feature

set10. We now provide a description of these feature sets.

9http://www.ncbi.nlm.nih.gov/pubmed/. Accessed on 26th May, 2014.
10We have experimented with other features but this combination produced the best results.
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N-grams

The most important information contained in the articles lies in the text of the abstracts. These

include types of studies, sizes of studies, background information, results, and outcomes. To

attempt to capture these information, we generate n-grams (n = 1, 2, 3 and 4) for each of the

abstracts in the training set. Prior to generating the n-grams we perform some preprocessing of

the text. It is common for medical concepts to have different lexical representations. For example:

hbp, hypertension, and high blood pressure represent the same medical concepts. The concepts

can further be generalised into broad categories representing classes of these concepts. In our

approach, we replace specific medical concepts in the texts with generic ‘sem_type’ tags. We

use MetaMap11 to identify domain specific concepts as defined in the Unified Medical Language

System (UMLS)12. The UMLS provides a vast vocabulary of the medical concepts and also

broad semantic groups into which the concepts can be classified. For example, all disease names

fall under the semantic category Disease or Syndrome (dsyn). Replacing each occurrence of a

disease or syndrome name with the generic tag ensures that the name does not have an influence

on the classifiers used and reduces over-fitting. We use the same semantic groups as Uzuner et al.

[2009]: pathological function, disease or syndrome, mental or behavioral dysfunction, cell or

molecular dysfunction, virus, neoplastic process, anatomic abnormality, acquired abnormality,

congenital abnormality, and injury or poisoning. We also preprocess the n-grams by stemming

using the Porter stemmer [Porter, 1980], lowercasing, and removing stop words.

Publication Types

We employ the approach described in the previous subsection to automatically identify the

publication types of the articles. Due to the difficulty of accurately identifying all the 11 types of

publications mentioned in Figure 4.3, we further condense the number of publication types and

only use the ones mentioned in the previous subsection. Abstracts that do not get captured by

our automatic approach are given the tag specified in the PubMed meta-data accompanying the

abstract text. For articles with multiple publication types, we only keep the tag that represents

the highest quality. For example, if an article was tagged as a Randomised Controlled Trial, a

Clinical Trial, and a Journal Article, we only keep the Randomised Controlled Trial tag since it

has the highest quality among the three types.

This approach produces a total of 23 publication types. Articles that can neither be classified by

our rule-based approach nor by the associated meta-data are given the default Journal Article tag.

For each instance of SOR in our data set, this feature set is added as a vector of the counts of

each publication type.

11http://metamap.nlm.nih.gov/. Accessed on 26th May, 2014.
12http://www.nlm.nih.gov/research/umls/. Accessed on 26th May, 2014.
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Titles

We generate word uni- and bi-grams from the titles, preprocess them (in the same manner as the

n-grams) and use them as features. In our preliminary research, explained earlier, we found titles

to be more useful for this task than journal names and publication years.

Classification

In our initial experiments, we apply the same classifiers that we used for our preliminary research.

All experiments are carried out using the software package Weka13. Namely, we experiment with

the following classifiers: Bayes Net, Support Vector Machines (SMO), K-Nearest Neighbour

(IBk), Multinomial Logistic Regression (Logistic) [Le Cessie and Van Houwelingen, 1992], and

C4.5 Decision Tree (J48) [Quinlan, 1993]. We also use a Naïve Bayes classifier for comparison.

Table 4.5 presents the performances of the abovementioned classifiers for each feature set, and all

the feature sets combined. Consistent with our preliminary experiments, publication types prove

to be the best feature set, followed by n-grams. In all these cases, both the training set and the

development test (855 instances) from the ALTA shared task are used for training, and the test

set (183 instances) used for evaluation. Parameter optimisation is performed using 10-fold cross

validation over the 855 instances of the training and development test sets. The best performing

classifier is SMO, which performs better than the other classifiers when the feature sets are

combined.

In addition to the accuracy values, we add another measure, which we call the Average Error

Distance (AED). The intent of this measure is to estimate the extent to which the predictions

made by our system differs from the actual grades. For an instance, if the actual grade is A and

our system predicts B, then the Error Distance (ED) is 1. Similarly, if, for the same instance, the

prediction by our system is C, the ED is 2. For correct predictions, the ED is 0. The formula to

compute AED is as follows:

AED =
∑

g∈G ED(gp , g )

(2× (Na +Nc ))+Nb
(4.1)

where Na , Nb and Nc represent the number of instances with actual grades A, B and C, gp is the

predicted grade, g is the actual grade, and the function ED(gp , g ) gives the ED for that instance.

The formula for AED ensures that, for a given data set, the worst performing system will obtain

an AED of 1, while the best performing system will obtain an AED of 0. Thus, the lower the

13http://www.cs.waikato.ac.nz/ml/weka/. Accessed on 26th May, 2014.
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AED for a system, the more likely it is to make accurate predictions. In other words, smaller

AEDs mean that the classifier predictions are closer to the actual predictions. The AED metric

makes it easier to compare different systems on the same data set. The performance of two

systems having comparable or equal accuracies may be very different in practice. For example,

a system which frequently classifies C grade evidence as B is better in practice than a system

that classifies the same instances as A. In other words, the errors made by the second system

are bigger, and the grades predicted are further from the actual grades. Although the accuracies

of these two systems may be equal, their AED values will indicate their relative performances.

Table 4.6 presents the AEDs for the best performing classifier for the different feature sets. Table

4.7 shows the confusion matrix for this classifier.

Automatically extracted features do not provide as good a performance as manually extracted

features. Thus, despite the use of more features, we are not able to obtain results as good as those

from our preliminary experiments. The highest accuracy is obtained by SMO using all three

feature sets (60.1%). When performing analysis on the training set to optimise various classifier

parameters, we notice that a major problem in this classification process is increasing the recall

and precision for the A and C classes. Attempting to improve recall significantly decreases

precision and vice versa. For the best feature combination and classifier, our system obtains

an average precision and recall of 0.56 and 0.51 respectively. The B class, being the majority

class, has a recall of 0.89, while the A and C classes have recalls of 0.39 and 0.24 respectively.

Optimising the classifier parameters to improve the recall values of the A and C classes also

causes significant drops in the recall for class B. Our post-classification analysis showed that,

in some cases, an instance that is correctly classified when a single feature set is used may get

classified incorrectly when all the feature sets are combined, although the overall accuracy tends

to increase.

Classifier Abstract (%) Title (%) Publication Type (%) All (%)

Naïve Bayes 48.3 45.2 54.9 53.5
Bayes Net 46.7 48.6 55.7 56.1
K-Nearest Neighbour 39.3 47.1 54.6 51.4
Logistic Regression 44.2 48.1 55.9 56.6
C4.5 41.0 47.5 58.5 57.4
SMO 49.7 52.5 57.4 60.1

Table 4.5: Individual classifier accuracies for six classifiers using all three feature sets.
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Features Average Error Distance

Abstract Text N-grams 0.332
Title Text N-Grams 0.339
Publication Types 0.300
All 0.289

Table 4.6: Average Error Distances (AED) for the best performing classifier (SMO) for various
feature set combinations.

A B C

A 22 25 9
B 7 79 3
C 7 22 9

Table 4.7: Confusion matrix showing number of correctly and incorrectly classified instances
when all feature sets are combined and used together. The rows show the actual classes, and the
columns represent the system classifications.

Combining Classifiers

Our experiments show that combining a number of features and using one classifier can only

produce accuracies of approximately 60%. We intend to explore the possibility of optimising

the existing classification strategy and the feature sets to further improve performance. In our

approach, we apply a sequence of classifiers, each of which is provided with a specific feature

set, instead of all the feature sets at the same time. The intent of each classifier in the sequence is

to attempt to identify instances belonging to the A and C classes with relatively high precision,

at the expense of recall. Thus, each classifier in the sequence only classifies a small number

of instances as A and C classes. When a number of such classifiers are utilised, the number of

correctly classified A and C grade evidences increases at each step, with a lower number of false

positives for both these classes compared to the number of false positives when all feature sets

are combined in a single classifier. The sequence in which the classifiers are applied and specific

details about each of them are as follows:

Step 1: Classify all evidences as grade B (majority class).

Step 2: Support Vector Machines (SVM) with n-grams (n = 1, 2, 3, 4 and semantic types replaced)

as features. Parameters: c = 2.0 and γ = 0.0. Attribute selection: using the information gain

measure to select the top 400 n-grams.

Step 3: SVMs with publication types as features. For each instance, the frequency of each
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publication type is used. Parameters: c = 1.0 and γ= 0.0.

Step 4: SVMs with titles as features. Parameters: c = 32.0 and γ= 0.002.

The parameters for the SVMs are tuned using the training set for training and the development

time test set for evaluation. Each of the above classifiers and their parameters are chosen based

on their precision in classifying A and C grade evidences. Thus, in our algorithm, each classifier

classifies most instances as B but identifies some A and C class instances with high precision.

At each step, instances classified as A or C are removed from the set, and the new grades are

assigned to these instances. Using this approach, the classification accuracy increases with each

step of the algorithm as more instances are classified as A and C.

For the final evaluation, we train our classifiers using the training set and the development test

set, and evaluate the performance using test set instances. Among the 183 instances of the test

set, our classifiers classified 36 as grade A, 130 as grade B, and 17 as grade C. This achieves an

overall accuracy of 62.84%, meaning that 115 instances out of the 183 were correctly classified.

This is significantly better than the baseline of classifying all instances as grade B, which has an

accuracy of 48.63% (CI: 41.50 – 55.83). The AED value for this is 0.271, which is smaller than

those of the previous experiments. Table 4.8 presents the confusion matrix for this classification

strategy, and Table 4.9 presents the F-score for each class at each state of the sequence. From the

table, it can be seen that the F-scores for all three classes tend to increase with each step of the

sequence. The average F-score for the three classes is 0.555, compared to the average F-score

of 0.506 when all feature sets are used in a single classifier. In addition to increasing accuracy

and decreasing AED, an advantage of this approach is that more high precision classifiers can be

plugged into this pipeline. This can further increase accuracy while also ensuring that very few A

grade evidences are classified as C and vice versa.

A B C

A 25 29 2
B 6 79 4
C 5 22 11

Table 4.8: Confusion matrix showing number of correctly and incorrectly classified instances.
The rows show the actual classes and the columns represent the system classifications.
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Class Step 1 Step 2 Step 3 Step 4

A NA 0.278 0.500 0.543
B 0.486 0.666 0.706 0.721
C NA 0.094 0.415 0.400

Table 4.9: The F-scores for the three classes at each step of the sequential classifier.

4.5 Human Evaluation

In this chapter, we have so far explained our supervised classification model for the automatic

grading of evidence. We showed that by sequentially applying high precision classifiers, it is

possible to achieve accuracies of over 60% and also minimise the AED. We have compared our

system to the majority class baseline and showed that our approach achieves significantly higher

accuracies. However, to fully understand the applicability of our system in real life grading of

evidence, it is pertinent to compare its performance against the performance of human experts on

the same data. This is particularly important because of the following two reasons:

1. The articles in the Clinical Inquiries section of the JFP are authored by different domain

experts. These experts follow the guidelines of evidence-based medicine to answer the

clinical queries that are the topics of the JFP articles. For each article, the authors retrieve

the relevant literature available on the topic, read and analyse them to identify the key

recommendations, synthesise information from multiple relevant documents, appraise

the quality of the information they have gathered, and then choose a grade based on the

guidelines of the SORT. To specify the final grade of evidence, they combine their domain

knowledge and the information available to them, and make the judgements based on them.

The guidelines, as shown and explained earlier, only provide high-level instructions on

the grading procedure. The authors are required to compare the information available to

them with the guidelines available and make the judgements. In many cases, as expected,

the information available to the authors cannot be directly mapped on to the rules of the

guidelines. This may happen, for example, when there are multiple articles available on

the same topic, with contrasting information in some of them. The authors may choose to

refer to the best papers only when making the final recommendations, and ignore the lower

quality articles presenting contrasting information. The final grade assigned, therefore, will

depend only on the papers on which the authors chose to rely. However, there is a strong

possibility that if other experts were given the same set of documents to make a decision,

they would apply their own methodology to derive the final grade for the evidence. As

such, there is also a strong possibility that different experts, when faced with the same

clinical query and the same set of supporting information, will choose different grades to

specify the qualities of the evidences, particularly when there are time-related constraints.
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It is vital to compare the agreement levels among different experts in order to understand

how good or bad the performance of our system is.

2. The human experts have access to more information than our system. The experts can

utilise information from the full articles, while our system has to rely on information

present in the abstracts only. Furthermore, in a number of cases (approximately 10%, as

explained in Chapter 3), the abstracts do not contain any text, making it harder for the

system to achieve its goal. Therefore, it is likely that the system’s predictions are affected

by the lack of information that is provided to it.

Due to these two reasons, it is difficult to estimate the actual performance of our system and the

supervised classification model that we propose. To better understand the true performance of

our system, it is essential to compare the grades generated by it to grades determined by human

experts using the same data. Therefore, we designed an evaluation experiment involving humans.

4.5.1 Experiment Design

The intent of this experiment was to compare grades assigned by human experts, and grades

generated by our system, to the grades that are used as the gold standard in our classification task.

In particular, we wanted to investigate the following two issues:

i The extent to which human experts agree with the gold standard annotations in our corpus,

given the same data that our system receives.

ii The extent to which human experts agree amongst themselves regarding the evidence

grades, given the same data that our system receives.

To commence this experiment, we first selected a random set of 100 instances from the text

classification task described in the previous section. Each instance consisted of a clinical query, a

set of article abstracts that were referenced to generate the bottom-line summary associated with

the evidence, and a grade indicating the quality of evidence. Among the 100 instances, 38 were

of grade A, 36 were of grade B, and 26 were of grade C14.

We employed four human experts to perform the grading task on this data set, using their own

expertise. The human experts chosen were from different backgrounds, but prior to introducing

them to the task, they were tested on their knowledge of evidence-based medicine practice. Three

of the human experts were practising chiropractors who graduated from Macquarie University,

14The proportions for each of these three grade categories are not the same as in the full data set purely as a result
of the random selection process.
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and the fourth expert was a final year medical science student from the Australian National

University. For the task, we implemented a web-based tool that enabled the experts to read the

queries and the associated abstracts, and choose a grade for each evidence based on the given

information. Each expert received one hour of training prior to the grading task. During the

training process, the experts were introduced to the SORT guidelines, and they performed grading

on a small set of examples that was separate from the 100 instances mentioned earlier. Following

the grading of this sample set, the JFP grades were revealed to the experts, and the reasoning

behind the grades were also explained. Using the web-based tool, the experts were able to access

the instances at any time; the tool also allowed them to revise the grades they assigned. Using the

tool, the experts could leave comments justifying their decisions. Figure 4.8 gives an example of

the interface of the tool used by the experts to assess the grade of evidence.

4.5.2 Experiment Results

In this subsection, we present the results of our human evaluation experiments, and we discuss

the conclusions we can derive from the results obtained. We compute a number of statistics,

based on which we can better understand the performance of our system and the validity of our

supervised classification model. Figure 4.9 shows the grade distributions for the gold standard,

our system, and the four experts. The only significant distinctions between the distributions that

can be noticed from the figure is the high number of B grades assigned by our system and the low

number of C grades. This is due to the design of our system, as explained in the previous section.

By considering the grades in the gold standard as the correct grades, we compute the accuracies

for the four experts and our system. Table 4.10 shows the accuracies obtained by the four expert

graders and our system on this small data set of 100 instances. It can be seen that three of the

four experts obtain better accuracies than our system, and one expert obtains a lower accuracy;

only one of the expert’s accuracy is statistically significantly better than that of our system. The

results are encouraging for our system because they suggest that the performance of our approach

is at least close to the performance of human experts. Also, given the same data, our system’s

grades and the experts’ grades have similar differences with the gold standard grades. However,

the results do not explain whether the reason behind this is the lack of available information,

or if there is a good amount of disagreement among the different human authors on the same

information. Therefore, we investigate the agreements among the different experts.

We use the Cohen’s Kappa [Carletta, 1996] measure (shown below) to compute inter-expert

agreements.

κ= Pr (a)−Pr (e)

1−Pr (e)
(4.2)
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Figure 4.8: The interface of the tool used by human experts for evidence grading.

System Expert 1 Expert 2 Expert 3 Expert 4

Accuracy 0.61 0.58 0.69 0.71* 0.62
95% CI 0.51–0.70 0.48–0.68 0.59–0.78 0.61–0.80 0.52–0.72

Table 4.10: Accuracy values for the four experts and our system, along with 95% confidence
intervals, when compared to the gold standard annotations. * indicates statistical significance.
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Figure 4.9: Grade distributions for the gold standard, our system, and four experts.

where Pr (a) is the relative observed agreement among two experts, and Pr (e) is the hypothetical

probability of chance agreement. We apply this statistic in two different ways to obtain an

understanding of agreement between experts. In the first approach, we compute the pairwise

agreements between the expert grades and the gold standard grades. This gives us a better

understanding of the extent to which the experts employed by us agree with the JFP contributors.

In the second approach, we compute the pairwise agreements between the experts only, and this

gives us an idea of the extent to which the experts agree amongst themselves, based on the data

available to them.

Table 4.11 presents the pairwise agreements between each expert and the gold standard grades

along with the mean, standard deviation and 95% confidence intervals. For all the agreement

measurements presented henceforth, the confidence intervals have been computed using the

formula mean±1.96×stdev . From the table, it can be seen that the agreement values for Expert

1 and Expert 4 are much lower than the agreement values for the two other experts. The mean

agreement is 0.47, which can be regarded as moderate agreement [Landis and Koch, 1977]. The

standard deviation in agreement, at 0.09, is also relatively high. These agreement values indicate

that experts only have moderate agreement amongst themselves regarding the grades. Using the

same measure, our system’s grades have an agreement of 0.40 with the gold standard grades.

These agreement values support the idea that there is not complete agreement among the experts

when it comes to assigning evidence grades. This also suggests that our system’s performance is

promising, given the information that it is provided.

Table 4.12 presents the pairwise agreements between the experts, along with the mean and the

standard deviation. The mean agreement, at 0.52, is slightly higher than the mean agreement

119



Chapter 4. Automatic Appraisal of Clinical Evidence

Agreement (κ) 95% CI

Expert 1 0.37 0.19 – 0.55
Expert 2 0.54 0.36 – 0.72
Expert 3 0.56 0. 38 – 0.74
Expert 4 0.42 0.24 – 0.60

Mean Agreement 0.47
Standard Deviation 0.09

Table 4.11: Pairwise agreements between each expert and the gold standard grades, along with
the mean, standard deviations and 95% confidence intervals.

Agreement (κ) 95% CI

Expert 1, Expert 2 0.50 0.34 – 0.66
Expert 1, Expert 3 0.42 0.26 – 0.58
Expert 1, Expert 4 0.46 0.30 – 0.62
Expert 2, Expert 3 0.54 0.38 – 0.70
Expert 2, Expert 4 0.61 0.45 – 0.77
Expert 3, Expert 4 0.60 0.44 – 0.76

Mean Agreement 0.52
Standard Deviation 0.08

Table 4.12: Pairwise agreements between the experts.
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with the gold standard, although this increase is not statistically significant. From the table,

it can be seen that Expert 1 has particularly low agreement with the other experts, and if the

grades assigned by Expert 1 are ignored, the mean agreement rises to 0.58. However, the level of

agreement can still be considered to be moderate [Landis and Koch, 1977]. This further supports

the possibility that despite the presence of a clear and simple guideline for the SORT, experts still

vary in their assignment of grades.

To further compare our system against the expert grades, we compare the AEDs of our system

on this data with the AEDs of the experts’ grades. Table 4.13 presents the AEDs, which are

computed relative to the gold standard grades. It can be observed from the table that the AED

values resemble the accuracy values, with the system’s AED falling between the AEDs of the

four experts’ grades, and Expert 3’s grades having the best (lowest) AED value. The comparable

AED value of our system to the expert annotations further shows the promise of our classification

model and approach.

Average Error Distance (AED)

Expert 1 0.28
Expert 2 0.24
Expert 3 0.21
Expert 4 0.26

System 0.26

Table 4.13: Average Error Distances (AED) for the experts’ grades and our system’s grades.

As the final comparison between our system’s grades and the experts’ grades, we compute the

pairwise agreements between our system and the grades assigned by the experts. Table 4.14

shows the agreement values, along with the mean and standard deviation. From the table it can

be observed that mean agreement is lower than the mean agreement between the experts, and this

can be considered to be fair agreement [Landis and Koch, 1977].

Discussion

We have obtained some interesting results from the human evaluations described in this section.

We can summarise the key findings of this evaluation as follows:

1. From the agreement measurements we see that the mean κ for the agreements among the

experts employed by us is marginally higher than the mean κ for the expert–gold standard

agreements;

2. The accuracies and AEDs of our system and the experts are comparable in general; and
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Agreement (κ) 95% CI

Expert 1, System 0.35 0.29 – 0.41
Expert 2, System 0.29 0.23 – 0.35
Expert 3, System 0.35 0.29 – 0.41
Expert 4, System 0.35 0.29 – 0.41

Mean Agreement 0.34
Standard Deviation 0.03

Table 4.14: Pairwise agreements between the experts and our system.

3. There is significantly lower agreement between the experts and our system compared to

the agreement between the experts only.

The most likely reason behind finding (1) is the fact that the JFP contributors have access to

the full articles, whereas the experts employed by us only had access to the abstracts. When

generating evidence grades, it may be beneficial to incorporate information from full documents,

rather than just the abstracts. However, the performance of our supervised classification model

and system using features derived from full articles can not be determined at this point due to

the unavailability of the full articles. Furthermore, the JFP contributors are likely to review

more articles than those cited. Thus, if we provide our system with all the articles retrieved, its

performance is likely to change.

Finding (2) shows the promise of our supervised classification model and the approach we use

for the classification task. If the experts employed by us had very high agreement or accuracies

compared to the gold standard, that would mean our system’s performance is poor. However,

since our system achieves accuracies and AED values comparable to the human experts, we can

conclude that it is not possible to significantly improve the accuracy of our system with the data

that is currently available. We defined the score AED based on the argument that a good system

should try to minimise the difference between its grades and the grades assigned by a human

expert. Our system’s AED score is comparable to the AEDs of the human experts, relative to

the gold standard. This further suggests that our approach successfully reduces the number of

cases when the generated grades are very different from the actual grades, and the amount of

error made by our system is similar to the amount of error human experts would make, given the

same data.

Finally, finding (3) shows that despite the good relative performance of our system, there is still

room for modifications that can be made to our system, and which can perhaps provide marginal

improvements. In other words, there is still a significant difference in the way our system predicts

a grade and how experts derive their decisions. There is only little agreement among the experts
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and the system, showing that future research should focus on updating the automatic grading

process so that it can resemble the human grading process more accurately.

Our experiments also enabled us to estimate the time required for manual appraisal of evidence.

Our human experts, on average, required approximately 11 hours to complete the grading of

the 100 instances of evidence. The automatic classification approach using a trained classifier

requires less than a minute to classify all the training instances in the evaluation set. Considering

the performance of our system relative to human experts, and the time required for automatic

classification, we can conclude that such an automatic approach has the potential of being very

useful for aiding practitioners in everyday evidence-based practice.

4.6 Chapter Summary

In this chapter, we addressed the problem of automatic grading of evidence on a chosen discrete

scale. We first discussed the grading scale (SORT), the various grading criteria, and the grading

approach in detail, and we proposed a supervised machine learning model to solve the problem

(Section 4.2). In Section 4.3, we described our analysis, which was carried out with the intent

of identifying useful factors that influence evidence grades, and the suitability of a supervised

machine learning model for this task. Our experiments produced significantly better results than

the baseline, and suggested that supervised machine learning has the potential of being applied

to this task. We also made some key discoveries regarding the importance of various factors in

determining evidence grades. Specifically, we discovered that the publication types of individual

articles are useful predictors of evidence grades, and the titles of articles are also useful. However,

publication dates (years) and publication venues (i.e., journal names) of individual articles are

not useful predictors of evidence grades according to our analysis.

Due to the importance of the information regarding the publication types of individual articles in

the grade classification process, we attempted to devise an automatic approach for identifying

the publication types of medical articles. We showed that a rule-based approach can efficiently

identify the publication types of high quality articles such as Systematic Reviews and Randomised

Controlled Trials by utilising information from the article titles, abstracts, and the associated

meta-data. Automatic identification of lower quality publication types such as Case Studies

is more challenging since the article titles and abstracts often do not contain the necessary

information.

We applied supervised machine learning with automatically extracted features to perform the

grading task. In our model, we applied a sequence of classifiers that attempted to separate A and

C grade evidences from B grade ones. We obtained an accuracy of 62.84% using this approach,

which was a significant improvement over the baseline. We introduced an evaluation metric called
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Average Error Distance (AED), which attempts to estimate the closeness of a system’s grades to

actual grades, and we showed that our sequential classification model achieves improved AEDs

compared to the baseline.

To conclude our research on this topic, we conducted a human evaluation and compared the

performance of our system with human experts. Our experiments revealed that when human

experts are given the same data as our machine learning algorithm, they only have moderate

agreement regarding the grades. The experiments also revealed that although the performance

of the experts is comparable to our system when compared against the gold standard, there

are still significant disagreements between the expert assigned grades, and the grades assigned

by our system. Based on our findings, we can conclude that supervised classification is a

promising approach for automatic grade recommendations. Considering the relatively low

level of agreement between human-generated and automatically-generated grades, there is still

room for modifications/adjustments to the system to increase its agreement with human experts.

Importantly, our evaluations suggest that it may not be possible for an evidence grading system

to significantly improve on the performance using the data that is currently available.

Future research can benefit from the use of more annotated data. The amount of data used in

this supervised classification model is relatively small, and this affects the performance of the

classifier particularly for the smaller classes such as C. Furthermore, in our grading model, we

have only incorporated features from individual documents, and we have not utilised multi-

document features such as consistency. Automatic extraction of such multi-document features is

challenging, and current research work in this area is limited. We have explored document level

polarity classification for this domain [Sarker et al., 2011], but the accuracies of such techniques

are still not sufficiently high to be applied as an intermediate step in the evidence grading task.

Future improvements to such techniques may deem them suitable for use in the automatic grading

task. Based on the findings of our human evaluations, however, it appears that the amount of

improvement that can be achieved is limited.

Another important future research task will be to model the problem of automatic grade generation

as a regression task rather than classification task. Since the three grades represent ranks for

the document sets, automatic approaches may benefit from a regression based model — where

the rank for a document set is predicted by a score derived via regression, rather than a specific

grade. A regression model, however, will require more data since separate sets have to be used for

training, rank-threshold computation (i.e., finding the boundaries between the scores reflecting

different grades), and evaluation.
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5 Single-document, Query-focused Text
Summarisation

5.1 Introduction

As previously mentioned, our model for evidence-based text summarisation involves two tasks:

generating bottom-line answers to clinical queries based on available evidence, and grading the

quality of the extracted evidence. In the previous chapter, we discussed the problem of generating

quality grades for medical evidence, which is an important component for a summarisation

system in this domain. We modelled the problem of predicting evidence grades as a supervised

classification problem, and we attempted to solve it with a sequence of high precision Support

Vector Machine (SVM) classifiers. We showed that, using such a classification strategy, approx-

imately 63% accuracy can be achieved. This is significantly better than our baseline for this

challenging problem, and this accuracy is also comparable to human performance on the same

data.

In this chapter and the next one, we focus on the text summarisation component of an evidence-

based, query-focused, text summarisation system. For the summarisation component of the

system, we proposed the use of a two-step summarisation model. In the first step, content is

selected from individual documents in response to clinical queries; in the second step, the selected

content from individual documents are utilised to generate evidence-based recommendations. We

focus on the first step of the model in this chapter.

We model the task of extracting information from single documents, based on the information

needs of a query, as a query-focused, single-document, extractive text summarisation task. In

terms of inputs and outputs, we formulate the task as follows:

Input-1: A clinical query

Input-2: A source article abstract
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Output: An extractive summary of Input-2 based on the information needs of Input-1

In Chapter 3, we presented samples of these target single-document summaries. Our corpus

contains a collection of human-authored detailed justifications (single-document summaries),

which are relatively detailed and present various types of information from different locations

of the document. The content of a summary usually includes some background information —

such as the type of the study, the number of subjects involved in the study — and, importantly,

the outcome of the study. Figure 5.1 provides an example of a human-authored single-document

summary from our corpus. In the two-sentence summary provided in the figure, the first sentence

provides useful background/study details, while the second summarises the outcome. In medical

document abstracts, background/study/population information tends to occur early on in the

document, while outcome information is generally presented towards the end. This indicates that

any summarisation algorithm attempting to automatically extract query-focused content from

single documents must be capable of providing appropriate coverage of content from various

document locations, instead of just focusing on extracting the outcome.

Question.
What is the best treatment for hypertension in African Americans?

Summarised Answer:
A randomised controlled trial compared the effects of consuming the DASH diet
(consisting of 4-5 servings of fruit, 4-5 servings of vegetables, 2-3 servings of
low-fat dairy per day, and less than 25% fat) with a typical high-fat control diet
among 459 adults with normal or elevated blood pressure. Among 133 patients
with hypertension, the DASH diet reduced systolic and diastolic blood pressure by
11.4 mm Hg (97.5% confidence interval [CI], -15.9 to -6.9) and 5.5 mm Hg (97.5%
CI, -8.2 to -2.7) respectively when compared with the control diet. [PubMed ID:
9099655]

Figure 5.1: A clinical question and an expert generated summary of a medical document based
on the information needs of the query.

In Chapter 2, we presented a detailed survey of extractive text summarisation techniques. We

presented the Edmundsonian Paradigm [Edmundson, 1969] for extractive summarisation, where

each text segment is assigned multiple scores based on various factors, and the final score of the

segment is the weighted sum of the individual scores. Research on extractive summarisation has

largely followed this paradigm. The key to successfully utilising this paradigm is the identification

of important factors and the weights associated with them. Despite its simplicity, the paradigm is

extremely flexible, and therefore, it has been applied in automatic extractive text summarisation
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approaches in all domains. Early research works utilised word frequencies, sentence positions,

keywords, and similar other surface features (superficial features within a text segment with little

or no linguistic information) [Luhn, 1958, Baxendale, 1958, Earl, 1970, Kupiec et al., 1995,

Hovy and Lin, 1998]. The general summarisation algorithm for a system that attempts to select n

sentences from the source document by using m features is as follows:

1. Assign m scores to each sentence based on each of the features;

2. Update each of the m scores by multiplying them with predefined weights;

3. Compute the total score for each sentence by combining (e.g., summing) each of the m

weighted scores;

4. Select the highest scoring n sentences; and

5. Present the n sentences as the final summary, maintaining their order in the original

document.

Although surface features are simplistic in nature, in practice they are very effective in specific

domains. For example, the relative position of a sentence has been the single most important

feature in the extractive summarisation of news documents till date. News articles invariably have

a well-defined structure, and the most informative sentence is inevitably the first sentence. As

such, the baseline of first n sentences, used for news summarisation tasks, has proven to be almost

impossible to beat [Ceylan et al., 2010]. Therefore, extractive summarisation systems in the

news domain tend to reward sentences occurring earlier in the document, when assigning scores.

Likewise, in the medical domain, especially in summarisation tasks involving medical research

papers as source documents, sentences occurring later in a document are assigned higher weights

since later sentences are more likely to contain outcomes or conclusions of studies. Consequently,

a common baseline in this domain is the last n sentences [Lin and Demner-Fushman, 2007].

Such a scoring approach intentionally adds bias to the sentence selection process. Our analysis of

the corpus, particularly the human-authored, single-document summaries, suggests that biasing

the selection of all the target summary sentences can deteriorate the summariser’s performance

by reducing diversity and increasing redundancy. As already illustrated, the summaries tend

to present some key background information along with outcome information. While outcome

information occurs towards the end of a document, background information tends to occur very

early in the document. Taking the position-based scoring as an example, the algorithm mentioned

above presents some obvious problems. Giving higher scores to sentences occurring later in the

document reduces the probability of sentences occurring earlier in the document of being selected

for the final summary, despite their possible importance. Such models, therefore, suffer from the
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problem of underfitting, and this is not desirable. One way of addressing this issue is to assign a

lower weight to the position-based score. However, this also reduces the chances of selecting

important outcome sentences.

In our summarisation approach, we use a target summary length of three sentences. This is

because our manual analysis of the human-generated summaries suggests that three sentences

is the appropriate length — capable of providing sufficient content, maintaining compactness.

Research closely related to ours suggests likewise [Lin and Demner-Fushman, 2007]. Adhering

to the Edmundsonian Paradigm, we explore a number of features for sentence level scoring.

We combine target-sentence-specific features and features independent of the target sentence

number. We also use features that incorporate query focus. Furthermore, in our summarisation

algorithm, we take into account the question type, and how the contents of answers vary based

on the question type. We, thus, customise our scoring approach based on the type of query

posed. The scores are recomputed for each target sentence selection. For each target sentence,

the weighted scores for each of the source sentences are summed to compute the final score for a

sentence. The highest scoring sentence for each target sentence is then chosen for the summary.

We evaluate our approach automatically using ROUGE [Lin, 2004]. We compare the ROUGE-

L1 F-scores of our system with several baselines and show that our summarisation approach

outperforms the baselines with statistical significance. We also apply a percentile-rank based

evaluation for our system and all the baselines, to compare them on a relative scale. The following

list provides a summary of the contributions of this chapter.

i We use a corpus specialised for summarisation in this domain, and show that summarisation

performance can significantly benefit from the use of statistics derived from such specialised

data.

ii We apply target-sentence-specific scoring to diversify our sentence scoring technique

during the summarisation process, and show that this approach results in better content

selection.

iii We incorporate domain knowledge in various ways into our summarisation technique. We

incorporate information about the types of clinical questions, query-sentence semantic

similarities, medical semantic types and semantic associations. We show that, for a domain-

specific summarisation task such as this, incorporation of domain knowledge in various

ways is effective for boosting summarisation performance.

iv We apply an automatic evaluation approach that can be used to compare the relative

performance of extractive summarisation systems on a common data set.
1ROUGE-L attempts to find the longest common subsequence (LCS) between two summaries, with the rationale

that summaries with longer LCSs are more similar.
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The remainder of this chapter is structured as follows. We first describe some notational prelimi-

naries in Section 5.2. In Section 5.3, we briefly overview some of the literature that is relevant to

our work and forms the basis for our technique. In Section 5.4, we describe our summarisation

technique in detail. We discuss a number of summarisation systems in Section 5.5, against which

we compare our system. In Section 5.6 we provide our evaluation technique and show that our

approach outperforms well established baselines. We conclude the chapter in Section 5.7.

5.2 Notational Preliminaries

In this chapter, we will be describing various algorithms and approaches, using as fundamentals

the various types of data present in our corpus. To talk about these data and concepts succinctly, we

use the following notational conventions. Some of these notations have already been mentioned

in Chapter 3, when describing our summarisation model. We briefly repeat them here.

Our corpus consists of a set of records, R = {r1 ... rm}. Each record ri contains a clinical query

qi , so that we have a full set of questions Q = {q1 ... qm}. Each record ri has associated with it a

set of one or more bottom-line answers to the query Ai = {ai 1 ... ai n}, and a grade indicating the

quality of the body of evidence associated with each bottom-line answer, so that each record has

a set of grades Gi = {gi 1 ... gi n}. For each bottom-line answer of a record ri , ai j , there exists

a set of detailed justifications (single-document summaries) Li j = {li j 1 ... li j o}. Each detailed

justification li j k is in turn associated with at least one source document di j k . Thus, our corpus

has a set of source documents, which we denote as Di j = {di j 1 ... di j o}.

In the research work described in this chapter, we perform query-focused, single-document

summarisation. Therefore, we only use the set of questions Q, the set of detailed justifications

L, and the set of referenced documents D from our corpus. We now provide further notational

formalisms specific to the research work relevant for this chapter only. Each summarisation task

and the evaluation of its performance involves a query qi , the associated human-generated detailed

justification li j k , and the source document di j k . We thus define a function summ_extract(), which

takes as input the tuple (qi ,di j k) and attempts to produce an extract, exti , that most closely

resembles li j k . Each document di j k consists of a set of n sentences Si j k = {si j k1 ... si j kn}

and a title ti j k . The function summ_extract() performs target-sentence-specific summarisation.

Therefore, when supplied with the required information along with document di j k , it assigns a

score to each sentence si j kx of the document based on various features and also depending on

the number of the target sentence. We discuss the scores, the features, and the sentence scoring

process in the following sections.
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5.3 Related Work

We first briefly review and summarise some of the literature discussed in Chapter 2. In particular,

the purpose of this brief discussion is to set the context for the work described in this chapter. We

briefly cover work in extractive text summarisation, text summarisation in the medical domain,

and related evaluation techniques.

5.3.1 Automatic Extractive Summarisation

Edmundson [1969] defined the framework for much of the work on extractive summarisation

in what is known as the Edmundsonian Paradigm [Mani, 2001]. He used a linear function of

features to rank sentences for extraction:

Scor es =αAs +βBs +γCs ... (5.1)

where Scor es is the score for sentence s, As ,Bs and Cs are features of the sentence s, and α,β and

γ are weights for each feature. Progress in summarisation research has been made more recently

as numerous statistical approaches have been proposed [Barzilay and Elhadad, 1997, Lin and

Hovy, 2000, Harabagiu and Lacatusu, 2005, Hovy and Lin, 1999, Lacatusu et al., 2003, Filatova

and Hatzivassiloglou, 2004, Teufel and Moens, 1997, Chakrabarti et al., 2001, Ando et al., 2000,

Hearst, 1994, Marcu, 1997, 1998, Hahn and Strube, 1997]. While some approaches applied

machine learning techniques for summarisation [Kupiec et al., 1995, Lin and Hovy, 1997, Aone,

1999, Lin, 1999, Conroy and O’Leary, 2001, Svore et al., 2007, Schilder and Kondadadi, 2008],

others focused on natural language analysis techniques [Miike et al., 1994, Marcu, 1998, 1999,

2000, Polanyi et al., 2004, Erkan and Radev, 2004, Thione et al., 2004, Barzilay and Elhadad,

1997, McKeown et al., 1998, Elhadad and McKeown, 2001, Sauper and Barzilay, 2009]. The key

ideas behind some of these approaches have been discussed in Chapter 2.

5.3.2 Query-focused Extractive Summarisation

Query-focused extractive summarisation requires the selection of sentences from the source

text that are most relevant to a query. One popular approach to this task is Maximal Marginal

Relevance (MMR). The MMR measure [Carbonell and Goldstein, 1998] is also commonly

applied to reduce redundancy, particularly for query-driven summarisation. In this technique,

relevant sentences are rewarded and redundant ones are penalised simultaneously by considering

a linear combination of two similarity measures. The technique, thus, produces a set of relatively

non-redundant but relevant sentences in the final summary. We use a variant of this technique in

our extractive summarisation approach. Other centrality and similarity metrics for query-focused
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summarisation have been proposed in the literature [Alyguliyev, 2007, Erkan and Radev, 2004,

Fisher and Roark, 2006, Radev et al., 2004].

5.3.3 Summarisation for the Medical Domain

As mentioned earlier in this thesis, text summarisation research for the medical domain its still

very much in its infancy, and progress in this domain is hindered by the complex nature of the text

and the lack of sufficient annotated data. Text processing systems in this domain generally use the

Unified Medical Language System (UMLS)2, which is a repository of biomedical vocabularies

developed by the U.S. National Library of Medicine. It covers over 1 million biomedical concepts

and terms from various vocabularies, semantic categories for the concepts, and both hierarchical

and non-hierarchical relationships among the concepts [Aronson, 2001]. In our research work, we

make heavy use of UMLS semantic types and concepts, as identified by the MetaMap [Aronson,

2001] toolbox.

In the detailed literature survey in Chapter 2, we covered some important summarisation systems

in this domain. The majority of the summarisation systems in this domain are extractive in nature

[Sager et al., 1994, Gaizauskas et al., 2001, Johnson et al., 2002, Damianos et al., 2002, Friedman,

2005, Cao et al., 2011]. Annotated corpora and statistical distributions have also been utilised for

summarisation in the past [Vleck and Elhadad, 2010, Reeve et al., 2006a,b, 2007]. A significant

amount of work on summarisation for this domain has been carried out under the broader research

area of Question Answering (QA) [Terol et al., 2006, Weiming et al., 2007, Yu and Cao, 2008].

One work closely related to the work discussed in this chapter is that by Lin and Demner-Fushman

[2007]. The summarisation component of their QA system is very similar to ours in terms of

intent and source texts. It relies on the classification of information present in medical abstracts

into PICO (Population, Intervention, Comparison and Outcome elements [Richardson et al.,

1995]. A machine learning classifier is used to classify text segments as Outcomes, as the authors

argue that this is the most important content of a medical abstract. Therefore, text segments

classified as Outcomes are presented as the final summary. One important difference between

this system and ours is that the former requires clinical queries to be submitted in the form of

PICO forms, rather than natural language. As such, selecting relevant content is likely to be

easier for this summarisation system compared to ours. Furthermore, in their work, the queries

are only used for retrieval, while the summarisation component does not take the queries into

account. This makes the summaries generic (i.e., same summary is generated in response to

distinct queries).

Another system similar to ours, at least in terms of intent, is BioSquash [Shi et al., 2007], a system

2http://www.nlm.nih.gov/research/umls/. Accessed on 26th May, 2014.

131

http://www.nlm.nih.gov/research/umls/


Chapter 5. Single-document, Query-focused Text Summarisation

that performs question-oriented extractive summarisation of biomedical documents through the

use of statistical parsing, named-entity recognition, semantic role labeling, and graph generation.

This graph-based extraction approach is evaluated on a set of 18 questions, and the system is

shown to perform well. Niu et al. [2005, 2006] utilise polarity information in the sentences

of medical abstracts for summarisation. The authors argue that polarised sentences generally

contain outcomes or concluding statements within the abstracts, and show that summarisation

can be improved with the use of this information. AskHermes [Cao et al., 2011] is another

summarisation system under development; it incorporates information such as the type of a

clinical query in the summary generation procedure. The answers generated by this system,

however, are not bottom-line summaries and consist of paragraphs or collections of sentences.

5.3.4 Evaluation

The most important work related to automatic evaluation of summarisation systems that is relevant

to our work is that by Lin and Hovy [2003] and Lin [2004]. The authors propose a set of metrics

called Recall-Oriented Understudy for Gisting Evaluation (ROUGE) that have become very much

the standards for automatic summary evaluation. The intent of the ROUGE measures is to find the

similarity between automatically generated summaries and reference summaries, and it has been

shown that ROUGE scores of summaries have a high correlation with human evaluations [Lin,

2004, Sparck Jones, 2007]. It has been previously applied to the evaluation of summarisation

systems in the medical domain [Shi et al., 2007, Niu et al., 2006]. For these reasons, we use

ROUGE for the automatic evaluation of our summarisation system. In particular, we use the

ROUGE-L scores, which are based on the longest common subsequences between the generated

and the gold summaries. Recently, Ceylan et al. [2010] have shown that ROUGE scores for

extractive summaries within a domain follow a normal distribution with most combinations of

sentences giving a ROUGE score very close to the mean. This leads to a long-tailed probability

distribution for all ROUGE scores, meaning that a small increase in ROUGE score can indicate

large increases in percentile ranks. They further explain that, in specific domains, such as the news

domain, the baseline is very difficult to beat because they already have a high percentile3. We

use a similar percentile-based evaluation for our system. Details are provided in the Evaluation

section (Section 5.5).

5.4 Methods

In this section we detail our approach for the extractive summarisation task. We explain the

process by which we incorporate various sentence level statistics from our specialised corpus,

3For the news domain, where the standard baseline is the first n sentences, the ROUGE score percentile is >99%
and therefore extremely difficult to beat by any summarisation system.
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and use them for summarisation.

5.4.1 Generation of Ideal Summaries

We commence our work by dividing the set of records (R) in our corpus into two subsets: RT R AI N

and REV AL . We use the data in RT R AI N as our training set. That is, we use this set for the

generation of statistics based on which the summarisation of unseen text is to be performed. We

use the data associated with REV AL for the evaluation of the summarisation system built using

statistics from RT R AI N . RT R AI N consists of 1,388 abstracts, each with an associated question and

a human-authored detailed justification. REV AL contains 1,319 abstracts with the same associated

information.

We first generate ideal extractive summaries from all the abstracts in RT R AI N . Given a query

(qi ), a human-authored single-document summary (li j k), and an abstract (di j k), we define the

ideal extractive summary of di j k as the set of three sentences, SBEST,i j k ⊆ Si j k , from di j k that

produces the highest ROUGE-L F-score when compared with li j k . To identify SBEST,i j k for

di j k , we apply the function best_rouge(), which first generates a set of all possible three sentence

combinations for di j k , Scombs,i j k . It then uses the ROUGE-L functionality of the ROUGE

toolbox to identify SBEST,i j k for di j k as shown below:

SBEST,i j k ← ar g maxSi j kx∈Scombs,i j k ROUGE-L(Si j kx , li j k ) (5.2)

The ROUGE-L() function returns the ROUGE-L F-score for the sentence combination Si j kx

and the human-generated summary li j k . The three sentence combination with the maximum

ROUGE-L F-score is added to SBEST .

For each di j k in RT R AI N , we have a three sentence combination that we consider to be the ideal

extractive summary. We thus have a set of the three best sentences from each document in

RT R AI N , SBEST = {SBEST,0 ... SBEST,1388}4, and we use this set to derive much of the required

statistics. The target of our summarisation task is therefore:

To use statistics derived from SBEST to attempt to select a set of sentences, Ssel , from

an unseen document di j k , such that Ssel has the highest scoring ROUGE-L F-score,

when compared to li j k , among all the three sentence combinations in di j k .

41388 is the number of available abstracts in the training set.
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5.4.2 Generation of Statistics

We have already explained that using the same statistics for different target summary sentences

may not be the best approach for this domain. Our analyses show that the human-generated

query-focused summaries tend to cover various types of medical information, which may come

from various regions of the document. As such, biasing all target sentence selections using

the same statistics is likely to underfit the summarisation model and only select similar type

of data. In terms of sentence positions, for example, past research in the domain supports the

rewarding of sentences appearing later in documents [Lin and Demner-Fushman, 2007]. However,

in our three sentence summaries, we attempt to reduce intuition related bias, and rely on various

likelihood measures derived from the corpus data. For the sentence position feature, for example,

our intent is to select each of the three sentences based on position related likelihood measures.

For each target sentence, the likelihood measures can be derived from RT R AI N . We achieve

our goal of applying a summarisation model that better fits the target data by employing target-

sentence-specific scoring strategies. We select a summary containing a set of three sentences,

Ssummar y,i j k = {s f i r st , ssecond , sthi r d }, from document di j k using separate statistics, wherever

appropriate, for each of s f i r st , ssecond and sthi r d . We now provide a detailed description of the

statistics used, starting with sentence position related statistics.

Sentence Position Related Statistics

We generate statistics related to sentence positions from RT R AI N by computing the relative

sentence positions of each of the three sentence combinations in SBEST . For each of the three

positions, we generate frequency distributions of their relative positions in the source texts. To

compute the relative positions of sentences in a document, the first sentence is numbered 1, and,

following that, the ith sentence is given the value i
len(d) , where len(d) is a function that returns

the length of document d in terms of sentences. The frequency distributions are normalised so

that they sum to 1. Since there are three target sentence positions, there are three distributions,

each corresponding to a target sentence number. The normalised frequency distributions for all

three sentence positions over the training set are shown in Figure 5.2, with the histogram bin

upper limits (i.e., the maximum value for a sentence position contained in a histogram bin) shown

in the x-axes.5 Each distribution is compared with the distribution for that position when three

sentences are randomly selected such that s1 < s2 < s3. Compared to the random distributions, for

the middle and last sentences, the peaks for the distributions of the sentences from SBEST appear

to be shifted slightly to the right, indicating a preference for sentences appearing later in the

documents. This comes as no surprise as it has been shown that Outcome information in medical

studies tends to occur towards the end, and generally it is the outcome information that forms the

5The bin size used is 0.2.
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main body of the summary. However, for the first sentences, the relative positions in SBEST tend

to be shifted more to the left, showing that the first sentences in our ideal summaries are more

likely to come from earlier in the documents. The graphs in the figure show that there is a subtle

difference between the relative sentence positions of the sentences in SBEST and the random

sentences. For SBEST , while the last two sentences tend to come from later in the documents, the

first sentences tend to appear very early in the document. Our analyses suggested that the human

summaries contain some background/population related information first, which generally appear

very early in the abstracts, followed by more detailed results/outcome information, which tend to

appear towards the end.

Given a document di j k , we want to assign three sets of scores to Si j k . Each of these three sets of

scores are calculated by taking into account the target sentence number, tn. When assigning a

score to a sentence, our goal is to use a probability measure for the score, which depends on the

target sentence number. Thus the score for a sentence si j kx with relative position x should be

given by:

scor esi j kx = P (si j kx |tn) (5.3)

That is, the likelihood for a sentence with relative position x to be chosen as the target sentence tn.

We estimate these probabilities using our frequency distributions, since the distributions represent

the actual likelihoods of the values for the relative sentence positions for each target sentence

number.

To assign scores based on relative sentence positions, we first create histograms of each of the

three distributions for SBEST . Each distribution is generated using 10 bins with bin sizes of 0.16.

We then normalise the histograms using the formula:

htn[k] = htn[k]∑n
l=1 h[l ]

(5.4)

where htn[k] represents the kth bin of the histogram for target sentence number tn. Then, for a

sentence in a document with relative position x, we assign it a score which is equal to the value

of the normalised frequency of the bin for x. Formally:

RPsi j kx = htn[k] (5.5)

where RPsi j kx is the score for si j kx based on its relative position x.

6We have experimented with other bin sizes. Using a larger number of bins does not improve performance over
the training set, as the frequencies tend to get smaller for all bins. Using a smaller number of bins gives comparable
performance.
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Figure 5.2: Comparison of frequency distributions of relative sentence positions for the three best
sentences and three randomly selected sentences of each abstract.

Since we have a separate distribution for each target sentence position, the same source sentence

gets a different score based on which distribution is used for scoring. Therefore, when selecting

the first target summary sentence, sentences earlier in the documents get high scores. In contrast,

when selecting the last target summary sentence, early sentences get very low scores. Thus,

using this approach, we can assign different weights to the same sentence position depending on

whether we are attempting to select the first sentence, second sentence, or last sentence of the

summary.

136



5.4. Methods

Sentence Length Related Statistics

Our analysis of the sentences in SBEST for all the sentence positions reveals that the lengths of

sentences may be good indicators of their importance. On average, the sentences in SBEST are

longer than the rest of the sentences in RT R AI N . The average sentence length for the sentences in

SBEST is 141.77 characters. The average sentence length for all sentences in RT R AI N is 119.47

characters. Therefore, during sentence selection, we attempt to reward longer sentences and

penalise shorter ones using the following equation:

LE Nsi j kx =
l en(si j kx )−av g (len(al l ))

len(di j k )
(5.6)

where l en(si j kx ) is the length, in terms of number of characters, of sentence si j kx , av g (l en(al l ))

is the average sentence length in characters over the whole training set, and l en(di j k ) is the length

of the document in words. The choice of using a mixture of character lengths and word lengths is

intentional and purely based on the convenience of formulating the equation above. Thus, using

this approach, sentences longer than the average length are rewarded by a small amount, while

sentences smaller than the average length are penalised slightly. We have experimented with

variations of the above equation and observed that this approach works best. This is because,

for small documents, long sentences tend to contain a large proportion of important information

compared to short sentences, and therefore the rewards/penalties assigned by the equation are

also larger in magnitude. Using this approach, the magnitude of the score tends to be small for

larger documents, and sentence selection is primarily influenced by other factors.

Sentence Similarity Related Statistics

Since our intent is to perform query-focused extraction of sentences from the abstracts, we

attempt to incorporate a technique that rewards sentences similar to the associated queries. At the

same time, once a sentence is selected, we try to ensure broad coverage by penalising sentences

that are similar to the selected sentence. We perform this through the use of MMR and cosine

similarity measures.

Similarity measures provide a single score that indicates the overlap between two sets of words:

in our case, the words in the query and the words in a candidate sentence. The cosine similarity

metric represents the two sets as vectors of word occurrence features. The cosine of the angle

between the two vectors indicates whether a text unit is orthogonal — often loosely interpreted

as “dissimilar” — to the keyword set. Treating a text unit as a vector of word features is known

as a vector-space approach [Salton and McGill, 1983]. For most similarity metrics, including

137



Chapter 5. Single-document, Query-focused Text Summarisation

the cosine metric, a score close to the maximum (i.e., 1) indicates that there is a high overlap

between reference terms and sentence words. The cosine metric is calculated using the following

equation:

si mi l ar i t y = cos(θ) = u.v

|u||v | (5.7)

where u and v are two vectors, and the similarity is given by dividing the dot products of the

vectors by the product of their magnitudes.

For each sentence of an abstract, si j kx , and the associated query, qi , we generate vectors using

the following approach. We first preprocess the text by lowercasing all characters, stemming

the words using the Porter stemmer [Porter, 1980] and removing stop words. For each word in

si j kx and qi , we then compute the term frequency (tf ) in that sentence and the inverse document

frequency (idf ) over all the sentences in the document. We go beyond using simple lexical

similarities and incorporate domain knowledge into our approach by finding the UMLS semantic

types of all the terms in each sentence using the MetaMap7 software package. The semantic

types represent broad categories of medical concepts (e.g., disease or syndrome, therapeutic or

preventative procedure). The intuition behind the use of semantic types, in addition to words, is

that similarity in semantic types between a sentence and the query indicates that the sentence

contains the same type of information as the query. Thus, using the UMLS metathesaurus in

MetaMap, we are able to allow fuzzy matches between medical terms in si j kx and qi when

computing overlap scores. We, therefore, also compute the tf and idf measures for the semantic

types in si j x . Finally, we generate vectors for each sentence using the tf×idf values for all

pre-processed words and semantic types.

During extraction, for the selection of the first sentence (tn = 1), we compute the similarity of

each candidate si j kx with the associated qi , using the abovementioned vector representations for

each. The score assigned is equal to the cosine similarity of the vectors:

SI Msi j kx =CosSi m(si j kx , qi ) (5.8)

where CosSi m() is the cosine similarity function defined above.

To score candidate sentences for the following two summary sentences (tn = 2 or tn = 3), we

use MMR, which was introduced in page 39 and is defined by the following equation:

M MRsi j kx =λ(CosSi m(si j kx , qi ))

− (1−λ)maxsc∈Ssel (CosSi m(si j kx , sc ))
(5.9)

7http://metamap.nlm.nih.gov. Accessed on 26th May, 2014.
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where CosSi m() is the same cosine similarity function as before, si j kx is the candidate sentence,

Ssel is the set of sentences already selected to be in the summary, and sc is an already selected

sentence. As the equation shows, when using MMR, the highest similarity score that si j kx has

with any sc (an already selected sentence), is subtracted from the similarity score that si j kx has

with qi . The MMR score is therefore highest for sentences that are similar to the query while at

the same time distinct from all other previously selected sentences. The λ parameter determines

the penalty amount, with larger values favouring query similarity and smaller values favouring

diversity among chosen sentences.8

Sentence Type Related Statistics

Our analysis of the human-generated summaries (li j k) in RT R AI N shows that the summaries

combine various types of information, such as the types of studies, the subjects involved, the

design of the studies, and importantly, outcome information that are relevant to the questions.

Our analysis also suggests that the sentences in a medical abstract can be roughly classified into

categories that define their types. For example, a sentence may talk about the aim or intent of a

study (generally at the beginning of the abstract), about the subjects involved, or the outcomes

presented in the study. In our scoring mechanism, we attempt to incorporate information relating

to the type of content present in a sentence. More specifically, we attempt to classify the type for

each sentence, and assign scores to each sentence based on their types.

The first step to generate the scores associated with this metric is to categorise the sentences in

our corpus. We apply the scheme proposed by Kim et al. [2011] to classify all the sentences of

the abstracts in our corpus into PIBOSO (Population, Intervention, Background, Other, Study,

Outcome) elements. The PIBOSO elements are a variant of the PICO elements [Richardson

et al., 1995], which were initially proposed for specifying the four important components of a

clinical question. Kim et al. [2011] also propose a machine learning approach for automatically

classifying sentences in medical abstracts into the PIBOSO classes. In their approach, the authors

use Conditional Random Fields (CRF) [Sutton and McCallum, 2007] as the learning algorithm

and show that the approach works particularly well for structured abstracts. We attempt to build a

more robust classification approach for the sentences.

In our approach, we divide the multi-class classification problem to six binary classification

tasks, and apply one-vs-all classification for each. Given the features associated with a sentence,

each classification task attempts to determine if the sentence belongs to one of the six PIBOSO

categories and assigns a probability value to the sentence. If, for a category C, the probability

assigned to a sentence by the classifier is greater than 0.5, C is considered to be a label for that

8We have also attempted to perform the sentence selection process in reverse (i.e., selecting the last target sentence
first). The difference in performance was insignificant.
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sentence. If, for a sentence, the probability of C = Other is greater than all the other probabilities,

the sentence is labeled as Other.

To evaluate the performance of our sentence classification approach relative to the one proposed

by Kim et al. [2011] and other baselines, we use the same corpus as the original authors of

PIBOSO, and divide the corpus into two sets: training (800 abstracts) and evaluation (200

abstracts). We perform 10-fold cross validations on the training set and use it to optimise specific

parameters of our SVMs. We use the 200 unseen abstracts to test the performance of our SVMs.

One advantage of formulating the problem as a set of binary classification problems is that we

can customise the features to each classification task. This means that if there are features that

are particularly useful for identifying a specific class only, we can use those features for the

classification task involving that class, and leave them out if they are not useful for the other

classes. We apply a class-specific feature set for the classification of Outcome sentences, which

improves performance for this class.

We run MetaMap on the abstract texts to identify the medical concepts and their categories. Each

medical term is assigned a Concept Unique Identifier (CUI) that remains unique for different

lexical representations of the same concept (e.g., high blood pressure and hypertension). Each

medical concept is assigned a CUI and one or more semantic types by MetaMap. MetaMap also

contains the MedPost/SKR parts of speech (POS) tagger, which we used to annotate each word

in the data set. We further preprocess the text by lowercasing all terms, removing stop words

and stemming the words using the Porter stemmer provided by the NLTK9 Natural Language

Processing toolkit. The following is a description of the features we use for the classification

task:

Lexical Features. We use word n-grams as our first feature set. We have experimented with

n-grams of various lengths (up to n = 4). Our experiments on the training set show that n-grams

may be useful up to tri-grams (e.g., n = 1, 2, and 3). We also add another feature set which

consists of the n-grams along with the Part-Of-Speech tags for each token.

Structural Features. We use three structural features from our data set: sentence positions,

sentence lengths, and section headings. The position of a sentence provides useful information

about its category: a sentence towards the end of a document is much more likely to be an

Outcome sentence than a Background sentence. We use both relative and absolute sentence

positions as features. For structured abstracts, we use the section headings as a feature set.

Section headings represent the themes of different parts of the abstracts and, therefore, provide

key information about the contents of sentences belonging to the associated sections. For each

sentence, we add a feature which specifies the heading of the section to which a sentence belongs

9nltk.org/
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(if any). Our third feature in this category is the sentence length, in terms of number of words.

Although previously unused for this task, our analysis show that lengths of sentences can provide

useful information for specific classes.

Domain-specific Semantic Features. We incorporate domain-specific information by using the

UMLS CUIs and semantic types as features. For each sentence, all the semantic types and CUIs

associated with the terms in that sentence are used as features in a bag-of-words fashion (i.e.,

ordering of terms is not taken into account).

Sequential Features. Kim et al. [2011] and Verbeke et al. [2012] both show the importance of

sequential information for this classification task. Kim et al. [2011] argue that sentence level

sequential information can be valuable for this task, since sentences for a particular subtopic (e.g.,

Background) typically occur sequentially as a group and do not tend to repeat in later context.

As such, for a sentence, incorporating information from surrounding sentences is likely to be

useful for classification. Guided by the experimental results presented in Kim et al. [2011], we

add, to each sentence, the preprocessed n-grams (n = 1, 2, and 3) of the previous sentences. We

have experimented by including up to three previous sentences but found that only two previous

sentences are useful (the second previous sentence may only be very marginally useful).

Class-specific Features. We explore the use of class-specific features for the Outcome class only.

We incorporate a set of cue phrases from Niu [2007] that are used to identify sentences presenting

outcomes. In the Outcome classification task, the count of those specific cue phrases present in a

sentence is added as a feature.

PIBOSO Classification Accuracy
To execute the learning and classification tasks, we use the LibSVM10 implementation for SVMs.

We use an RBF kernel and optimise the c parameter using 10-fold cross validation over the

training set. Table 5.1 presents the F-scores for each class for the 10-fold cross validations (CV)

over the training set, and over the evaluation set. F-scores for both structured and unstructured

abstracts are shown, along with the class frequencies. Our training data set contains 304 structured

abstracts and 496 unstructured abstracts, while the evaluation set contains 80 structured and

120 unstructured abstracts. The table enables us to compare our results with those obtained

by Kim et al. [2011] and Verbeke et al. [2012] – two benchmark systems for this task. It can

be seen that the micro-averaged F-scores of our system are comparable to both the benchmark

systems, and that our system tends to perform better for the less-frequent classes (e.g., study

design). The F-scores for our 10-fold cross validations for training and evaluation sets values

are comparable for frequent classes (e.g., outcome). However, for low-frequency classes, the

F-scores vary more between our training and evaluation sets. This can be attributed to the small

10http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed on 26th May, 2014.
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number of instances available, and also the low agreement among human annotators for these

classes, as depicted by Kim et al. [2011]. Importantly, our approach almost invariably performs

better than both benchmark systems for unstructured abstracts, illustrating its low reliance on the

discourse structure of documents. Notably, our system performs better despite using only 800

abstracts for the 10-fold cross validation task, compared to the benchmark systems’ use of all

1,000 abstracts. We also empirically verified that our system outperforms other similar baselines.

A baseline with a good performance is a multi-class SVM classifier with the same features. It

achieves an overall micro-averaged F-score of 0.752, compared to our system’s micro-averaged

F-score of 0.766. Our sentence classification system participated in the 2012 ALTA shared task11

and achieved second position.

Class 10-fold CV Eval. Set Kim et al. Verbeke et al. Class Freq.
S U S U S U S U

Population 45.0 59.9 51.8 54.0 56.3 39.8 35.6 21.5 809
Intervention 29.8 38.9 27.2 24.7 20.3 12.9 26.1 16.1 687
Background 85.4 75.8 83.4 73.6 81.8 68.5 86.2 76.9 2,557
Outcome 91.1 81.3 90.8 80.3 92.3 72.9 93.0 77.7 4,523
Study 52.6 60.3 59.6 46.1 43.9 4.40 45.5 6.67 233
Other 87.7 48.4 88.2 40.6 70.0 24.3 88.0 24.4 3,396

Micro-average 84.1 72.6 84.6 71.6 80.9 66.9 84.3 67.1

Table 5.1: Classification F-scores and their micro-averages for each of the 6 classes. Scores for
structured (S) and unstructured (U) abstracts are shown separately for each class.

We classify all the sentences from the abstracts in our corpus using this approach, due to its

good performance on the sample annotated data. Classification of all the sentences allows us

to further verify our claim about the contents of the human-generated summaries. Consider

the human-generated summary shown in Figure 5.3. The figure shows the best three sentence

summary corresponding to the human-generated summary, with their PIBOSO classifications. It

can be seen that the first sentence of the three sentence summary is classified as Population, and

the last two sentences are classified as Outcome by our system.

To apply the sentence type information in summarisation, we analyse the distributions of these

PIBOSO elements in RT R AI N and SBEST . Our target is to use these distributions to make

probability estimates and improve the content of our summaries. We begin by generating five

frequency distributions of PIBOSO elements:

• for the set of all sentences in the training set (ST R AI N ) (1);

• for all best sentences of the training set (SBEST ) (2);

11http://www.alta.asn.au/events/sharedtask2012/. Accessed on 26th May, 2014.
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Question:
What drugs are best for bipolar depression?

Human-generated Summary:
In an RCT, 509 patients were randomized to double-blind treatment with quetiapine
(300 or 600 mg/day) or placebo and assessed weekly with the MADRS and
Hamilton Depression Rating Scale (HDRS). Improvements in mean HDRS scores
were greater with both quetiapine doses than with placebo (P < .001). Clinical
effect sizes were moderate at week 8 (0.61 at 300 mg/day and 0.54 at 600 mg/day),
although dose titration effects were not established.

The three best sentences:

1. This study evaluated the efficacy and tolerability of quetiapine monotherapy
for depressive episodes in patients with bipolar I or II disorder (Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition) who were randomized
to 8 weeks of double-blind treatment with quetiapine (300 or 600 mg/d; once
daily, evening dosing) or placebo. (Population)

2. Therapeutic effect sizes at Week 8 were 0.61 and 0.54 for quetiapine 300 and
600 mg/d, respectively. (Outcome)

3. This study demonstrates that quetiapine monotherapy is an effective and well-
tolerated treatment for depressive episodes in bipolar disorder, confirming the
results observed from a previous study. (Outcome)

[PubMed ID: 17110817]

Figure 5.3: A human-generated summary and the three sentences from SBEST associated with the
summary. The PIBOSO classification of the sentences are shown in parentheses.

• for all ‘first’ sentences from the best sentences (SBEST,1) (3);

• for all ‘second’ sentences from the best sentences (SBEST,2) (4); and

• for all the ‘last’ sentences from the best sentences (SBEST,3) (5).

We normalise all the frequency distributions by dividing each bin value by the sum of all the bin

values for that distribution (as shown in equation 5.4). The normalised frequency distributions

are shown in Figure 5.4.

The frequency distributions indicate what content from the source texts are generally included

in the summary. It can be seen that the proportion of Population, Intervention and Background
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Figure 5.4: Normalised frequency distributions of PIBOSO elements over the whole training
set, the best sentences, the first sentences of the best sentences, the second sentences of the best
sentences, and the last sentences of the best sentences.

sentences are higher for the frequency distribution (2) compared to frequency distribution (1)

and even higher for frequency distribution (3). This clearly indicates that these three types of

sentences have a high probability of being chosen as the first summary sentence. Sentences

classified as Other, in contrast, have a lower proportion for distribution (3) than distribution (1).

Outcome sentences have a very high proportion for distribution (2), which indicates that they

should be favoured when selecting sentences. However, the proportion of Outcome sentences for

the first sentences is quite low, indicating that they are relatively unlikely to be chosen as the first

sentence.

Using these frequency distributions, we can derive several likelihood estimates. For example,

the likelihood of an Outcome sentence being in the final summary (P (sOutcome |SBEST )) can be
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estimated by using its normalised frequency distribution in (2). Similarly, the proportion of

Outcome sentences in (1) provides an estimate of the likelihood for any sentence of being an

Outcome sentence (P (sOutcome |ST R AI N )). However, it is obvious that P (sOutcome |SBEST ) heavily

depends on P (sOutcome |ST R AI N ). That is, the higher the value of the latter, the higher is the value

of the former. Thus, using these probability estimates directly for scoring adds bias. So, we

derive an equation that mitigates this bias, as explained later.

Target-sentence-specific probability estimates can also be made based on these distributions.

For example, the likelihood of an Outcome sentence being chosen as the first target sentence

(P (sOutcome |tn = 1)) is estimated by the proportion of this type of sentences in distribution (3).

Thus, for each type of sentence, we can compute the likelihood estimates for that type of sentence

to be chosen as the first, second or third target sentence.

Taking into account the PIBOSO category of each candidate sentence, we derive two scores from

these frequency distributions — one that is dependent on the target sentence number and one that

is not.

The first score, which we call the Position Independent PIBOSO Score (PIPS) is computed as

follows:

PI PSsi j kxt =
P (st |SBEST )

P (st |ST R AI N )
(5.10)

where P (st |SBEST ) is the proportion for PIBOSO element t among the sentences in SBEST , and

P (st |ST R AI N ) is the proportion of that PIBOSO element among the sentences in ST R AI N . Thus,

this score is higher for sentences belonging to PIBOSO categories that have a higher proportion

among the best sentences compared to all sentences; and the larger the difference between the

two proportions, the higher the magnitude of this score. This score is independent of the target

sentence position.

The second score is computed as follows:

PDPSsi j kxt =
P (st |tn = x)

P (st |SBEST )
(5.11)

where P (st |SBEST ) is as before, and P (st |tn = x) is the proportion for PIBOSO element t in the

distribution (3), (4) or (5), depending on the value of tn. We call this the Position Dependent

PIBOSO Score (PDPS). Thus, when selecting the first sentence (i.e., tn = 1), a sentence classified

as Background is given a much higher score compared to a sentence classified as Outcome.

Similarly, when selecting the last sentence, Outcome sentences receive a much higher score

compared to sentences belonging to other categories.
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There can be a possible of six PIPS score as there are six types of sentences. We normalise these

scores by dividing each score by the sum of all six scores. Similarly, for each target sentence,

there can be a possible of six PDPS scores, giving a total of 18 possible scores (six for each tn).

We normalise these scores in the same way.

5.4.3 Incorporating Question Information in Extractive Summarisation

Our analyses suggest that the content of a summary is influenced by the type of question. For

example, the content of the answer to a question that asks about the treatment of a disease is

generally different to that of a question that asks about a diagnostic procedure. Answers to the

treatment type questions usually present invasive or non-invasive techniques such as drug therapy

or surgical intervention. In contrast, questions focusing on diagnostic procedures may mention

imaging techniques or tests, which are not associated with treatments. Our intent is to categorise

the questions in our corpus into types, analyse the medical concepts that are prevalent in the

answers to each of the question types, and devise a technique that rewards sentences by taking

into account the question type and the domain specific concepts present in the sentence. In this

manner, we add further query-focus to our summarisation technique. As such, we define two new

scores: STsi j kx and ASSOCsi j kx . STsi j kx is a score assigned to si j kx based on the UMLS semantic

types it contains and the type of qi , and ASSOCsi j kx is assigned based on the associations the

semantic types of si j kx have with the semantic types of qi .

Classifying Corpus Questions

We first classify the questions in our corpus into general medical topics. To do this, we apply the

approach proposed by Yu and Cao [2008]. The authors use twelve separate classes for the classi-

fication task. Using n-grams, UMLS semantic types and CUIs as features, the authors attempt

to solve the classification problem using supervised machine learning. A corpus, containing

over 4,500 questions that were manually classified into the twelve categories by practitioners,

is used by the authors for training the classifiers. The overall classification task is divided into

twelve separate binary classification tasks, each of which attempts to identify a specific type

of question. For each binary classification task, all questions belonging to the target category

are included along with an equal number of randomly selected questions belonging to other

categories. Performance is measured via 10-fold cross validation using several classifiers. In

their approach, the authors obtain best classification accuracies using SVMs. We set up our

classification technique and train our classifier using the same data set as Yu and Cao [2008] and

use it to classify the questions in our corpus. Evaluation of the classification approach via 10-fold

cross validation on their data set did not show any significant differences in performance. The

distribution of question types in our corpus, as estimated through their automatic classification, is
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Topic Frequency Proportion

Treatment and Prevention 193 0.423
Pharmacological 146 0.320
Management 135 0.296
Diagnosis 109 0.239
Test 73 0.160
Procedure 32 0.070
Prognosis 23 0.050
Physical Finding 23 0.050
Epidemiology 16 0.035
Etiology 10 0.022
History 7 0.015
Device 6 0.013

Table 5.2: Question types and their proportions in our corpus.

shown in Table 5.2. The table shows that Treatment and Prevention is the most frequent category,

while Device is the least frequent. Note that each question type can have multiple categories or

none. In our corpus, 216 questions have a single category, 167 have 2 categories, 61 have 3, and

9 have 4 categories. Three questions were not assigned any categories.

Using Semantic Types for Scoring

We use the categorised questions of our corpus to identify the UMLS semantic types that are

important for each type of question. We then apply an additional score to each sentence si j kx

based on the semantic types it contains.

Preliminary Analysis
To assess if incorporating question type information in our summarisation task is likely to

improve performance, we performed preliminary analysis on two question types: (i) Treatment

and Prevention, and (ii) Diagnosis. We first manually identified these two types of questions,

analysed the semantic types that frequently occur in the answers to these types of questions, and

identified a set of important semantic types for these two types of questions. In our analysis,

during the summarisation process, the sentences belonging to these two sets of questions received

an additional score. Each sentence, si j kx , received a score that is equal to the number occurrences

of the identified semantic types in that sentence divided by the total number of terms in that

sentence. We computed the ROUGE-L F-scores for these two sets of questions before and after

adding the semantic type scores and compared the performance. For Treatment and Prevention

questions, the ROUGE-L F-score increased from 0.1619 to 0.1644 once this new information was

incorporated. Similarly, for Diagnosis questions, the ROUGE-L F-score increased from 0.1343
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to 0.1362. The improvements indicate the positive effect this new score has on the extractive

summarisation task.

Scoring Approach
Similar to some of our previous scoring approaches, we rely heavily on frequency distributions

for generating a score based on the UMLS semantic types contained in a sentence. We commence

by generating a frequency distribution of all the UMLS semantic types present in the human-

generated summaries (li j k ) of RT R AI N , and normalise the frequency distribution as already shown

in equation 5.4 (page 135). This gives us a measure of how the semantic types are distributed over

all the different types of questions. Thus, we can say that the probability estimate of semantic type

P (st ) of being in the final summary is the same as the normalised frequency of st in the generated

distribution. Next, we generate separate frequency distributions of li j k for each question type.

This presents us with a measure of how the semantic types are distributed for each type of

question. Thus, for a question type t, the probability estimate of a semantic type P (st |t ) of being

in the final summary is the same as the normalised frequency st in the generated distribution

for t. Our intent is to identify semantic types that are more likely to occur for a specific type

of question than for other types of questions. If a semantic type st has a high frequency in the

distribution for question type t, but a low frequency in the overall distribution, it indicates that st

is an important semantic type for answers to all questions of type t.

Each semantic type for each type of question has a score. The score for a semantic type st for

question type t is calculated using the semtype_score() function which is as follows:

semt y pe_scor e(st , t ) = P (st |t )

P (st )
(5.12)

where P (st ) and P (st |t ) are computed as described in the previous paragraph. Thus, the sem-

type_score() is large for semantic types that are more frequent to question type t than the whole

training set and vice versa. Once all the semantic type scores are calculated for a specific question

type, the scores are normalised so that they sum to 1.

When scoring the sentences of an abstract, each sentence receives a score, STsi j kx , based on the

set of semantic types (SE MT Y PEsi j k ) it contains. This score is simply the sum of the normalised

semt y pe_scor e() for the semantic types contained in that sentence, as shown below:

STsi j kx =
∑

st∈SE MT Y PEsi j kx

semt y pe_scor e(st , t ) (5.13)

Since the scores are normalised, the maximum score that a sentence can have for a specific

question type is 1 (i.e., if the sentence contains all the possible semantic types), and the minimum

score is 0 (i.e., if the sentence contains no semantic types). We combine this score with the
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sentence level scores previously discussed.

Using Associations for Scoring

In our question-specific scoring approach, we apply another score to each sentence which we

call the association score. The intuition behind this score is that medical terms in the questions

generally have some relationship with the terms in the summary sentences. For example, if a

question has a term representing a disease and the summary contains a term that acts as the cure

for a disease, we can assume that there is a is_treated_by relationship between the disease term

and the cure terms. In the medical domain, the disease and cure terms are represented by the

semantic types. The UMLS semantic network also provides associations between semantic types.

For example, the dsyn semantic type (representing disease or syndrome) has a ‘treats’ relationship

with the phsu semantic type (representing pharmacological substance). We attempt to use these

associations to identify sentences in the source texts that are related to the associated questions.

We therefore assign a score to each sentence based on the associations its semantic types have

with the semantic types of the associated question. Figure 5.5 provides an example of a semantic

association between a question and a sentence semantic types. In the partial example provided,

the term fluoxetine has a prevents/treats association with the term migraine12. We identify and

utilise these associations for sentence scoring.

Figure 5.5: Example of association between question and summary sentence semantic types.
Only the partial sentence is shown for simplicity.

12Note that the full example has more associations with the question. We only show one association for simplicity.
In general, there are many associations between the question and sentence semantic types.
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Preliminary Analysis
Our preliminary analyses of the training set data suggested that a standard sentence generally

has a number of associations with the question, some of which may be useful while some may

not be useful. The extent to which an association between two semantic types is useful depends

largely on the information needs of the question, and hence the type of question. For example,

if the question is a Treatment and Prevention question, which generally asks for interventions

to diseases or syndromes, the association treats appears to be a very useful association. Such

associations are very likely to occur frequently in Treatment and Prevention questions but not so

frequently in some other types of questions such as Diagnosis. As such, the importance of an

association varies with the type of question. In our approach, we attempt to identify the important

associations for each type of question, score sentences based on the associations they have with

the questions and use that score as part of the sentence ranking process.

Identifying Important Associations
To identify important associations for each type of question (e.g., Treatment and Prevention),

we commence by identifying two sets of semantic types for each type of question: (i) important

question semantic types and (ii) important answer semantic types. (i) is identified from the

questions in RT R AI N , while (ii) is identified from the human-generated summaries (li j k) in

RT R AI N . We apply an approach that is similar to the one we use to identify the semantic type

scores explained in the previous subsection. Ideally, for each question type, we want to identify

semantic types that occur with high frequency for that type of question, while not so frequently

for others. So, to identify (i), we compute semantic type frequency distributions for each type of

question in RT R AI N . At the same time, we compute the semantic type frequency distributions

for the set of all other question types combined. We normalise both sets of distributions so that

all the relative frequencies sum to 1. To ensure that our distribution does not contain any rarely

occurring semantic types, we remove those semantic types that have relative frequencies below a

given threshold (in our case, we empirically choose 0.01 as the threshold, which ensures that all

the semantic types that are used constitute at least 1% of all the semantic types for that category).

We compute the importance of each semantic type for a specific question type, by dividing its

relative frequency for that question type by its relative frequency for all other question types.

Finally, certain semantic types that occur frequently but are not useful for our task are removed

via manual screening. For example, the qnco semantic type (quantitative concept) represents

numbers which occur quite frequently but are generally not useful for our task. Appendix B

presents the important semantic types for each question category.

The semantic types for (ii) are identified in an identical fashion. When identifying these semantic

types, the associations (if any) between the question semantic types and the answer semantic

types are not taken into account. Once both sets of semantic types are identified, we study
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the important associations that exist within a question type by applying yet another frequency

distribution. For each question type t, we compute a frequency distribution of all the associations

between the important semantic types appearing in each question and the important semantic

types in the corresponding answers using the UMLS semantic network.

Computing Sentence Association Scores
We normalise the association frequency distributions to obtain relative frequencies that sum to 1.

Given a question qi of type t, the probability estimate of the answer to that question having an

association assoc is the relative frequency of assoc in the association frequency distribution for

t. When scoring each sentence si j kx , we identify the set of all associations (ASsi j kx ) the sentence

has with the question, find the relative frequencies of the associations in the association frequency

distributions and sum the relative frequencies. We use the function assoc_ f r eq(assoc, t ), which,

given an association type and a question type, computes the relative frequency of assoc for t.

The score assigned to the sentence is the sum of the relative frequencies, normalised by dividing

the value by the total number of unique semantic types present in the question and the sentence.

For questions that are assigned multiple types, the association frequency distributions for all the

types are combined and normalised before computing sentence scores. The following equation

summarises the scoring mechanism, which is similar to the jaccard similarity measure (shown in

equation 5.16):

ASSOCsi j kx =
∑

assoc∈ASsi j kx

assoc_ f r eq(assoc, t )

|stqi ∪ stsi j kx |
(5.14)

where stqi and stsi j kx represent the semantic types present in the question and the sentence being

scored respectively, and ASSOCsi j kx is the score assigned to the sentence based on the associations

present. This score is combined with the previously described scores when performing the

summarisation.

5.4.4 Combining Statistics for Sentence Extraction

Table 5.3 provides a summary of the features we use for the summarisation task. In the table,

the Target-sentence-specific column indicates if the feature generates scores specific to the target

sentences, the Query-focus column indicates if the feature incorporates information from the

query, and the column Domain-specific information indicates if the feature incorporates domain

knowledge in some way.

151



Chapter 5. Single-document, Query-focused Text Summarisation

Feature Target-sentence-specific? Query-focus? Domain-specific Information?

Relative Position yes no no
Length no no no
PIPS no no yes
PDPS yes no yes
MMR yes yes yes
Semantic Type no yes yes
Association no yes yes

Table 5.3: Summary of the features used for the summarisation task.

We use the following Edmundsonian equation to give the overall score for a sentence si j kxt :

SCOREsi j kxt =αRPsi j kxt +βLE Nsi j kxt +γPI PSsi j kxt +δPDPSsi j kxt

+εM MRsi j kxt +ζSTsi j kxt +ηASSOCsi j kxt

(5.15)

where SCOREsi j kxt is the score for a candidate sentence si j kxt , and ijk represents the document

number, x represents the sentence position, and t represents the type of the sentence. SCOREsi j kxt

is calculated as the weighted sum of the individual scores. Note that when extracting the first

sentence, we replace the MMR score with the cosine similarity score in the equation. In the case

of ties, the sentence with greater length is chosen.

The weights associated with the scores let us modify their contributions towards the overall score.

To automatically find good approximations for optimal values of the weights (α, β, γ, δ, ε, ζ and

η), and the λ parameter in MMR, we perform a grid search through all values from 0.0 to 1.0

using step sizes of 0.1. Our intent is to find a combination of weights that increases the chances of

selecting the sentences from an abstract that belong to SBEST . Therefore, for each combination of

weights obtained during the exhaustive search, we compute the recall values for the first, second

and last sentences over the whole training set. The combination producing the best combined

recall is chosen.13

5.4.5 Alternative Sentence Weighting

In addition to applying the previously mentioned approach involving an exhaustive search over

the training set to learn weights for equation 5.15, we apply an alternative regression based

approach for comparison. In this approach, separate weights are learned for each target sentence

13The grid search involves 108 computations and as a result it requires a large amount of computation time. However,
it only requires to be run once to identify the best weights.
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System α β γ δ ε λ ζ η

QSpec (grid) 0.8 0.5 0.3 0.2 1.0 0.6 1.0 0.3

Regression (first sent.) 0.000 0.420 0.044 0.019 0.073 0.600 0.130 0.052
Regression (second sent.) 0.001 0.016 0.035 0.074 0.019 0.600 0.300 0.084
Regression (third sent.) 0.003 0.008 0.005 0.006 0.040 0.600 0.026 0.071

Table 5.4: Feature weights for different versions of our extractive summarisation system.

using an SVM regression algorithm. In this approach, for each sentence, all the abovementioned

scores are derived (taking into account the number of the target sentence) along with an additional

score for the degree of overlap between the sentence and the associated human summary (li j k).

Our intuition is that the higher the overlap score, the more likely is the sentence to be in the final

summary. The target, therefore, is to identify weights that maximise the overall overlap scores

via regression. The overlap score is calculated using the jaccard similarity measure given as:

j accar d_si mi l ar i t y(Si ,Sh) = |Si ∩Sh |
|Si ∪Sh |

(5.16)

where Si is a term vector from sentence i of source document S, and Sh is the term vector

representing the human summary. Table 5.4 shows the weights used in our two scoring approaches.

Note that when computing the weights via regression, each target sentence selection will apply

different weights. We could do the same with our grid search technique, but choose to use a

single set of weights for simplicity.

5.5 Extractive Summarisation Evaluation

We evaluate our approach automatically using the ROUGE evaluation tool. We are interested

in assessing the quality of the ROUGE-L F-scores generated by our system relative to a set of

baselines. Our system summaries and the baseline summaries are all evaluated by comparing

with the associated human-generated summaries. The summaries we generate are not restricted

by word limits. It is therefore possible to have very long sentences in the summaries. Long

sentences are likely to have high ROUGE-L recall scores since they are more likely to cover more

terms that are present in the human summaries. At the same time, they are likely to have more

irrelevant content as well and, thus, have low precision scores. We are interested in generating

summaries that have high content coverage and at the same time are not extremely long. For this

reason, we use F-scores for summary quality comparisons.

Since we want to assess the relative performance of our system, we use a percentile-rank based

approach for evaluating the qualities of various ROUGE scores using the technique proposed
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by Ceylan et al. [2010]. To do this, we first generate the ROUGE-L F-scores for all possible

three sentence combinations from the abstracts in REV AL . For each abstract, we then generate

a histogram of all the three sentence ROUGE-L F-scores using 1,000 bins between 0 and 1.

We normalise the histograms using equation 5.4 and use the normalised distribution as an

approximation for the probability density function (pdf ) for the ROUGE-L F-scores of the

sentence combinations for the abstract.

The pdf s for all abstracts in the evaluation set are convolved together to generate a pdf for the

whole set (REV AL). We, however, use a slightly modified algorithm to the one presented by

Ceylan et al. [2010]. This is because we notice that, when using their approach, due to the large

number of computations involved, the final convolved pdf can be very slightly different based

on the ordering of the histograms during convolution. Our investigations suggest that the root

of this problem lies in the way floating point numbers are represented in computers. Since the

histogram generation and convolution operations involve millions of floating point computations,

it is not strange that, over the course of the convolution process, the final generated histogram

values are slightly different every time the ordering is changed. This variation is very minute, and

we address this issue by executing the convolution multiple times with different orderings and

then averaging the final pdf s to give a single pdf.

Figure 5.6 shows the pdf obtained for all abstracts in REV AL . The pdf shows the range of

possible scores an extractive summarisation system can have given this data set. The height of

the distribution at a specific score indicates the likeliness of a system of achieving that score.

The distribution is long-tailed, meaning that the scores for most of the extracts in the summary

space are clustered around the mean. This suggests that most systems are likely to produce scores

that are around the mean of the pdf. According to the distribution, the minimum score that a

summarisation system in this domain can have is 0.042 and the maximum is 0.255. The two ends

of the distribution are shown on Figure 5.6 via the short red lines. The longer red line shows

the score achieved by our system, and we will discuss this score later. However, 95% of the

scores will lie within a very small range — between the values 0.139 (approximate percentile

rank of 2.5%) and 0.169 (approximate percentile rank of 97.5%).

Using the probability distribution, the percentile rank for a ROUGE-L F-score (sc) can be

computed by finding the area bounded by the distribution curve to the left of sc. We compare the

relative performance of our system and various baselines (mentioned in the following section)

through the use of their percentile ranks.

5.5.1 Baselines

The baselines we use for comparison are as follows:
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Figure 5.6: The normalised histogram of ROUGE-L F-scores for all abstracts belonging to
REV AL .

Last three sentences.

The last sentences in a medical abstract usually present conclusions, and this has been used as a

baseline for summarisation tasks in this domain before [Lin and Demner-Fushman, 2007].

Last three PIBOSO outcome sentences.

This is comparable to the summarisation component used by Lin and Demner-Fushman [2007].

In our approach, there can be more than three conclusion sentences. Hence, we use the last

three14. If there are less than three outcome sentences, all outcome sentences are chosen along

with the last occurring non-outcome sentences.

Random.

Three sentences are randomly selected from each abstract.

First three sentences.

This is the baseline used in summarisation for various other domains, the most important being

the news domain. Although this baseline is unlikely to perform well in this domain, we are

interested in assessing its performance relative to our system and other baselines.

14For purely empirical reasons: we have compared this baseline against one that randomly chooses outcome
sentences. There is no significant difference in scores.
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All Outcomes.

All PIBOSO outcome sentences are chosen as the summary irrespective of the number of

sentences. There is no length restriction on the generated summary either.

Sentence position independent.
This is a similar approach to our system, but applying the same statistics for all target sentences.

The relative position is used as the score instead of (RPsi j kx ). This gives a higher score for later

sentences. There is no Position Dependent PIBOSO Score. Scores related to question types are

also not considered.

Naïve Bayes.

For this baseline, a Naïve Bayes classifier is trained to perform target-sentence-specific extractive

summarisation. Naïve Bayes classifiers are commonly used as baselines in standard classification

tasks, and therefore we wanted to compare our system with one that models the summarisation

task as a sentence classification problem and applies Naïve Bayes to solve it. A separate classifier

is trained for each target sentence using the abstracts in RT R AI N . The features used for each

sentence are: relative position, length, PIBOSO classification, cosine similarity with question,

all the question types for the associated question and the UMLS semantic types present in that

sentence. The summarisation task is modelled as a binary text classification problem. All the

sentences are divided into two classes: selected (meaning that the sentence is in the summary)

and not selected (meaning that the sentence is not in the summary).

When training the classifier for the first sentence selection (tn = 1), for each abstract, only the

sentence that is the first sentence in the three best sentences (SBEST ) for that abstract is given the

selected tag. All other sentences in the abstract are given the not selected tag and the classifier

is trained on this data. Once the classifier has been trained (for the first sentence selection), all

the sentences in (REV AL) are classified using this classifier. Since multiple or no sentences in a

single abstract may be classified as selected, we do not use the classifications of this classifier.

Instead, for each abstract, the sentence with the highest probability of being selected is chosen,

irrespective of its tag. Ties among sentences with identical probabilities are resolved by choosing

the one appearing latest in the document.

Identical approaches are used for the second and the last target sentence. For the latter classifiers,

the sentences already selected by previous classifiers are ignored.

SumBasic.

This is a simple summariser [Nenkova and Passonneau, 2005] that performs extractive summari-

sation by rewarding sentences that contain more frequently occurring non-stop words. Word-

frequency based summarisation approaches were very common primarily in early summarisation

research. Although we use various frequency distributions in our summarisation task, we do not
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actually reward sentences containing salient terms with high document frequencies. Therefore,

we are interested in comparing our system against one which uses frequency based measures. In

SumBasic, each sentence is assigned a score based on the number of high frequency words it

contains, and the top scoring sentence is selected.

Scor e(S) = ∑
w∈S

1

|S|PD (w) (5.17)

where PD (w) is the observed unigram probabilities obtained from the document D. The summary

is progressively built by adding the highest scoring sentence according to the above equation.

In order to discourage redundancy, the probabilities of the words in the selected sentence are

updated: P new
D = P ol d

D (w). Despite its simplicity, it has been shown to yield good results at the

DUC 2006 evaluation15.

FastSum (modified).
FastSum [Schilder and Kondadadi, 2008] is a fast query-focused multi-document summariser

based solely on word-frequency features of topics, documents, and clusters. This summarisation

system is designed for multi-document summarisation, and so we modify some of the features

to apply it to single-document summarisation. Each sentence is ranked using a linear equation

of scores based on various frequency measures. The weights for the features are learned by

a regression SVM. Since we apply the system to single-document summarisation, unlike the

original paper describing that work, we do not perform QR decomposition with pivoting for

reducing redundancy.

MEAD.

MEAD [Radev et al., 2004] is a platform (not a summarisation system) for multi-document

summarisation that provides various functionalities, including the generation of query-focused

summaries. We customised this platform according to our needs to make it suitable for our

domain. Since MEAD was initially designed for news summarisation, its position feature heavily

rewards sentences that appear earlier in the document. To make it suitable for our domain, we

reverse this default feature to make later sentences more likely to be chosen. We also relax the

sentence length related constraint used in the default version of MEAD. We add scores based on

sentence-query similarity, and tune several other parameters provided by the platform. We also

add additional scores for each sentence including the PIBOSO and query related scores. Thus,

while this customisation of MEAD does not resemble any existing summarisation system, it is a

baseline that shares most of the features as our system (except for a target-sentence-specific score

for the relative position and a length associated score), and therefore its performance is likely to

be similar to ours.

15http://www-nlpir.nist.gov/projects/duc/guidelines/2006.html. Accessed on 26th May, 2014.
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System F-Score 95% CI Percentile Rank (%)

Last Three 0.15482 0.151 - 0.158 55.9
Last Three Outcome 0.15920 0.155 - 0.163 74.2
Random 0.15251 0.149 - 0.156 46.1
First Three 0.13994 0.136 - 0.143 36.9
All Outcomes 0.15936 0.155 - 0.164 74.2
Position Independent 0.16019 0.157 - 0.164 78.1
Naïve Bayes 0.15551 0.152 - 0.159 55.9
SumBasic 0.15818 0.155 - 0.162 69.9
FastSum (modified) 0.15769 0.154 - 0.161 69.9
MEAD 0.16332 0.160 - 0.167 85.4

QSpec (without query types) 0.16627 0.162 - 0.170 94.3
QSpec 0.16780 0.164 - 0.172 96.8
QSpec (regression) 0.16479 0.161 - 0.169 92.5

Table 5.5: ROUGE F-scores, 95% confidence intervals and percentile ranks for our system and
several baselines.

5.5.2 Results

Table 5.5 presents the ROUGE-L F-scores for our system and the baselines, the 95% confidence

intervals (CI) for the F-scores as reported by ROUGE, and the percentile rank for each score.

Note that the ROUGE-L F-scores are generally much lower than F-scores for other tasks (e.g.,

text classification) because of the complexities of the summarisation tasks. In the table, QSpec

represents our system in its full implementation. QSpec outperforms all systems with a percentile

rank of 96.8%. It is, however, closely followed by a version of QSpec that does not use query type

information. Learning the weights via regression results in slight degradation of performance, but

is still better than the other systems. None of these three versions of our system are statistically

significantly better than each other. This shows that the use of statistics derived from our

specialised corpus adds a massive advantage for our summarisation system. This, in turn, justifies

the use of specialised corpora for such domain specific summarisation tasks.

As expected, random three sentence summaries produce ROUGE scores that are very close

to the centre of the distribution shown in Figure 5.6. Our customised MEAD summarisation

system is the only system that manages to have a score that does not lie below the lower CI

limit of the best performing system. This suggests that this summarisation platform has the

potential of being customised to restricted domains such as ours. Following MEAD, the next

best performing baseline is our Position Independent system. This is closely followed by the

Outcome-based systems, one of which is our implementation of the system proposed by Lin and

Demner-Fushman [2007]. Naïve Bayes, SumBasic and FastSum do not perform particularly well,
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and the baseline of the first three sentences has the worst performance. The poor performances of

SumBasic and FastSum indicate that word-frequency based approaches are perhaps not suited for

this domain.

Since we use 1,000 bins when generating the document histograms, our evaluation mechanism

does not differentiate between ROUGE scores beyond the third decimal place. Therefore, some

baselines have identical percentile ranks despite their ROUGE-L F-scores being different. Using

smaller bin sizes (i.e., larger number of bins) would give more accurate measures16. For our

analysis, however, we find this level of granularity sufficient. Our approach is also fast, since it

does not involve any time-consuming computation such as parsing. This is an important property

of our system and is in line with our intent of reducing the time needs of evidence-based medicine

practice. Figure 5.7 presents a sample extractive summary generated by QSpec along with the

associated human authored summary. A random sample of QSpec summaries can be found in

Appendix C.

Question: Are there big differences among beta-blockers in treating essential hypertension?

QSpec summary: Because the pathophysiology of hypertension differs in older and younger
patients, we designed this meta-analysis to clarify the efficacy of beta-blockers in different age
groups. In placebo-controlled trials, beta-blockers reduced major cardiovascular outcomes in
younger patients (risk ratio [RR] 0.86, 95% confidence interval [CI] 0.74-0.99, based on 794
events in 19 414 patients) but not in older patients (RR 0.89, 95% CI 0.75-1.05, based on 1115
events in 8019 patients). Beta-blockers should not be considered first-line therapy for older
hypertensive patients without another indication for these agents; however, in younger patients
beta-blockers are associated with a significant reduction in cardiovascular morbidity and mortality.

Human authored summary: A meta-analysis found that beta-blocker therapy in younger
patients (less than 60 years of age) is associated with a significant reduction in cardiovascular
morbidity and mortality. Researchers used data from 145,811 participants in 21 hypertension
trials, beta-blockers reduced major cardiovascular outcomes in younger patients (risk ratio=0.86;
95% CI, 0.74-0.99) but not in older patients (risk ratio=0.89; 95% CI, 0.75-1.05).

Figure 5.7: A sample 3-sentence, query-focused, extractive summary generated by QSpec.

Analysis of Individual Feature Contribution

To end this section, we provide a brief analysis of the individual features used for scoring and

their importance in our summarisation system. In order to assess the contribution of each feature
16The algorithm for convolving pdf s has a complexity of O(n3), and increasing the number of bins by a factor of

10 (i.e., to incorporate another decimal place) will increase the running time of the program by a factor of 1,000.
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for the final score, we performed two simple ablation experiments – (i) performing sentence

scoring using single features only, and (ii) performing sentence scoring by leaving out one

feature. Tables 5.6 and 5.7 present the ROUGE-L F-scores for both these experiments (i and ii

respectively) on the training set as well as the test set. From table 5.6, it can be observed that

all the single features scores indicate significant improvements over the score that is obtained

using no features (i.e., summaries are the first three sentences). All these improvements are

statistically significant, as reported by ROUGE. The scores for the test set are slightly higher

compared to those in the training set17, and the best performing feature for each of the two sets is

shown in boldface. Importantly also, none of the single feature scores are better than the score

obtained by the combination of features. The last row in table 5.6 presents the results when only

target-sentence-specific features are used (i.e., sentence position, PDPS, and MMR). It can be

seen that the combination of the three target-sentence-specific scores performs better than each of

the individual feature scores, but not as good as all the scores combined. The same is true for the

leave-one-out scores shown in table 5.7, although the scores are much higher than the individual

feature scores. None of the scores in table 5.7 are statistically significantly lower than the best

score obtained by combining these features, which indicates that the final score is not biased by

the influence of a single score. The lowest ROUGE-L F-scores are presented in bold-face, and

these show the largest drops in the ROUGE score when those features are removed. From the

two tables it can be seen that MMR and the question specific semantic type features appear to be

the most useful features. It must be mentioned here that the differences in performance numbers

between the best single feature system, the best leave-one-out feature system, and the best final

system are quite small. This happens because of the distribution of the ROUGE scores for all

possible summary combinations (i.e., all summary scores tend to lie around the mean score).

Thus, small differences in scores are likely to represent important differences in performance.

Manual analysis to compare the correlation between changes in summary scores and changes

in performance need to be performed for detailed evaluation of the features. However, such a

manual evaluation is outside the scope of this thesis.

5.6 Summary So Far

In this chapter, we addressed the first step of the two-step evidence-based summary generation

process. This first step involves generating single-document, query-focused summaries. We

modelled this first step as a query-focused, extractive summarisation problem with sentences

being the target extracts. Our target was to implement a summarisation technique that extracts

17It is interesting to observe that the test set scores are greater than the training set scores. Our investigations
revealed that this is because the training set ROUGE scores’ pdf is slightly shifted to the left compared to the test set.
As such, despite the slightly lower ROUGE scores for the training set, their percentile ranks are comparable to the
percentile ranks of the test set scores.
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Feature Training Set Test Set

None 0.13891 0.13994
Random 0.15251 0.15316
Relative Position 0.15301 0.15372
Length 0.15746 0.16066
Position Independent PIBOSO 0.15791 0.16204
Position Dependent PIBOSO 0.15497 0.15532
Question Specific Semantic Type 0.16091 0.16397
Question Specific Association 0.15657 0.15797
MMR and Similarity (λ= 0.0) 0.14882 0.14971
MMR and Similarity (λ= 0.5) 0.15698 0.16130
MMR and Similarity (λ= 1.0) 0.16127 0.16353

Target-sentence-specific features only 0.16281 0.16551

Table 5.6: Single feature scores for the training and evaluation sets.

Feature left out Training Set Test Set

Relative Position 0.16321 0.16643
Length 0.16476 0.16728
Position Independent PIBOSO 0.16365 0.16718
Position Dependent PIBOSO 0.16394 0.16693
Question Specific Semantic Type 0.16252 0.16485
Question Specific Association 0.16495 0.16730
MMR 0.16172 0.16546

Table 5.7: Leave-one-out scores for the training and evaluation sets.
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three sentences from source documents, based on the information needs of a given query, such

that the extracted sentences closely resemble human-authored summaries.

We used a corpus that is specifically designed for evidence-based summarisation for our analysis

and summarisation approach. We divided the corpus into two parts — one for obtaining statistics

and the other for evaluation. From the source documents in the training set, we generated the

best three sentence summaries. We then used these best sentences and also the human-generated

summaries associated with each source document to compute various statistics which we used

for summarisation. We used features such as relative sentence positions, sentences lengths, the

PIBOSO classifications of sentences, similarities between sentences and the associated queries,

the semantic types present in sentences, and the semantic associations between sentences and the

associated queries. We showed that using carefully extracted statistics from a specialised corpus

significantly improves summarisation performance. We applied a strategy, which we call target-

sentence-specific summarisation. Using this strategy, we applied different statistics for different

target summary sentences. We also modified the MMR approach to enable concept matches, and

significantly utilised available domain knowledge . Furthermore, we showed that customising the

summarisation technique to the type of question improves summarisation performance.

We used the automatic summary evaluation tool ROUGE to evaluate our extractive summaries

relative to the human-generated summaries. We compared our summarisation system to various

established baselines for this domain using a percentile-rank based approach. The best ROUGE-L

F-score obtained by our system has a percentile rank of 96.8%, which is a statistically significant

improvement over the best performing baseline system.

Based on the findings presented in this chapter, we make several conclusions. First of all, our

results clearly show that an extractive summarisation approach such as ours can be effectively

used for selecting informative content from source documents. The contents may be processed

later for multi-document summarisation and generation of bottom-line answers. Secondly, for

a domain as complex as the medical domain, it is crucial to incorporate domain knowledge.

We incorporated domain knowledge into our system in various ways — either directly (e.g.,

through the use of MetaMap), or indirectly (e.g., through the classification of sentences into

PIBOSO elements) — and showed its importance in the summarisation task. Thirdly, the use of

target-sentence-specific summarisation can improve the performance of a summarisation system

by allowing the selection of diverse content. This approach is easily portable, and it will be

interesting to see how it performs in other domains. Finally, and perhaps most importantly, we

conclude that the use of specialised corpora is vital for such domain-specific summarisation tasks.

Our summarisation approach is extractive, and we do not take into consideration factors such

as summary coherence. Instead, our focus is to select informative sentences that can be used to
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generate bottom-line answers. Chapter 6 describes our research work on generating bottom-line

summaries by utilising the single-document summaries that we generate automatically.
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6 Towards Multi-document Summarisa-
tion

6.1 Introduction

As we have noted, our model to automatically generate evidence-based answers to clinical queries

involves two processes: (i) assessing the quality of evidence and expressing it through the use

of evidence grades, and (ii) summarising the contents of medical documents to generate short,

evidence-based answers. In Chapter 4, we explored the problem of automatically generating of

evidence grades. Using a supervised machine learning model, we first analysed various features

and their usefulness in predicting evidence grades, and we proposed an approach for sequentially

combining high precision classifiers to minimise errors when predicting evidence grades.

In Chapter 5, we focused our attention to automatic text summarisation and attempted to perform

query-focused, extractive, single-document text summarisation. By studying the human-authored,

single-document summaries in our corpus, we analysed the contents of evidence-based summaries.

Our analysis revealed that the summaries tend to contain diverse information from the source

articles, including some background and outcome information. Employing a simple extractive

summarisation model based on the Edmundsonian Paradigm, we explored possible approaches

by which distinct text nuggets containing the most pertinent information can be extracted. We

showed that the performance of summarisation systems in a specialised domain such as ours

can significantly improve if statistics are derived from a specialised corpus, and through the

incorporation of various domain-specific information. In our approach, we incorporated domain-

specific information in various ways, including the use of semantic similarity with lexical

similarity, the incorporation of semantic types, semantic associations between domain-specific

concepts, sentence types, and question types. We also applied target-sentence-specific statistics,

an approach by which the same sentence may get a different score depending on the target

summary sentence number. We evaluated our approach automatically using percentile-ranks

of ROUGE scores and showed that our system produces content-rich summaries and performs
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significantly better than various baseline and benchmark approaches.

In this chapter, we follow on from the research discussed in Chapter 5 and examine the final

component of our summarisation task: the generation of bottom-line summaries. The bottom-line

summaries are generally produced via the synthesis of information from multiple documents, and

in our work, we attempt to produce them from the query-focused single-document summaries

produced by the approach described in Chapter 5. In particular, this chapter focuses on the

exploration of the following two aspects of bottom-line summary generation:

i the possibility of generating bottom-line summaries from the single-document summaries,

instead of full source abstracts; and

ii possible approaches that can be applied for the generation of bottom-line summaries from

the single-document extracts.

It must be mentioned that our intent is not to produce complete multi-document summaries, but to

explore possible approaches that can be applied for the task. We first perform some experiments

to assess how much useful information from source abstracts is retained by various types of

summaries. The experiments let us quantify the limits of a bottom-line summary generator that

relies on single-document summaries as inputs. The experiments also enable us to analyse how

much information is lost during the single-document summary generation process. We introduce

several variants of coverage scores, and we use them to analyse the extent to which the contents

of bottom-line summaries are contained in source texts of various granularities, including full

abstracts, human-authored summaries, and system generated summaries. Our analyses show

that good summaries tend to contain important information associated with queries, but in a

much compressed manner compared to the full abstracts. More specifically, we apply a variety of

measures in our coverage analysis to show that content-rich summaries contain lower amounts of

noisy information compared to full source abstracts. We argue that it may not only be possible

but also useful to use the single-document summaries instead of full abstracts for the generation

of bottom-line recommendations.

Following our coverage analysis work, we investigate the applicability of two genres of abstractive

summarisation approaches for the task of bottom-line summary generation from single-document

summaries. Our investigations suggest that redundancy-reliant approaches such as Sentence

Fusion [Barzilay and McKeown, 2005] may not be ideal for multi-document summarisation in

our domain, because of the low degrees of similarities/redundancies among sentences in this

domain. We also explore automatic sentence level, context-sensitive polarity classification as a

possible approach for the generation of bottom-line summaries. We show that automatic polarity

classification, representing the class of sentiment analysis/opinion summarisation approaches
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that use supervised machine learning, is a promising approach for the generation of bottom-

line summaries. We select a subset of summary sentences from the corpus, manually annotate

the contexts and context-sensitive polarities, and, using a combination of context-sensitive and

context-free features, show that high accuracies can be obtained using a supervised classification

model.

The rest of this chapter is divided into two broad sections. In Section 6.2, we describe our

coverage analysis work and show that our single-document summaries provide relatively good

coverage of the bottom-line summaries, compared to the full abstracts. In Section 6.3, we analyse

the applicability of sentence fusion and sentence level polarity classification as two candidate

approaches for the generation of abstractive, bottom-line, evidence-based summaries, using

automatically generated single-document summaries as input. In Section 6.4, we conclude the

chapter and provide a discussion of the possible future steps required to produce fully automatic,

abstractive, bottom-line summaries to answer questions with evidence.

6.2 Coverage Analysis

As we explained earlier in this thesis, to generate evidence-based answers to clinical queries,

practitioners utilise the best available clinical evidence along with their own expertise. However,

there is no measure of the extent to which human experts incorporate their own expertise in

the evidence-based answer generation process. Our intent is to use the query-focused, single-

document summarisation approach described in Chapter 5, as a content selection step for the

bottom-line summary generation process. Although we have shown that our summarisation

approach in Chapter 5 generates high quality summaries, we have no measure of how much

information is lost during summary generation. The experiments described in this section serve

two purposes:

1. They help make estimations about the extent to which human experts rely on the informa-

tion presented in clinical texts to generate evidence-based answers.

2. They provide evidence supporting the use of single-document summaries to generate

bottom-line answers. Thus, our overall summarisation approach can be viewed as a two-

step process, with the single-document summarisation approach being the content-selection

step.

To perform this analysis, we compare bottom-line evidence-based summaries (ai ) to the as-

sociated set of source texts (Di ), and the associated set of human-generated, query-focused,

single-document summaries (Li ) of the source texts. This allows us to determine if good single-

document summaries contain sufficient content, from source texts, to be used for the generation of
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multi-document, bottom-line summaries. The human-authored summaries, in this case, represent

gold abstractive summaries of the source texts. We also study the single-document extractive

summaries generated by various summarisation systems, and compare their performance relative

to source texts and human-generated summaries. In addition to this analysis, we attempt to make

estimations about the extent to which the core contents of the bottom-line summaries come from

the source texts. Such an analysis is of paramount importance in this domain because, if only a

small proportion of the bottom-line summaries contain information from the source articles, we

can assume that the summaries are almost entirely generated from specialised human knowledge,

making it impossible to perform text-to-text summarisation automatically in this domain without

intensive use of domain-specific knowledge.

6.2.1 Coverage Scores

Our first analytical experiments attempt to estimate the extent to which information in the set of

bottom-line summaries, A, is contained in the source document abstracts, Da , associated with

each summary (a). This gives us a measure of the extent to which extra information are added to

the final summaries by the authors of the articles from which the corpus has been built. For this,

we define a set of scores, which we call coverage scores. The greater the score, the better the

bottom-line summary coverage. Consider a bottom-line summary a, which contains a set of m

terms, and the associated source documents, Da . The first variant of the coverage scores that we

use is a term-based measure and is given by the following equation:

Cover ag e(a,Da) = |a ∩Da |
m

(6.1)

where |a ∩Da | represents the number of terms common to a bottom-line summary (a) and

the associated source texts (Da). We first preprocess the text by removing stop words and

punctuations, lowercasing all terms and stemming the terms using the Porter stemmer [Porter,

1980]. Term tokenisation is performed using the word tokeniser of the NLTK1 toolbox. Such a

term-level coverage measurement, however, often fails to identify matches in the case of medical

concepts that may be represented by multiple distinct terms. An example of this is the term high

blood pressure. In our corpus, this term has various other representations including hypertension

and hbp.

Figure 6.1 illustrates term-level coverage with an example of a bottom-line summary and one of

the associated detailed justifications (human-authored summary). The common terms between

1nltk.org
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Question:
What medications are effective for treating symptoms of premenstrual syndrome PMS?

Bottom-line answer:
Selective serotonin reuptake inhibitors (SSRIs) and some other antidepressants are more effective,
but are also more costly and more likely to cause side effects or treatment dropout.

Summary:
Among SSRIs, fluoxetine 20 mg/d is well-studied and effective. Gonadotropin-releasing hormone
agonists may be effective, but troublesome anti-estrogenic side effects limit their utility. Estrogen
and progesterone add-back therapy to counter side effects further complicates this approach. The
gonadotropin inhibitor danazol has a high treatment dropout rate at higher doses 200-400 mg/d
continuously, but can be effective in individuals who are able to tolerate it.

Figure 6.1: Illustration of bottom-line summary terms covered in our term-level coverage compu-
tation.

the two summaries are shown in red. The bottom-line summary contains a total of 23 unique

terms, of which 10 are covered. Thus, using our equation above, this would give a coverage

score of 0.43. Note that, for this particular bottom-line summary, there are additional associated

human-authored single-documents summaries, which we do not show here for simplicity. We

do not remove stop words from the example for the same reason. The example also shows that,

although the terms ‘Selective serotonin reuptake inhibitors’ should be covered because they

represent the same concept as SSRI, our term-level coverage approach fails to detect this.

Incorporation of CUIs and Semantic Types

To address the issue of same concepts having distinct lexical representations, we identify the

semantic types and Concept Unique Identifiers (CUI) of all the terms in the corpus and incorporate

this information in our coverage computation. Using CUIs in the computation reduces the

dependence on direct string matching because distinct terms representing the same medical

concept have the same CUI. For example, all the different variants of the term high blood pressure

have the same CUI (C0020538). However, it is also possible for terms with different CUIs to

have the same underlying meaning in our corpus. For example, the terms [African] women (CUI:

C0043210) and African American (CUI:C008575) have different CUIs but have been used to

represent the same population group. The two terms have the same (UMLS) semantic type: popg

(population group), and this information may be used to match the two terms in our experiments.
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We use the MetaMap2 tool to automatically identify the CUIs and semantic types for all the text

in our corpus.

We introduce two variants of the coverage scores in addition to the term-level coverage computa-

tion. In our first variation, we use individual terms and CUIs; and in the second variation we use

terms, CUIs and semantic types. We apply a sequence of functions that, given a and Da , along

with the CUIs and semantic types of the terms in a and Da , compute a ∩ Da utilising all the

available information (i.e., terms, CUIs, semantic types). Term-based matching is first performed,

and the terms in a that are exactly matched by terms in Da are collected. Next, for the unmatched

terms in a, CUI matching is performed with the CUIs of Da . This ensures that different lexical

versions of the same concept are detected correctly. All the matched terms are added to the

covered terms collection. In our first variant, this value is used for |a ∩Da | in equation 6.1. For

the second variant, for terms that are still uncovered after CUI matching, semantic type matching

is performed, and the terms in a with matching semantic types are added to the covered terms

collection before computing the coverage score.

A problem with the use of semantic types in coverage score computation is that they are too

generic and produce many incorrect matches. For example, the terms pneumonia and heart failure

are two completely distinct concepts but have the same semantic type (disease or syndrome

(dsyn)). The use of semantic types, therefore, leads to incorrect matches, resulting in high

coverage scores. We still use semantic types along with terms and CUIs in our experiments

because their coverage scores give an idea of the coverage upper limits.

Figure 6.2 illustrates how the CUI and semantic type variants of the coverage scores are computed.

The figure shows the elements remaining after term-level coverage along with their CUIs. It

can be seen that the two lexical representations of SSRIs have the same CUI (C0162758) and

therefore, the terms representing this concept are added to the list of covered elements. After

the CUI-based matching, a total of 14 terms in the bottom-line summary are covered, and so the

new coverage score is 0.61. Finally, the figure also shows that two more terms are covered when

semantic type matching is performed (shown in red). This results in a total of 16 elements to

be covered, giving a coverage score of 0.70. The figure also illustrates the problem associated

with the semantic type variant of the coverage score; although danazol is not an antidepressant,

it belongs to the same semantic category as antidepressants (i.e., pharmacological substance

(phsu)), resulting in a false positive.

2http://metamap.nlm.nih.gov/. Accessed on 26th May, 2014.
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Text elements remaining after performing term-level coverage along with CUIs:
Selective serotonin reuptake inhibitors (C0162758), some, other, antidepressants (C0003289),
more, also, costly, likely (C0332148), cause (C1524003), or

Matching CUI(s) from human-authored summary:
SSRI (C0162758)

Text elements remaining after performing CUI-level coverage along with semantic types:
some, other, antidepressants (phsu), more, also, costly, likely (qlco), cause (cnce), or

Matching semantic type(s) from human-authored summary:
danazol (phsu), effective (qlco)

Final uncovered elements:
some, other, more, also, costly, cause, or

Figure 6.2: Illustration of elements covered in our CUI and semantic type variants of coverage
computation.

Concept Coverage

In an attempt to reduce the number of non-medical terms in our coverage score computation,

we introduce a fourth variant to our coverage scores which we call Concept Coverage (CC). We

noticed that, often, non-medical terms such as entities and numbers are the primary causes of

mismatch amongst different terms. This coverage score only takes into account the concepts

(CUIs) in a and Da . Referring to equation 6.1, m in this case represents the number of unique

CUIs in a, while |a ∩Da | is computed as a combination of direct CUI matches and similarity

measures among unmatched CUIs. That is, besides considering direct matches between CUIs, we

also consider similarities among concepts when performing this calculation. This is important

because often bottom-line summaries contain generic terms representing the more specific

concepts in the source texts (e.g., the generic term anti-depressant in the bottom-line summary

to represent paroxetine, amitriptyline and so on). The concept similarity between two concepts

gives a measure of their semantic relatedness or how close two concepts are within a specific

domain or ontology [Budanitsky and Hirst, 2006].

In our concept coverage computation, each CUI in a receives a score of 1.0 if it has an exact

match with the CUIs in Da . For each unmatched CUI in a, its concept similarity value with each

unmatched concept in Da is computed, and the maximum similarity value is chosen as the score
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for that concept. To compute the similarity between two concepts, we use the similarity measure

proposed by Jiang and Conrath [1997]. The authors apply a corpus-based method that works in

conjunction with lexical taxonomies to calculate semantic similarities between terms, and the

approach has been shown to agree well with human judgements. We use the implementation

provided by McInnes et al. [2009], and scale the scores so that they fall within the range [0.0,1.0),

with 0.0 indicating no match and 0.99 representing near perfect match (theoretically). The direct

match scores or maximum similarity scores of each CUI in a are added and divided by m to give

the final concept coverage score.

Comparison of Coverage Scores

Our intent is to determine the extent to which the contents of the bottom-line summaries in the

corpus are contained in source texts of different granularities. This gives us an estimate of the

information loss that occurs when source text is compressed by various compression factors.

More specifically, in our experiments, a (in equation 6.1) is always the bottom-line summary,

while for Da , we use the following variants:

i all the text from all the article abstracts associated with a (FullAbs),

ii all the text from all the human-authored, single-document summaries (from L) (HS),

iii all the text from all the single-document, three sentence extractive summaries, produced by

our system (QSpec), associated with a,

iv all the text from all the ideal three sentence extractive summaries associated with a

(IdealSum), and

v all the text from random three sentence extractive single-document summaries associated

with a (Random).

The IdealSum summaries are three sentence, single-document, extractive summaries that have

the highest ROUGE-L F-scores when compared with the human-generated single-document

summaries (l)3. Using these five different sets enables us to estimate the degradation, if any, in

coverage scores as the source text is compressed.

For each data set, we also compute their ROUGE-1 recall scores (after stemming and stop word

removal) with the bottom-line summaries, and compare these scores. This enables us to compare

the coverage of these data sets using another metric, in addition to the coverage scores.

3These summaries were produced by generating all three sentence combinations for each source text, and then
computing the ROUGE-L F-score for each combination. Further details about the generation of these summaries were
provided in Chapter 5.
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System T T & C T, C & ST CC

FullAbs 0.596 0.643 0.782 0.659
QSpec 0.502 0.546 0.683 ..
HS 0.595 0.630 0.737 0.644
IdealSum 0.468 0.511 0.654 ..
Random 0.403 0.451 0.594 ..

Table 6.1: Coverage scores for the five data sets with the bottom-line summaries. T = Terms, C
= CUIs, ST = Semantic Types, and CC = Concept Coverage.

6.2.2 Coverage Analysis Results and Evaluation

Table 6.1 shows that, when terms and CUIs are used, the source texts cover approximately 65% of

the summary texts, and incorporating semantic types takes the coverage score close to 80%. The

concept coverage scores are similar to the term and CUI (T & C) overlap scores. The analysis of

the uncovered components reveals a number of reasons behind coverage mismatches. First of all,

authors often prefer using generalised medical terms in the bottom-line summaries, while the

source texts contain more specific terms (e.g., antibiotics vs. penicillin). Incorporating semantic

types ensures coverage in such cases, but also leads to false matches. Secondly, MetaMap does

not have perfect word sense disambiguation accuracy [Plaza et al., 2011b] and often fails to

disambiguate terms correctly, causing variants of the same term to have different CUIs, and often

different semantic types. Thirdly, a large portion of the uncovered components consists of text

that improves the qualitative aspects of the summaries and do not represent important content. In

other words, most of the mismatches are due to generic content, rather than specific content. In

an analysis by Louis and Nenkova [2011] on news text, they showed that summaries, particularly

human-authored summaries, tend to contain significant amounts of generic information along

with specific information. If we consider the medical concepts in the summaries as specific

contents and the non-medical terms as generic contents, then it is not surprising that the texts of

all granularities contain significant amounts of generic information, which may be added or lost

during summarisation.

Table 6.1 reveals that the human-generated single-document summaries (HS) have almost identical

coverage scores to full source articles4. Figure 6.3 shows the distributions of the concept coverage

scores for the two sets, and it can be seen that the distributions are very similar. The coverage

scores obtained by the two summarisation systems (IdealSum and QSpec) also have high coverage

scores compared to the Random summaries. Interestingly, the QSpec summaries actually produce

slightly better coverage than the IdealSum summaries. Manual analysis shows that this can be

attributed to two reasons: (i) the three sentence summaries of our system tend to be slightly longer

4We only compute the concept coverage scores for the FullAbs and HS sets because of the extremely long running
time of the similarity measurement algorithm.
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Figure 6.3: Distributions for concept coverage scores.

and, (ii) they tend to be richer in terms of domain specific content. Random single-document

summaries fail to produce up to 60% coverage. Importantly, the table suggests that a significant

component of the bottom-line summaries does come from the information present in the medical

texts, thus making it theoretically possible to perform automatic summarisation to generate the

bottom-line summaries.

Table 6.2 shows that the ROUGE-1 recall scores are also very similar for the HS and FullAbs data

sets and lie within each other’s 95% confidence intervals, indicating that there is no statistically

significant difference between the contents of the HS and FullAbs sets. The coverage scores and

the ROUGE-1 scores illustrate that the human-authored summaries, which we consider to be

the ideal abstractive summaries, contain similar amounts of relevant information as the source

articles themselves.

To verify if the differences in the coverage scores between the HS and FullAbs sets are statistically

significant, we perform statistical significance tests for the two pairs of coverage scores. Due to

the paired nature of the data, we perform the Wilcoxon rank sum test with the null hypothesis

that the coverage scores for the two sets are the same (µ0 = 0). Table 6.3 shows the z and

p-values for the tests performed for the term, term and CUI and concept coverage scores for the

HS and FullAbs sets. In all cases p > 0.05, meaning that we cannot reject the null hypothesis.

Therefore, the difference in the two sets of coverage scores is not statistically significant. This
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System Recall 95% CI Compression Factor

FullAbs 0.418 0.40 - 0.44 0.05
HS 0.405 0.39 - 0.42 0.15
QSpec 0.318 0.30 - 0.34 0.26
IdealSum 0.284 0.27 - 0.30 0.20
Random 0.229 0.21 - 0.24 0.21

Table 6.2: ROUGE-1 recall scores and 95% confidence intervals for the five data sets with the
bottom-line summaries.

T T & C CC

z -1.5 -1.27 -1.33
p-value (2-tail) 0.13 0.20 0.16

Table 6.3: z and p-values for Wilcoxon rank sum tests.

adds evidence to the hypothesis that good single-document summaries may contain sufficient

content for bottom-line summary generation. This, in turn, supports the proposition that the

generation of bottom-line summaries may be modelled as a two step process, in which the first

step involves summarising individual documents, based on the information needs of queries, and

the second step synthesises information from the individual summaries.

Table 6.2 also shows the compression factors (CF) for each type of source texts. The CFs show

the relative compression rates required for the various source texts to generate the bottom-line

summaries. The compression factor is computed as: |B |/|A|, where |B | represents bottom-line

summary length and |A| the source text length. This means that the higher the value, the easier

should the summarisation technique be because of the lower amount of source text compression

required. It can be seen that generating bottom-line summaries from original source texts requires

approximately 5 times more compression compared to the generation from single-document

summaries, suggesting that the single-document summaries contain important information from

the source texts in a much compressed manner. Thus, for a summarisation system that focuses

on generating bottom-line summaries, it is perhaps better to use single-document summaries

as input rather than whole source texts, as the information in the source texts is generally very

noisy. Considering the balance between coverage scores and compression factors of IdealSum

and QSpec, such content-rich automatic summaries may prove to be preferable inputs for the

generation of bottom-line summaries over original texts.
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Figure 6.4: Comparison of the composition of uncovered elements between the HS, FullAbs,
QSpec and Random sets.

6.2.3 Analysis of Uncovered Elements

Our coverage analysis shows that the human-authored summaries contain the important content

from the source abstracts, but in a more compressed form. The analysis supports the hypothesis

that the generation of bottom-line summaries can be modelled as a two-step process. However,

if a fully automatic two-step approach is to be applied, we cannot rely on human-authored

summaries for the first step. Our intent is to use the content-rich summaries generated by QSpec

as inputs for the second step of the summarisation process. Since, in terms of coverage, there is a

significant difference between the FullAbs and QSpec texts, we manually analyse the uncovered

elements from the bottom-line summaries to quantitatively verify the type of content contained in

the uncovered elements and the causes for non-coverage. This analysis is important to assess

the applicability of our summarisation approach: if too much information is missing from the

single-document summaries, they cannot be utilised for the multi-document summarisation task.

To perform our analysis, we randomly select 31 records from our corpus and manually inspect

each element from the bottom-line summaries that are not covered by the source texts and the

various summaries. We manually classify the uncovered elements into five distinct categories: (i)

stylistic content, (ii) tokenisation errors, (iii) generalisation/specialisation, (iv) MetaMap errors,

and (v) important missing content, as defined below.

HS. We commence this analysis by inspecting the uncovered elements associated with the

summaries in the HS set. The bottom-line summaries of the 31 records contain a total of 2,309

176



6.2. Coverage Analysis

elements (tokens) of which 708 (30.7%) are not covered when the Term-plus-CUI based coverage

score is used. We categorise 530 (74.86%) of the 708 uncovered elements as stylistic/non-

medical content. These include the use of distinct English terms/phrases between the single-

document summaries and bottom-line summaries, some of which are synonyms or paraphrases

(i.e., containing same or similar information). Examples include: young people vs. adolescents,

and benefit vs. improve. In some cases, the uncovered elements are numbers, or numerical

concepts and symbols, that are not presented in a similar way in the single-document summaries

(e.g., 3 × vs. three times). Terms are only added to this category when the ideas or concepts

presented by them are also conveyed by the human-authored summaries, but through the use of

different lexical terms. For example, a bottom-line summary may have three associated human-

authored single-document summaries. Each individual single-document summary may present

the outcomes with the same polarity, worded in different ways. Generally, these summaries

contain more details than the bottom-line summaries, including information about results and

outcomes. The bottom-line summary, however, generally just states the final recommendation

(e.g., drugs x, y, and z are recommended for disease d). Even if the contents of the single-

document summaries represent the same information as the associated bottom-line summary, the

exact terms in the bottom-line summary may not be contained in them, leading to non-coverage.

We provide examples later on in this section.

Word tokenisation errors account for 103 (14.55%) of the uncovered elements. Although the

information represented by these elements is actually covered by the single-document summaries,

tokenisation errors cause the automatic coverage computations to fail. We use the default word

tokeniser in MetaMap, and the tokeniser often fails in the case of multi-word expressions. Some

examples of tokenisation errors include: sodium/sodium valproate, prilocaine-lidocaine, and

paroxetine-plus-emla. These tokenisation errors also result in the failure of MetaMap to correctly

identify medical concepts and semantic types.

The use of generic medical terms in the bottom-line summaries to represent a number of specific

terms in the single-document summaries occur in 40 cases (5.65%), resulting in non-coverage.

Examples include: antibiotic to represent amoxicillin and penicillin; anti-convulsant for valproate

and so on. These cases mostly occur when the individual summaries mention specific drug/chem-

ical names, while the associated bottom-line summaries use the generic terms representing the

whole class of specific names. These cases, however, are covered in the variant of the coverage

score that incorporates the medical semantic types. Also, these non-coverage cases do not actually

represent information that is missing from the single-document summaries.

For 19 cases (2.68%), non-coverage was caused by MetaMap disambiguation error. These are

cases when there are no tokenisation errors, but MetaMap fails to identify medical concepts

correctly. For example, in two cases hbp is identified as a protein instead of a terminological
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variant for hypertension or high blood pressure. Another example is the failure to recognise tb as

the same concept as tuberculosis.

Only 10 of the 708 uncovered elements can be considered to be useful information missing from

the single-document summaries. These cases include drug names (e.g., calcium tablets) or other

useful information such as diagnostic procedures (e.g., x-ray). This represents only 1.41% of all

the uncovered elements in that analysis set. We can thus conclude that good single-document

summaries (in this case, human-authored ones) do contain sufficient information from the source

documents and therefore may be used for the generation of bottom-line summaries via synthesis

of information.

FullAbs. We also analyse the uncovered elements from the full abstracts (FullAbs) on the same

subset of the data. There are a total of 603 uncovered elements. 411 elements (68.16%) of these

are stylistic content, 78 (12.94%) are due to tokenisation errors, 12 (1.99%) are due to errors

made by MetaMap, and 29 (4.81%) are due to the use of generalisation in bottom-line summaries.

We classify a total of 73 (12.11%) elements as missing content. As this number is much higher

compared to the missing content from human-authored summaries, we further analyse the cause

of this. The primary reason behind this is incomplete information in our corpus. 51 of the 73

uncovered elements are due to missing abstracts from the corpus or because of the PubMed

abstracts missing text. As such, the text in some bottom-line summaries remain completely

uncovered. Looking back at the histogram in Figure 6.3, this explains why the frequency in the

left-most bin in the FullAbs is much higher (indicating close to zero coverage). When all the

abstracts associated with a bottom-line summary are present in the corpus, generally they provide

better coverage of non-medical content (often due to the greater volume of the source text).

QSpec. Following this, we study the uncovered elements from the QSpec summaries and random

three sentence summaries on the same subset of the data. For the QSpec summaries, there are

a total of 733 uncovered elements. 489 elements (66.71%) of these are stylistic content, 86

(11.73%) are due to tokenisation errors, 10 (1.36%) are due to errors made by MetaMap, and

34 (4.64%) are due to the use of generalisation in the bottom-line summaries. 113 (15.55%)

elements were categorised as missing content. Since the automatic summaries are generated

from only the abstracts in our corpus that have text, the majority of the content classified as

missing are due to information missing from the corpus. Some relevant information is also lost

during summarisation, causing the proportion of missing content to rise from 12.11% to 15.55%.

However, proportion-wise, it can be seen that only a small proportion of relevant information is

lost during the summarisation process, while at the same time, a lot of noise is removed. Thus,

we can not reject the potential of using the automatic single-document summaries to investigate

approaches for the generation of bottom-line summaries.
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Random. For the random summaries, there are a total of 947 uncovered elements, which is

significantly more than for QSpec summaries. As one would expect, a large number of the

random summaries miss out on useful information. The category-wise distribution is as follows:

471 (49.74%) stylistic tokens, 106 (11.19%) cases of tokenisation and other forms of errors, 14

(1.48%) cases of MetaMap errors, 33 elements representing generalisation/specialisation, and

as many as 323 (34.11%) elements categorised as missing content (as compared to 15.55% for

QSpec). Figure 6.4 shows the distribution of the uncovered elements for the HS, FullAbs, QSpec

and Random sets.

Figure 6.5 shows a random sample of uncovered elements from our data set for each category.

Figure 6.6 (multi-page) provides a full example, showing the individual document summaries,

the bottom-line summary and the uncovered elements. The full example is specifically chosen

because it contains uncovered elements from each different category. The example shows 12

uncovered elements (stemmed). The tokens ‘insulin.’ and ‘glucose-low’ did not match because

of tokenisation errors. The tokens ‘avandia’ and ‘acto’ (for Actos) represent specific commercial

names that were added by the human authors. The summarised extracts, as one would expect,

contain the generic names for these chemicals. Thus, these can be considered to be cases of

generalisation. The tokens ’hb’ and ’a1c’ are not detected by MetaMap to represent the same

concept and are therefore treated as separate tokens. The terms ‘appear’ and ‘either’ represent

stylistic uncovered elements.

If the individual summaries are read, it can be seen that they represent the same conclusions as

the bottom-line summary. The last sentence of the bottom-line summary states the absence of

randomised trials comparing patient-oriented evidence. This information is implicitly present in

the associated single-document summaries, but the automatic generation of such statements is

beyond the scope of our research. This statement also results in 4 uncovered elements (‘current’,

‘directli’, ‘patient-ori’, ‘outcom’) that can be considered as missing information.

Section Conclusions

In this section, we presented a description of our investigations to estimate the extent to which

the information in the bottom-line summaries are contained in source texts of various granulari-

ties. Our investigations suggest that a significant amount of the information in the bottom-line

summaries comes from the source texts. The high coverage of human-authored summaries,

which can be considered to be the best possible summaries of the source texts, indicate that

a two-step summarisation approach shows promise for this task. In the previous chapter, we

described the implementation of an extractive summariser that attempts to generate three sentence

summaries that closely resemble the human-authored summaries in terms of content. Although

our extractive summariser (QSpec) outperforms other state-of-the-art summarisers for this task,
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Stylistic/linguistic tokens: ‘(’, ‘)’, also, include, low, alone, treat,
may, use, 300, 600, rate, center, include, prevent, recommend,
similar, adverse, effects, report, systematic, limit, inform,
safety, box, among, statistically, significant, demonstrate,
label, during, attain, likelihood, nation, education, program,
added, provide, [, ], number, increase, primarily, continue,
limit, lower, settings, dosage, toxic, improve, clinical,
course, add, all, produce, best, show, trade, loss, may, occur.

Tokenisation errors: sodium/sodium, effective., help., 3-month, mg/d,
sub-analysis, therapy., study., low-density, lipid-modifying,
statin/gemfibrozil, statin/ezetimibe, statin/bile acid
sequestrant, 5-6, deficit/hyperactivity, short-term, attacks.,
first-line, 2.3, antidepressant - specifically; sertraline -
are; prilocaine-lidocaine.

MetaMap errors: ssri vs.. selective serotonin uptake inhibitors;
triiodothyronine vs.. t3; hbp vs.. high blood pressure.

Generalisation/Specialisation: anticonvulsant for lamotrigine; atypical
antipsychotic for quetiapine; ssri for fluoxetine; disease
for bipolar depression; drug for various drugs; bile acid
sequestrant for ezetimibe; fibrates for gemfibrozil; stimulant
medication for methylphenidate; antidepressant for clomipramin,
fluoxetine, and sertraline; PDE5 inhibitors for sildenafil,
vardenafil, and tadalafil; tricyclic antidepressant for
citalopram, escitalopram and venlafaxine; proton pump for
omeprazole and esomeprazole; anti-fungals for fluconazol,
griseofulvin; steroid for dexamethasone and acyclovir;
thiazolidinediones for pioglitazone and rosiglitazone.

Missing information: lamotrigine adjunct; lithium; cure defined as
14 consecutive dry nights; inadequate evidence for oral vs..
nasal form of desmopressin; injecting into tendon compartments
more effective; may cause intolerable side effects; empiric
therapy is appropriate; available data do not allow for
adjusted risk assessment for patients with preexisting renal
disease; chronic rhinosinusitis; likely to be more costly and
cause side-effects; more tolerable.

Figure 6.5: Examples of uncovered elements from bottom-line summaries belonging to each
category.
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Full Example
Question: How beneficial are thiazolidinediones for diabetes mellitus?

Single-document Summaries:

1 [PMID: 11790216]: To systematically review available data from the literature regarding
the efficacy of oral antidiabetic agents, both as monotherapy and in combination.
Long-term vascular risk reduction has been demonstrated only with sulfonylureas and
metformin. With few exceptions, the available oral antidiabetic agents are equally
effective at lowering glucose concentrations.

2 [PMID: 11790217]: The scenarios also highlight some of the difficulties in choosing the
optimal pharmacologic treatment regimen for individual patients. Physicians should
also recognize that type 2 diabetes is a multisystem disorder that requires
multidisciplinary care, including education and ongoing counseling for effective
patient self-management of the disease. Finally, patient preferences are a vital
component of informed decision making for pharmacologic treatment of diabetes.

3 [PMID: 10644273]: In controlled trials, there has been no evidence of rosiglitazone-
induced hepatocellular injury. Clinical evaluation and assessment of liver function
test results were done daily during hospitalization and periodically after discharge
. We believe that patients receiving rosiglitazone should have liver enzyme levels
monitored earlier and more frequently than initially recommended.

4 [PMID: 10644272]: Rosiglitazone maleate is the second approved oral hypoglycemic agent
of the thiazolidinedione class. There have been no reports to date of rosiglitazone-
associated elevations in the alanine aminotransferase level or hepatotoxicity.
Discontinuation of rosiglitazone therapy and treatment with lactulose, vitamin K,
fresh frozen plasma, ventilatory assistance, and intensive care unit support.

5 [PMID: 11232013]: After a 4-week placebo run-in period, 493 patients with type 2
diabetes were randomized to receive rosiglitazone [2 or 4 mg twice daily (bd)] or
placebo for 26 weeks. Homeostasis model assessment estimates indicate that
rosiglitazone (2 and 4 mg bd) reduced insulin resistance by 16.0% and 24.6%,
respectively, and improved ss-cell function over baseline by 49.5% and 60.0%,
respectively. In the short-term, rosiglitazone is an insulin sensitizer that is
effective and safe as monotherapy in patients with type 2 diabetes who are
inadequately controlled by lifestyle interventions.

6 [PMID: 10755495]: The complementary actions of the antidiabetic agents metformin
hydrochloride and rosiglitazone maleate may maintain optimal glycemic control in
patients with type 2 diabetes; therefore, their combined use may be indicated for
patients whose diabetes is poorly controlled by metformin alone. Glycosylated
hemoglobin levels, fasting plasma glucose levels, insulin sensitivity, and beta-cell
function improved significantly with metformin-rosiglitazone therapy in a dose-
dependent manner. Our data suggest that combination treatment with once-daily
metformin-rosiglitazone improves glycemic control, insulin sensitivity, and beta-
cell function more effectively than treatment with metformin alone.

7 [PMID: 10691158]: This study was designed to test the efficacy and safety of low-dose
rosiglitazone, a potent, insulin-sensitizing thiazolidinedione, in combination with
sulphonylurea in Type 2 diabetic patients. Both HDL-cholesterol and LDL-cholesterol
increased and potentially beneficial decreases in non-esterified fatty acids and
gamma glutamyl transpeptidase levels were seen in both rosiglitazone groups. Overall
, the combination of rosiglitazone and a sulphonylurea was safe, well tolerated and
effective in patients with Type 2 diabetes.
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1 [PMID: 11423507]: To determine the efficacy and safety of rosiglitazone (RSG) when
added to insulin in the treatment of type 2 diabetic patients who are inadequately
controlled on insulin monotherapy. By intent-to-treat analysis, treatment with RSG 8
mg plus insulin resulted in a mean reduction from baseline in HbA(1c) of 1.2% (P <
0.0001), despite a 12% mean reduction of insulin dosage. The addition of RSG to
insulin treatment results in significant improvement in glycemic control and is
generally well tolerated.

2 [PMID: 11092281]: To evaluate the efficacy and safety of four doses of pioglitazone
monotherapy in the treatment of patients with type 2 diabetes. Patients who had HbA1
c > or = 7.0%, fasting plasma glucose (FPG) > or = 140 mg/dl, and C-peptide > 1 ng/
ml were randomized to receive placebo or 7.5, 15, 30, or 45 mg pioglitazone
administered once a day for 26 weeks. Pioglitazone monotherapy significantly
improves HbA1c and FPG while producing beneficial effects on serum lipids in
patients with type 2 diabetes with no evidence of drug-induced hepatotoxicity.

3 [PMID: 11192132:]: Their complimentary mechanisms of action suggest that a combination
of pioglitazone hydrochloride and metformin may have clinically beneficial effects
in the treatment of patients with type 2 diabetes. The pioglitazone + metformin
group had significant mean percentage changes in levels of triglycerides (-18.2%)
and high-density lipoprotein cholesterol (+8.7%) compared with placebo + metformin (
P < or = 0.05). In this study in patients with type 2 diabetes mellitus,
pioglitazone + metformin significantly improved HbA1c and FPG levels, with positive
effects on serum lipid levels and no evidence of drug-induced hepatotoxicity.

4 [PMID: 11448655]: To evaluate the efficacy and tolerability of pioglitazone in
combination with a sulfonylurea in the treatment of type 2 diabetes mellitus. Both
pioglitazone + sulfonylurea groups had significant (P < 0.05) mean percent decreases
in triglyceride levels (17%, 95% CI: 6% to 27% for 15 mg; 26%, 95% CI: 16% to 36%
for 30 mg) and increases in high-density lipoprotein cholesterol levels (6%, 95% CI:
1% to 11% for 15 mg; 13%, CI: 8% to 18% for 30 mg) compared with placebo +
sulfonylurea. In patients with type 2 diabetes, pioglitazone plus sulfonylurea
significantly improves HbA1C and fasting plasma glucose levels with beneficial
effects on serum triglyceride and HDL-cholesterol levels.

Bottom-line Summary:
1 The thiazolidinediones pioglitazone (Actos) and rosiglitazone (Avandia) are effective

at lowering fasting plasma glucose (FPG) and glycosylated hemoglobin (Hb A1c) in
patients with type 2 diabetes when used either as monotherapy or in combination with
sulfonylureas, metformin, or insulin. The glucose-lowering effects appear

comparable with those of sulfonylureas and metformin alone. Currently, there are no
randomized trials directly comparing patient-oriented outcomes of the
thiazolidinediones with those of sulfonylureas and metformin.

Uncovered Elements (stemmed):
1 ’insulin.’, ’avandia’, ’directli’, ’glucose-low’, ’either’, ’current’, ’patient-ori’, ’

outcom’, ’a1c’, ’acto’, ’hb’, ’appear’

Figure 6.6: Full example showing single-document summaries, the bottom-line summary, and
the uncovered tokens.
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it still falls short of the human-authored summaries in terms of coverage. However, analysis of

the uncovered elements reveals that the difference between the coverage scores of the QSpec

summary sentences and the full abstract is mostly due to linguistic/stylistic content. The QSpec

summariser is capable of removing significant amounts of noise from the source texts with

very little loss of useful information. Future improvements to the extractive summariser can

perhaps further improve its performance. The performance of the summariser is dependent

on the performance of a number of prior processes. They include, but are not limited to, the

performance of MetaMap, the accuracy of the PIBOSO classification approach, and the accuracy

of the question classification approach. We incorporate query information in our summariser

only in the form of query types and the MMR algorithm. However, even for the same query

type, the information needs of a question may be different. For example, for a treatment and

prevention question, the information needs of a question beginning with the word what can be

very different to the information needs of a question beginning with the word when. A detailed

query analysis needs to be performed to better understand the information needs of queries and

incorporate that information in the extractive summarisation approach. Furthermore, the size

of our corpus is relatively small, with 456 questions. For several types of questions, there are

only a few instances available in our corpus, and therefore, the statistics associated with those

questions may not be completely reliable. Larger annotated data sets are likely to improve the

performance of our extractive summarisation system. We also limit our summariser to selecting

three sentences only, and it may not always be possible to incorporate all the useful information in

three sentences. Finally, our summariser does not take into account the various aspects associated

with a question. These aspects include duration of treatment, side effects, target population

(e.g., adolescents, adults), and so on. Considering the importance of these aspects, incorporating

information regarding these is likely to generate better summaries. We discuss some of these

later in this chapter. To summarise the findings of the experiments described in this section, we

can say that the results support the hypothesis regarding a two-step approach, and that the QSpec

extractive summaries show some promise for the generation of bottom-line summaries.

6.3 Study of Possible Approaches for Generation of Multi-document
Summaries

In this section, we discuss possible approaches for synthesising the key information from single-

document summaries to generate bottom-line summaries. The generation of bottom-line sum-

maries requires the synthesis of information from various sentences presenting outcomes that are

associated with the same clinical query. The process of transformation of summary sentences

to produce bottom-line summaries can be considered to be an abstractive multi-document sum-

marisation task. This is because the bottom-line summaries simply make recommendations that
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are derived from the information present in the individual documents, and the actual texts from

the individual documents are not required in the final summaries. In this section, we analyse the

applicability of two broad categories of multi-document summarisation approaches for our task.

The two categories of approaches are:

1. Redundancy-reliant approaches — perhaps the most common approaches to multi-document

summarisation, whether extractive or abstractive, are those that exploit redundant informa-

tion across text segments in distinct documents to identify key information which should

be included in summaries. Approaches reliant on the presence of redundant information

have been successfully applied to domains where text from distinct documents are similar.

For example, in the news domain, where distinct articles on the same topic/event present

the same information in different ways, such redundancy-based approaches have been par-

ticularly popular. We study the sentence fusion approach [Barzilay and McKeown, 2005]

as a representative, state-of-the-art, redundancy-reliant approach, and compare the data

used for this task with the data in our corpus to assess the applicability of such approaches

for performing information synthesis using the single-document summaries we have.

2. Polarity Classification [Niu et al., 2006] — this is an abstractive summarisation approach

that attempts to identify whether a sentence/document represents positive or non-positive

information in a given context (e.g., via a query). This approach is representative of opinion

summarisation and sentiment summarisation approaches, and has the potential of being

applied in a multi-document scenario, where the polarities of multiple text segments can

be combined to generate a final polarised recommendation. The key challenge in this

approach is the automatic identification/classification of polarities of individual sentences,

which can then be utilised for the generation of a bottom-line answer.

We carried out preliminary analyses on both these classes of approaches to determine their

suitability to our intended task. We provide details of our analyses in the following subsections.

6.3.1 Redundancy-reliant Approaches: Summarisation via Sentence Fusion

The idea of sentence fusion for summarisation was first proposed by Barzilay and McKeown

[2005], and this approach was shown to be effective for summarising news articles. The intent

of sentence fusion is to convert multiple sentences that have high redundancy (overlap) of

information into a single summary sentence with reduced redundancy. All the sentences are

tightly clustered around a single news event, and therefore, can be identified using existing

clustering algorithms. The common information presented by similar sentences in different

documents are first identified to realise a general proposition in the summary sentence, by a
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process called sentence alignment. Following that, the proposition is augmented by adding

relevant information from various sentences and pruned for compression.

The primary reason behind the successful application of the sentence fusion algorithm is the

amount of redundant information present among the text in the news domain. Sentences from

different news articles on the same topic almost invariably contain some common information.

Figure 6.7 gives two examples of similar sets of sentences taken from different news articles (the

first example has been taken from Barzilay and McKeown [2005]; for the second example, the

sources are mentioned). It can be clearly seen that at least two of the three sentences in the first

example contain some key common information about the incident, such as: ‘Palestinian/Pales-

tinian militant’, ‘fire’, ‘antitank missile/machine gun and antitank missile’, and ‘bulldozer’. With

the sentence fusion algorithm, these key elements are used for aligning the sentences, and the

summary sentence may be augmented with additional information (e.g., ‘Israeli forces’, ‘army

base’, or ‘area’). For both examples, the different common elements in each sentence, and the

final fused sentence, are specified using different colours in the figure.

The sentence fusion algorithm works successfully on text from the news domain because of this

high degree of similarity between sentences from different articles, and the existence of key

common (redundant) information. The high degree of similarity among the sentences presenting

similar information is also important for this approach because it enables the successful cluster-

ing of the sentences. Numerous other multi-document summarisation techniques, particularly

redundancy-reliant ones, utilise the same property (i.e., highly similar contents in sentences from

multiple documents) for summarisation.

In the domain of evidence-based medicine, multi-document summarisation requires information

synthesis from sentences located in distinct documents that contain relevant information associ-

ated with a clinical query. For example, the documents may discuss the effects of different drug

therapies for treating a specific disorder; or the different etiologies for a condition. Our analysis

of the QSpec summary sentences revealed that the summary sentences associated with the same

bottom-line answer do not exhibit the same degrees of inter-sentence similarities as those from

news texts. One of the key reasons behind this phenomenon is the fact that the summary sentences

are not associated with the same event, unlike news sentences. As such, these summary sentences

generally present information in different ways, and the way in which the information is expressed

often depends on the intents and topics of the source articles. Therefore, alignment of these

sentences for performing sentence fusion is more challenging, and may also not be conceptually

meaningful. Figure 6.8 shows three sentences that are taken from separate documents as answers

to the question: ‘Is antibiotic prophylaxis effective for recurrent acute otitis media?’. From the

figure, it can be seen that, unlike news sentences, these sentences are quite distinct from each

other, although they all convey the limited effectiveness of antibiotics for acute otitis media.
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Example 1:

1. IDF Spokeswoman did not confirm this, but said the Palestinians fired an antitank missile
at a bulldozer.

2. The clash erupted when Palestinian militants fired machine guns and antitank missiles at a
bulldozer that was building an embankment in the area to better protect Israeli forces.

3. The army expressed “regret at the loss of innocent lives" but a senior commander said
troops had shot in self-defense after being fired at while using bulldozers to build a new
embankment at an army base in the area.

Fused Sentence: : Palestinians fired an antitank missile at a bulldozer.

Example 2:

1. Israeli soldiers shot dead a 21-year-old Palestinian woman near the West Bank city of
Hebron on Wednesday and wounded another local youth. (Reuters)

2. A 21-year-old Palestinian woman has died after being shot in the face by Israeli soldiers in
the West Bank. (Al-Jazeera)

3. Israeli soldiers shot and killed a 21-year-old Palestinian woman near the West Bank city of
Hebron on Wednesday. (Yahoo! News)

4. A 21-year-old Palestinian woman died after being hit in the face by Israeli gunfire in the
West Bank on Wednesday, medics said, with witnesses saying she was shot by soldiers.
(AFP)

5. An Israeli soldier driving a civilian car shot and killed a 21-year-old Palestinian woman
Wednesday near a refugee camp outside the West Bank city of Hebron, according to
Palestinian witnesses and medical sources. (Los Angeles Times)

Fused Sentence: : Israeli soldiers shot a 21-year-old Palestinian woman near the
West Bank.

Figure 6.7: Similar sentences from news articles, used for summarisation using sentence fusion.
Example 1 taken from Barzilay and McKeown [2005]. The sources for Example 2 are shown in
the figure.
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1. Antibiotics appear to have beneficial but limited effect on recurrent otitis media and
short-term resolution of OME.

2. Because of the potential of excessive antibiotic use to promote the acquisition of resis-
tant pneumococci and the lack of effectiveness in this trial, routine use of amoxicillin
prophylaxis should be discouraged.

3. Selective use of tympanocentesis if the patient does not respond to empiric therapy can
help confirm the diagnosis and guide effective therapy.

Figure 6.8: Summary sentences from distinct medical documents expressing the limited effective-
ness of antibiotics for a specific treatment.

Generating a bottom-line, multi-document summary by fusing these sentences together would be

an extremely challenging task, especially for existing text-to-text summarisation algorithms (e.g.,

sentence fusion) that rely on the availability of redundant information.

To investigate our preliminary findings about the possible inapplicability of the sentence fusion

algorithm to text in the evidence-based medicine domain, we now present a brief quantitative

analysis. For this analysis, we collected the data used by Barzilay and McKeown [2005] for their

sentence fusion task. In their work, clusters of potentially fusable sentences are first identified

and ranked, and the top ranked clusters are used for sentence fusion. We use a sample of 110

sets of potentially fusable groups of sentences (prepared by Barzilay and McKeown [2005]) for

our experiments. Unlike the authors, however, we do not perform any ranking of these groups

of sentences, and instead, choose all the 110 sets. We do this intentionally, to ensure that we

were not adding bias to our experiments by only using groups of highly similar sentences. Also,

in our domain, if sentence fusion or any other redundancy-reliant approach is to be applied,

this ranking step has to be skipped. This is because successful application of the approach in

the evidence-based medicine domain will require the sentences extracted as the query-focused,

single-document summaries to be fusable, irrespective of how the sentences rank in a similarity

measure.

In order to determine the applicability of redundancy-reliant approaches for evidence-based

medicine summarisation, we compare the similarities among potentially fusable news sentences

to the similarities among the single-document summary sentences (QSpec summaries) from

which multi-document summaries are to be generated. We use two similarity measures that we

have applied in the previous chapter: cosine similarity and jaccard similarity. We used 110 sets

of news sentences and 600 sets of single-document summary sentences (each set associated with
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a single bottom-line summary). To compute the similarities among sentences in each set, we

apply the following approach:

1. Given a set of sentences, compute the top 25% tf.idf terms in that set of sentences. These

top 25% tf.idf terms are used to represent the centroid of the set of sentences. tf here

represents the frequency of a term in a cluster, and df represents the number of clusters

containing that term. idf, therefore, is the inverse of this value.

2. For each sentence in the set, compute its jaccard and cosine similarities with the centroid.

3. Compute the average similarity across all the sentences in the set.

Using this approach, we compute the average cosine and jaccard similarities for all the sets of

sentences in both domains. For the 110 sets of news sentences, the average cosine similarity

across all the sets is 0.36, and the average jaccard similarity across all sets is 0.21. In comparison,

the average similarities across the 600 clusters of evidence-based medicine sentences are much

lower: cosine = 0.24 (0.12 units lower than news); jaccard = 0.14 (0.07 units lower than news).

To give the reader an idea of how much lexical similarity these values actually indicate: for

the second example in Figure 6.7, the average cosine similarity is 0.68 and the average jaccard

similarity is 0.47; for the example in Figure 6.8, the average cosine similarity is 0.53 (0.15 units

lower than the news example) and the average jaccard similarity is 0.31 (0.16 units lower than

the news example). In both cases, the evidence-based medicine text shows about two-thirds of

the similarity of the news text. Figure 6.9 shows the distributions of the average similarities

among sentences from these two domains. The distributions illustrate the higher similarities

among sentences in the news domain, compared to the evidence-based medicine domain – thus

quantitatively illustrating why redundancy-reliant summarisation approaches are likely to be less

effective in this domain. The distributions also show that, for the news domain, some clusters of

sentences tend to have quite high average similarities.

We perform another set of experiments to check if there is a significant difference in the average

similarities among sentences in the news domain compared to the medical domain. We are

interested in the similarities among all sentences associated with a specific topic. Therefore, for

the news domain, we measure the average similarities for all sentences belonging to all articles

associated with a news event. For the sentence fusion data set, there are 16 such events, with

a total of 106 articles associated with them (average number of articles per event: 6.625). For

the evidence-based medicine domain, we measure the average similarities for all the sentences

belonging to abstracts associated with a bottom-line summary. In an attempt to ensure that the

two data sets are comparable, we only include bottom-line summaries that have at least three

abstracts associated with them. In total, there are 136 such bottom-line summaries with a total
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Figure 6.9: Comparison of the cosine and jaccard similarity distributions for news text and
evidence-based medicine text.
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of 760 associated abstracts (average number of abstracts per summary: 5.588). For the news

data set, the average sentence similarities for all the sentences associated with a specific event

are: cosine similarity – 0.137; jaccard similarity – 0.058. For the evidence-based medicine data

set, the average sentence similarities for all sentences associated with a single clinical query are

much lower: cosine similarity – 0.073, jaccard similarity – 0.030. To compute these similarity

measures, each sentence is compared with the centroid for the associated set of sentences.

We also compute the similarity for each sentence compared to all the terms in the set (as opposed

to the centroid of that set). Note that, in this case, the jaccard similarity is not a good measure

because longer sentences will always have more overlap, and therefore higher similarity scores.

For this, the cosine similarity for news text is 0.361, and for evidence-based medicine text is

0.293. It can be seen that, in all the results so far, the similarity values for news text are higher

than those for the evidence-based medicine text. We perform unpaired T tests to check if the

differences in the values for average similarities are statistically significant. In the tests, our null

hypothesis is that the average similarities are the same for both types of text. For all the 3 pairs

of similarity values mentioned above, the one tailed p-value is less than 0.0001, meaning that

the mean similarity scores are statistically significantly different, with those for the medical text

being lower.

Further experimentation is required to investigate the differences among the similarities of text in

the two domains. We leave this for future work and focus on the analysis of other approaches

for the generation of bottom-line evidence-based medicine summaries. For now, based on the

relatively low similarity values among the single-document summary sentences compared to

clusters of fusable news sentences, the prospects of the sentence fusion (or other redundancy-

reliant approaches) does not look encouraging for further exploration. Therefore, we move our

attention to another class of approaches which appears to be more favourable for this task.

6.3.2 Polarity Detection-based Approaches: Summarisation via Sentence Polar-
ity Classification

The bottom-line summaries in our corpus present final recommendations in response to queries.

For example, a bottom-line summary may or may not recommend an intervention in response

to a disorder. Thus, the bottom-line summaries can be considered to be polarised — when an

intervention is recommended, the polarity is positive, and when it is not recommended, the

polarity is non-positive. The bottom-line summaries, as explained earlier, are generated by

synthesising information from individual documents. Therefore, it is expected that the polarities

of the individual documents, or their summaries, agree with the polarities of the associated

bottom-line summaries. In this subsection, we study the use of sentence level polarities to

determine the final polarities of the bottom-line summaries.
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Data and Annotation

For preliminary annotation and analysis, we use 33 manually identified questions from our corpus.

All these questions are treatment questions, and the bottom-line summaries mention one or

more interventions, some of which are recommended while the others are not. Our first step in

preparing for this task is to annotate the bottom-line summaries. From each bottom-line answer

associated with these 33 questions, we manually identify the interventions. Following that, we

annotate the polarity of the answer relative to the interventions mentioned. We use two categories

for the annotation:

i Positive: We annotate the summary to be positive relative to an intervention when the

summary clearly recommends the use of an intervention or states its effectiveness.

ii Non-positive: We annotate a summary to be non-positive relative to an intervention when

the summary (a) clearly states that the intervention is not recommended, (b) states that

the intervention is harmful, (c) states that there is insufficient evidence to recommend the

specific intervention, or (d) mentions an intervention but provides no useful information

about it.

These two categories cover all the cases in our data. Furthermore, considering the fact that

the purpose of the bottom-line summaries is to recommend or not recommend an intervention,

we find the use of two categories to be sufficient. In total, 111 interventions are identified and

annotated into these two categories.

Figure 6.10 presents two questions, the associated bottom-line summaries, and our contextual

polarity annotations. In the bottom-line summary associated with the first question, the three

beta-blockers are recommended, and they are annotated as such. The second example gives an

example of a question and an associated bottom-line summary that does not recommend the use

of hormonal therapies and progesterone, and they are annotated as such. All the answers to the

33 questions are annotated by two annotators, including the author of this thesis. In almost all the

cases, there is no disagreement at all between the annotators; the few disagreements are resolved

via discussion.

Next, we collect all the abstracts associated with each bottom-line summary and question pair.

The full abstracts may, and generally do, contain noisy information that are not related to the

query. Also, our coverage analysis (Section 6.2) showed that the summaries provided by the

QSpec summariser are rich in content. So, we consider the QSpec summary sentences to be key

sentences from the abstracts, and perform polarity annotation on the key sentences. Similar to

our bottom-line summary annotation process, for a sentence, we first identify the intervention(s)
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Question: What is the most effective beta-blocker for heart failure?

Bottom-line answer: Three beta-blockers-carvedilol, metoprolol, and bisoprolol-reduce
mortality in chronic heart failure caused by left ventricular systolic dysfunction, when used in
addition to diuretics and angiotensin converting enzyme (ACE) inhibitors.

Contextual Polarities: carvedilol – recommended; metoprolol – recommended; bisoprolol –
recommended.

Question: What medications are effective for treating symptoms of premenstrual syndrome PMS?

Bottom-line answer: Hormonal therapies (oral contraceptives, gonadotropin-releasing hormone
agonists, danazol, estrogen) lack convincing evidence of efficacy and cause many side effects;
progesterone is no more beneficial than placebo.

Contextual Polarities: hormonal therapies – not-recommended; progesterone – not-
recommended.

Figure 6.10: Sample bottom-line summaries and examples of polarity annotations.
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mentioned, and then categorise their polarities. Due to this annotation approach, we come across

sentences where two different interventions are mentioned and the polarities associated with them

are opposite. Consider the following sentence, for example:

The present study demonstrated that the combination of cimetidine with levamisole

is more effective than cimetidine alone and is a highly effective therapy for the

treatment of recalcitrant warts.

For this sentence, the combination of two drugs is recommended over monotherapy with cimeti-

dine. Therefore the polarities are: cimetidine with levamisole – recommended; cimetidine alone –

not recommended. At the same time, in a number of cases, although a sentence is polarised, it

does not mention an intervention. Such sentences are annotated without adding any intervention

name to the context. The following is an example:

One injection cured 64% [corrected] of patients with primary trigger finger with no

side effect and is the recommended nonsurgical treatment.

In this sentence, injection refers to steroid and lidocaine, which are mentioned in the previous

summary sentence. However, at this point, we are not interested in complicating the process

by introducing inter-sentence relationships. So we leave this sentence annotation intervention-

context free. In this manner, we annotate a total of 589 sentences from the QSpec summaries

associated with the 33 questions. If a sentence contains more than one intervention, we add an

annotation for each intervention.

A subset of the QSpec sentences, 124 in total, are annotated by a second annotator, and these

annotations are used to measure agreement among the annotators. We use the Cohen’s Kappa

[Carletta, 1996] measure (shown below) to compute inter-annotator agreement.

κ= Pr (a)−Pr (e)

1−Pr (e)
(6.2)

where Pr (a) is the relative observed agreement among annotators, and Pr (e) is the hypothetical

probability of chance agreement. We obtained κ= 0.85, which can be regarded as almost perfect

agreement [Landis and Koch, 1977].

Analysis

Following the annotation process, we compare the annotations of the single-document summary

sentences with the bottom-line summary annotations. Given that a summary sentence has
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been annotated to be of positive polarity with an intervention in context, we first check if the

intervention (or a generalisation of it) is also mentioned in the bottom-line summary. If yes, we

check the polarity of the bottom-line summary. In this manner, we collect a total of 177 summary

sentence – bottom-line summary pairs. Among these, in 169 (95.5%) cases, the annotations are

of the same polarity. In the rest of the 8 cases, the QSpec summary sentence recommends a drug,

but the bottom-line summary does not.

We manually examine the 8 cases where there are disagreements between the single-document

summary sentence annotations and the bottom-line summary annotations. In all the cases, this is

either because individual documents present contrasting results, that is, the positive findings of

one study were negated by evidence from other studies; or because a summary sentence presents

some positive outcomes, but side effects and other issues are mentioned by other summary

sentences, eventually leading to an overall negative polarity. Consider the following example

sentence, taken from a QSpec summary:

By the end of the trial more than 75% of patients who were still taking danazol were

essentially free of breast pain, lethargy, anxiety and increased appetite, but results

for other common symptoms were no better than with placebo.

The sentence was generated as part of a summary in response to the question: What medications

are effective for treating symptoms of premenstrual syndrome PMS? This sentence presents some

positive outcomes, and therefore it is annotated to be of positive polarity (with danazol as the

context intervention). However, another summary sentence associated with the same topic, but

from a different document, clearly states that the drug in question is not effective. The sentence

is as follows:

Luteal phase-only danazol is not effective for the treatment of the general symptoms

of premenstrual syndrome but appears highly effective for the relief of premenstrual

mastalgia.

Thus, the bottom-line summary does not recommend the use of danazol, causing the disagreement

in the two sets of annotations.

If automatic sentence level polarity classification techniques are to be used for generating bottom-

line summaries in a two-step summarisation process, the first step (QSpec summaries) also needs

to have very good recall. For the data set used in this analysis, the bottom-line summaries mention

a total of 111 interventions (of both polarities). Of them, the QSpec summary sentences contain

100, giving a recall of 90.1%. We examine the causes for unrecalled drug names and find that, of
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the 10 drug names not recalled, 4 are due to missing abstracts from the corpus, and 2 drug names

are not mentioned in any of the referenced abstracts. Thus, the actual recall is 95.2%.

Considering the high recall of intervention names in the summary sentences, and the high

agreement among the QSpec summary sentence polarities and bottom-line summary sentence

polarities, it appears that automatic polarity classification techniques have the potential to be

applied for the task of bottom-line summary generation in a two-step summarisation process.

Understandably, preliminary automatic summarisation work in this domain has already explored

the idea [Niu et al., 2006]. We now discuss our approach to automatic sentence level polarity

classification.

Automatic Polarity Classification

We model the problem of automatic sentence level polarity classification as a supervised clas-

sification problem. We annotate a total of 2,362 key sentences (QSpec summaries) from the

corpus (1,736 non-positive and 626 positive instances). For each sentence, we first identify the

intervention(s) mentioned in it, and the polarity of the sentence relative to each intervention.

Given a sentence and an intervention mentioned in the sentence (if any), our intent is to train a

machine learning algorithm to automatically identify the polarity of the sentence relative to the

intervention. The same sentence may appear as multiple instances, each time with a different

context intervention, and a polarity class associated with the intervention. Our input, therefore,

to the classifier are: a sentence and a context intervention (if present), and the expected output

is the polarity of the sentence relative to the context intervention. If the sentence contains no

interventions, the output is simply the context-free polarity of the sentence.

We automatically extract a number of features from each sentence. Some of these features are

context-sensitive, meaning that the same sentence may have different feature values associated

with it based on the intervention in context. Because there has been some past work in sentence

level polarity classification in this domain (as discussed in Chapter 2), we build on the features

proposed by existing research on sentence level polarity classification and add some previously

unexplored features: context-specific and context-independent. The following is a description of

the features.

1. Word n-grams
Our first feature set is word n-grams (n = 1 and 2) from the sentences. Cues about the polarities

of sentences are primarily provided by the lexical information in the sentences (e.g., words and

phrases). As such, word n-grams is the most natural choice for a feature set. We perform some

preprocessing of each sentence. We lowercase the words, remove stop words and stem the words

using the Porter stemmer [Porter, 1980]. For each sentence that has an annotated context, we
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replace the context word(s) using the keyword ‘_CONTEXT_’. This ensures that our classifiers

are not influenced by the names of the interventions. Furthermore, we replace the disorder terms

in the sentences using the keyword ‘_DISORDER_’. To identify the various disorder terms in

the sentences, we use MetaMap. We use the same semantic types as Uzuner et al. [2009]5 as the

disorders.

2. Change Phrases
We use the Change Phrases features proposed by Niu et al. [2005]. The intuition behind this

feature set is that the polarity of an outcome is often determined by how a change happens: if a

bad thing (e.g., mortality) was reduced, then it is a positive outcome; if a bad thing was increased,

then the outcome is negative. This feature set attempts to capture cases when a good/bad thing is

increased/decreased. To construct these features, we first collect the four groups of good, bad,

more, and less words used by Niu et al. [2005]. We augment the list by adding extra words to the

list which we expect to be useful. In total, we add 37 good, 17 bad, 20 more, and 23 less words.

The full list of words is presented in Appendix D. Our intent with this feature set is to utilise

the co-occurrence of more/less words and good/bad words to detect the change in polarity. This

feature set has four features: MORE-GOOD, MORE-BAD, LESS-GOOD, and LESS-BAD. As

an example, the following sentence exhibits the LESS-BAD feature, indicating a positive polarity.

Statistically and clinically significant improvement, including a statistically signifi-

cant reduction in mortality, has been noted in patients receiving therapy with either

bisoprolol, carvedilol, or metoprolol.

To extract the first feature, we follow the approach applied by Niu et al. [2005]: a window of

four words on each side of a MORE-word in a sentence is observed. If a GOOD-word occurs in

this window, then the feature MORE-GOOD is activated (its value is set to 1). The other three

features are activated in a similar way. The features are represented using a binary vector with 1

indicating the presence of a feature and 0 indicating absence.

3. UMLS Semantic Types
We use all the UMLS semantic types (identified using MetaMap) present in a sentence as features.

Intuitively, the occurrences of semantic types, such as disease or syndrome and neoplastic process,

may be different in different polarity of outcomes. There is a possibility that the polarity of

a sentence has some relation to the semantic types contained by it. Overall, UMLS provides

133 semantic types, and we represent this feature set using a binary vector of size 133 – with 1

indicating the presence and 0 indicating the absence of a semantic type.

5Semantic types in this category include: pathological function, disease or syndrome, mental or behavioral
dysfunction, cell or molecular dysfunction, virus, neoplastic process, anatomic abnormality, acquired abnormality,
congenital abnormality and injury or poisoning.
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4. Negations
Negations play an important role in determining the polarity of the outcomes presented in medical

sentences. For example, consider the following statements:

1. Drug X significantly improves quality of life.

2. Drug X does not significantly improve quality of life.

It can be clearly seen that the polarities of the two statements are completely opposite due to the

presence of the negation term ‘not’. We attempt to detect the negation terms in the sentences and

also automatically mark the negated terms in each sentence. For this, we apply three different

negation detection strategies.

In our first strategy, we detect the negations using the same approach as Niu et al. [2005]. In

their simplistic approach, the authors use the ‘no’ keyword as a negation word and use that for

detecting negated concepts. To extract the features, all the sentences in the data set are first parsed

by the Apple Pie parser6 to get phrase information. Then, in a sentence containing the word no,

the noun phrase containing no is extracted. Every word in this noun phrase except no itself is

attached a ‘NO’ tag. We use a similar approach, but instead of the Apple Pie parser, we use the

GENIA Dependency Parser (GDep)7 [Sagae and Tsujii, 2007], since it has been shown to give

better performance with medical text.

For the second strategy, we use the BioScope corpus8 [Vincze et al., 2008] to identify negations.

The BioScope corpus contains various sentence level annotations including negations and their

scopes. We do not take into account the scopes of negations but identify the negation terms from

it. Then we apply the same strategy as before, using the GDep parser again.

For the third strategy, we use the NegEx system [Chapman et al., 2001] to identify negations.

The NegEx system uses a list of negation terms and applies regular expression based matching to

identify the negation terms in text. Using NegEx, we use the same strategy as above to identify

and mark negated terms using the GDep parser.

5. PIBOSO Category of Sentences
In Chapter 5, we presented the use of sentence classification in extractive summarisation. Our

analysis of the QSpec summary sentences suggests that the class of a sentence may be related to

the presence of polarity in the sentence. For example, a sentence classified as Outcome is more

6http://nlp.cs.nyu.edu/app/. Accessed on 26th May, 2014.
7http://people.ict.usc.edu/~sagae/parser/gdep/. Accessed on 26th May, 2014.
8http://www.inf.u-szeged.hu/rgai/bioscope. Accessed on 26th May, 2014.
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likely to contain a polarised statement than a sentence classified as Background. Therefore, we

use the PIBOSO classifications of the sentences as a feature.

6. Synset Expansion
Certain terms play an important role in determining the polarity of a sentence, irrespective of

context (e.g., some of the good and bad words used in the change phrases feature). Certain

adjectives, and sometimes nouns and verbs, or their synonyms, are almost invariably associated

with positive or non-positive polarities. Thus, for each adjective, noun or verb in a sentence, we

use WordNet9 to identify the synonyms of that term and add the synonymous terms, attached

with the ‘SYN’ tag, as features.

7. Context Window
This is the first of our context-sensitive features. We noticed that, in a sentence, the words in

the vicinity of the context intervention may provide useful information regarding the polarity of

the sentence relative to that drug. Thus, we collect the terms lying inside three word boundaries

before and after the context drug term(s). This feature is useful when there are direct comparisons

between two interventions. Consider the following example:

All three niacin-containing treatments were more effective than lovastatin monother-

apy in reducing lipoprotein.

There are two interventions mentioned: niacin-containing treatments and lovastatin monotherapy,

the former having a positive contextual polarity and the latter having a non-positive one. The

three-word window before niacin-containing treatments contains the terms ‘all’, and ‘three’, and

the three-word window after the mention of the intervention contains the terms ‘were’, ‘more’,

and ‘effective’. For lovastatin monotherapy, the three-word window before contains the terms

‘more’, ‘effective’, ‘than’, and the window after contains the terms ‘in’, ‘reducing’, ‘lipoprotein’.

From the example, it can be seen that the terms appearing before an intervention and those

appearing after it may play a role in determining the polarity of the sentence relative to a given

context. We tag the words appearing before an intervention with the ‘BEFORE’ tag and those

appearing after with the ‘AFTER’ tag and use these as features.

8. Dependency Chains
In some cases, the terms that influence the polarity of a sentence associated with an intervention

do not lie close to the intervention itself, but are connected to it via dependency relationships. In

order to capture terms that may be associated with an intervention via dependency relationships,

we used the sentence parses produced by the GDep parser. For each intervention appearing in a

sentence, we identify all the terms that are connected to it via specific dependency chains. We

9http://wordnet.princeton.edu/. Accessed on 26th May, 2014.
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Sentence: MRI has proved to be an excellent tool in diagnosing injuries of the cruciate ligaments
and menisci.

Figure 6.11: Dependency chain connecting an intervention (MRI) with a polarity influencing
word (excellent).

use a rule to determine the chain, which is as follows:

1. Start from the intervention and move up the dependency tree till the first VERB item the

intervention is dependent on, or the ROOT element.

2. Find all items dependent on the VERB item (if present) or the ROOT element.

All the terms connected to the context term via this relationship are collected, tagged using the

‘DEP’ keyword and used as features. Figure 6.11 gives us an example when this feature is useful.

In the sentence shown, MRI is the context intervention. The context window feature does not

capture the key polarity word in this sentence (excellent). However, the above algorithm is able

to capture the fact that the term ‘excellent’ is associated with the intervention, and utilise that for

the polarity classification. This feature is particularly useful for very long sentences, where the

distance between key polarity-determining terms and the associated intervention may be large.

9. Other Features
We use a number of other simple numeric or binary features, which are listed below:

• context intervention position: This is a numeric feature that specifies the position of the

intervention in the sentence (numeric);
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• summary sentence position (numeric);

• presence of modals in the sentence (binary);

• presence of comparatives in the sentence (binary); and

• presence of superlatives in the sentence (binary).

Evaluation and Results

In our experiments, we use approximately 85% of our annotated data (2,008 sentences) for

training and the rest (354 sentences) for evaluation. We performed preliminary 10-fold cross

validation experiments on the training set using a range of classifiers and found Support Vector

Machines (SVM) to give the best results, in agreement with existing research in this area. We use

the SVM implementation provided by the Weka machine learning tool.10

Table 6.4 presents the results of our polarity classification approach. The overall accuracy obtained

using various feature set combinations is shown, along with the 95% confidence intervals11, and

the F-scores for the positive and non-positive classes. The first set of features shown on the table

represents the features used by Niu et al. [2006]; we consider the scores achieved by this system

as the baseline scores. The second row presents the results obtained using all context-free features.

It can be seen from the table that the two context-free feature sets, expanded synsets and PIBOSO

categories, improve classification accuracy from 76% to 78.5%. This shows the importance of

these context-free features. When all features are added, classification accuracies reach over 80%.

The table shows the results for the three variants of negation detection, with the approach using

the BioScope corpus giving the best accuracy. However, the differences between the different

negation detection systems are minimal. All three variants give statistically significant increases

in accuracy compared to the baseline.

Feature sets Accuracy (%) 95% CI Pos. F-score Non-pos. F-score

1,2,3, and 4 (Niu) 76.0 71.2 – 80.4 0.58 0.83
Context-free (1-6) 78.5 73.8 – 82.8 0.64 0.85
All (Niu) 83.9 79.7 – 87.6 0.71 0.89
All (Bioscope) 84.7 80.5 – 88.9 0.74 0.89
All (NegEx) 84.5 80.2 – 88.1 0.73 0.89

Table 6.4: Polarity classification accuracy scores, 95% confidence intervals, and class-specific
F-scores for various combinations of feature sets.

10http://www.cs.waikato.ac.nz/ml/weka/. Accessed on 26th May, 2014.
11Computed using the binom.test function of the R statistical package (http://www.r-project.org/. Accessed on 26th

May, 2014.)
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In terms of the F-scores, the table shows that the non-positive class F-scores are much higher

than the positive class F-scores. The highest F-score obtained for the positive class is 0.74, and

that for the non-positive class is 0.89. This is expected due to the fact that the number of training

examples for the latter class is almost three times that of the positive class.

To explore the effect of the size of the training data on the classification accuracy and F-scores,

and to predict how classification accuracies are likely to change if more training data is available,

we perform several classification experiments keeping the test set constant, but varying the size of

the training set. We use different sized subsets of the training set: starting from 10% of its original

size and increasing the size by 5% each time. To choose the training data for each experiment,

we perform random sampling with no replacement. Figure 6.12 illustrates the effect of the size of

the training data on classification accuracies.

As expected, classification accuracies and F-scores increase as the number of training instances

increases. The increase in the F-scores for the positive class is much higher than the increase for

the non-positive class F-scores. This verifies that the positive class, particularly, suffers from the

lack of available training data. Having more annotated data would invariably improve on the best

F-score obtained in our experiments. Furthermore, none of the three curves flatten completely

towards the right side of the figure, although the non-positive class F-scores and the overall

accuracies seem to flatten more compared to the positive class F-scores. The increasing values

for all three curves indicate that, if more training data are available, better results can be obtained

for both classes. This is particularly true for the positive class, which is also perhaps the more

important class considering our goal of generating bottom-line recommendations for clinical

queries. The highest accuracy obtained by our system is 84.7%, which is significantly better than

the baseline system for this domain.

To conclude this investigation, we perform a manual evaluation on a subset of the data to validate

the suitability of the polarity classification approach for the generation of bottom-line summaries.

For this evaluation, we use the same set of sentences that was used for the preliminary analysis

— key sentences associated with the 33 manually identified questions. As mentioned earlier,

a total of 111 interventions were identified from the human-authored bottom-line summaries

and annotated. Our intent in this evaluation is to determine the extent to which bottom-line

recommendations relative to specific interventions can be derived from the automatically classified

sentences. We do not attempt to combine information from multiple sentences associated with

the same context, and instead rely on the following simple rules:

1. If the polarity of a sentence, relative to a specified context intervention, is classified as

positive, the intervention is considered to be a recommendation.

2. If the polarity of a sentence, relative to a specified context intervention, is classified as
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Figure 6.12: Classification accuracies, and positive and non-positive class F-scores for training
sets of various sizes.

non-positive, the intervention is not recommended.

3. If the same intervention is mentioned in multiple sentences, the intervention is considered

to be a recommendation if any of the sentences associated with it is classified as positive.

Using these rules, and the manually annotated polarities of the 111 interventions as the gold

standard, we compute the recall, precision, and F-score of our approach. In this experiment,

we apply 10-fold cross validation using the same classifier as above to classify the sentences.

To enable a comparison, we introduce three simple baseline systems and compute their recall,

precision, and F-scores as well. For the first baseline (B1), we run MetaMap on the key sentences

to automatically identify the contexts. All text elements tagged by MetaMap to belong to

semantic types representing possible interventions are considered to be recommendations.12 This

simple baseline primarily gives us an idea of the ability of MetaMap to automatically identify

interventions for recommendation. For the second baseline (B2), the same automatic approach

is used to identify the interventions, and the set of cue words (good words) used for feature

generation in the classification experiments is used to determine recommendations. If a sentence

12The semantic types are: aapp, antb, hops, horm, nnon, orch, phsu, strd, vita, bacs, carb, eico, elii , enzy, imft, inch,
lipd, nsba, opco.
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containing an intervention also contains a good word, the intervention is recommended, otherwise

it is not. For the third baseline (B3), the same approach for intervention identification and the

same cue words are used, but an intervention is considered to be a recommendation if a good

word appears in its dependency chain. We define recall and precision for this task as follows:

Recal l = C S

GS
(6.3)

Pr eci si on = C S

T S
(6.4)

where CS represents the number of correct recommendations made by the automatic system, GS

represents the number of recommendations in the gold standard (111), and TS represents the total

number of recommendations made by the system. Table 6.5 presents the results of this evaluation.

The table shows that for all three baseline systems, the F-scores are very low and comparable.

Among the baseline systems, B1 gives the highest recall, but the value is still quite low. For the

other two baseline systems, recall is very low indicating that, only in approximately 25% cases,

an automatically identified intervention and a cue phrase occurs in the same sentence. Using

dependency chains, understandably, decreases recall and increases precision, but very slightly.

The results obtained by the baseline systems indicate the difficulty of obtaining the context

interventions automatically. The low precisions indicate that even when the relevant contexts

are identified, predicting the recommendation using simple rules is difficult. Our approach,

using supervised classification, has the advantage of having the contexts manually identified.

The F-score obtained is similar to the highest F-score (0.74) obtained for the positive class in

our sentence classification task. As explained earlier, due to the lack of training data for this

class, the classifier fails to correctly identify the positive polarities in a number of cases, leading

to relatively low recall. However, even with the small training set, our approach obtains high

precision indicating that the approach has a low possibility of making the wrong recommendation.

Having a larger training set is likely to drive the recall/precision values close to the values we

obtained via manual annotation.

Discussion

Our investigation of sentence level polarity classification suggests that it is a feasible option for

generating bottom-line recommendations. Our approach obtains relatively high accuracies using

only a small subset of our corpus as annotated training data. The analysis of the influence of

training set size on accuracy indicates that a larger annotated training set will lead to even better
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System Recall Precision F-score

B1 0.42 0.27 0.33
B2 0.26 0.44 0.33
B3 0.23 0.47 0.31
Polarity Classification 0.62 0.82 0.71

Table 6.5: Comparison of recall, precision, and F-scores for three baselines and our polarity
classification approach.

accuracies. For the positive class, particularly, the gradient of the training set size versus F-score

curve remains positive even towards the right of the curve. Thus, it is clear that larger training

data will enable the detection of positively polarised key sentences with greater accuracies.

Automatically identifying sentence level polarities is just the first step in the generation of bottom-

line summaries, and our experiments simply illustrate the promise of this supervised classification

as a possible approach for this task. Generating automatic bottom-line, abstractive summaries is a

complex task, and a number of research problems related to sentence level polarity classification

must be solved before the whole process can be performed automatically. For example, our

approach is dependent on the manual annotation of the contexts. Depending on the types of

question, the contexts can be medical concepts such as diagnostic procedures, surgical procedures,

pharmacological substances, and so on. In various research tasks mentioned in this thesis, we have

relied on MetaMap for the identification of such medical concepts (semantic types). However, the

accuracies of MetaMap are not reliable enough to fully automate the identification of contexts.

Furthermore, the contexts may also be non UMLS semantic types. Therefore, further research is

required to automatically identify the relevant contexts when generating recommendations.

Our analysis also shows that in some cases, the polarities of different sentences relative to the

same contexts may not agree. Furthermore, in our analysis, we have ignored factors such as

side effects, duration of therapy/management (long term/short term), target populations and so

on. Often recommendations proposed by one research may be negated by other research papers.

In a fully functioning system, all these aspects must be taken into account, and the summaries

must indicate recommendations relative to all these aspects. Our work in this chapter is very

much the first steps in generating evidence-based, bottom-line recommendations. The success

of the polarity classification approach depends on the performances of a number of automatic

preprocessing steps, and also future research in the related fields mentioned. We discuss possible

future research directions below in this chapter, and also in the next and concluding chapter of

the thesis.
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6.4 Summary

In this chapter, we have investigated possible approaches for the generation of bottom-line

summaries. We first introduced several variants of coverage scores, and using them we compared

the differences in the extent to which various types of summaries and source abstracts contain

the same information as the bottom-line recommendations. We manually analysed the non-

covered elements from the different sets of summaries to check how much useful information

is lost during the single-document summary generation process. Our analysis showed that

human-authored summaries are superior as they contain all the important information in a very

compressed manner. In terms of automatic summaries, our summariser (QSpec), described in

the previous chapter, is capable of generating content-rich summaries by discarding significant

amounts of noise with very little loss in useful content. The Coverage Analysis, described in

section 6.2, showed that, although the QSpec summaries had lower coverage compared to the

human-authored summaries, most of the missing information was stylistic content and the amount

of useful missing information was quite low. Based on this analysis, we argued that there is

promise in a two-step summarisation approach, where the first step involves content selection

via query-focused, extractive, single-document summarisation, and the second step involves the

synthesis of information from the various single-document summaries.

In the second part of the chapter, we explored the applicability of two possible approaches for the

generation of bottom-line summaries from single-document summaries. We first explored the

possibility of using sentence fusion, which utilises the redundant information in texts from distinct

documents, to perform abstractive summarisation. Our experiments showed that the single-

document summary sentences exhibit relatively low inter-sentence similarities/redundancies,

which makes it difficult to apply redundancy reliant approaches for the task of bottom-line

summary generation. Following this, we investigated the possibility of using automatic sentence

level polarity classification using supervised machine learning for the task of bottom-line summary

generation. Our preliminary analysis, using manually annotated sentences and bottom-line

summaries showed that there is very high agreement among the two sets of context-sensitive

polarities. This suggests that if sentence level polarities can be automatically classified, they have

the potential of being used in bottom-line summary generation. Finally, we experimented with

supervised machine learning, using a small sample of manually annotated data and showed that it

is possible to obtain high accuracies using a combination of context-sensitive and context-free

features. Post-classification analysis also suggest that classification accuracies can be further

improved via the use of larger training data.

Our experiments in the second part of this chapter suggest that automatic classification of the

polarities of sentences is possible, and this approach can be used for the automatic generation of

abstractive bottom-line summaries. However, several related research problems must be solved
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before end-to-end systems generating bottom-line recommendations can be implemented. These

include the automatic identification of contexts, automatic identification of aspects (e.g., therapy

duration, side effects, different modes of treatment, and so on), and combining the polarities

of multiple sentences to predict the final recommendations. We leave these as future work and

discuss these in more detail in the next chapter.
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7.1 Thesis Contributions: A Summary

In this thesis, we introduced a model for the generation of automatic summaries for evidence-

based medicine. Our research was motivated by the time-associated obstacles hindering the

practice of evidence-based medicine. Evidence-based medicine guidelines urge practitioners

to obtain the best available medical evidence when answering clinical queries. The purpose of

relying on research evidence for decision making is to improve patient care in the long run through

the utilisation of patient-oriented evidence. Obtaining the best available evidence, and deriving

answers to clinical queries from them, requires practitioners to search for evidence, appraise the

quality of the evidence, extract query-relevant evidence, and synthesise evidence from multiple

source articles to generate a bottom-line answer. Because of the time consuming nature of

this elaborate process, it is often not possible to follow evidence-based medicine guidelines at

point-of-care. The possible automation of the various sub-processes of evidence-based answer

generation is thus very desirable.

In this thesis, we focused our research on utilising a specialised corpus for performing evidence-

based medicine summarisation. We analysed a corpus that was prepared by collecting data

from real life evidence-based medicine practice. The corpus enabled us to study the process of

evidence-based answer generation in detail and develop approaches specialised to the medical

domain. Our study of the corpus revealed that the process of evidence-based answer generation

involves several related steps. In particular, the data in our corpus suggests that there may be three

tasks involved, following the retrieval of relevant documents associated with a clinical query, to

generate bottom-line, evidence-based answers. These three steps are:

1. Extraction of query-relevant information from individual medical publications.

2. Synthesis of extracted information from multiple documents to generate bottom-line
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recommendations.

3. Appraisal of evidence and the grading of it on a chosen scale.

We addressed these three tasks in our work. We modelled the process of evidence appraisal as a

supervised classification task and applied machine learning algorithms to solve the classification

problem. For the task of extracting query-relevant information, we used a sentence level extractive

summarisation model. We derived various statistics from the corpus to rank sentences, and

the highest ranked sentences were chosen to be in the final summaries. We modelled the

task of generating bottom-line recommendations as an abstractive summarisation task, and we

applied automatic, sentence level, context-sensitive polarity classification to predict bottom-line

recommendations from the single-document, extractive summaries. Since the task of generation

of bottom-line recommendations relies on the single-document extracts, we applied a two-step

summarisation approach in our model.

The key contribution in this thesis is the presentation of models and algorithms that automate

the generation of evidence-based summaries from source texts. In particular, the thesis proposed

approaches for utilising domain-specific information in various ways for improving performance

on all the three tasks mentioned above. Furthermore, we extensively used statistics from our

annotated corpus, and the approaches we proposed are data-driven, rather than intuition oriented.

The presence of such specialised data also enabled us to devise automatic evaluation techniques

through which we evaluated the performance of various components against gold standards. In

the following subsections, we revisit the main characteristics of the work described in this thesis.

7.1.1 A Model for Appraising the Qualities of Evidence

In our corpus, each evidence-based answer is allocated a SORT grade (A, B or C) indicating

its quality. In our model, we considered these grades to be classes for the texts associated with

the grades, and applied supervised machine learning to automatically predict these grades. The

first step in our task was to identify important features that influence the qualities of evidence.

We discovered that the publication types of individual articles are useful predictors of evidence

grades, and the titles of articles are also useful. However, publication dates (years) and publication

venues (i.e., journal names) of individual articles are not useful predictors of evidence grades

according to our analysis.

Due to the importance of the information regarding the publication types of individual articles in

the grade classification process, we attempted to devise an automatic approach for identifying

the publication types of medical articles. We showed that a rule-based approach can efficiently

identify the publication types of high quality articles such as Systematic Reviews and Randomised
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Controlled Trials by utilising information from the article titles, abstracts, and the associated

meta-data. Automatic identification of lower quality publication types such as Case Studies

is more challenging since the article titles and abstracts often do not contain the necessary

information.

We applied supervised machine learning with automatically extracted features to perform the

grading task. We applied a sequence of classifiers that attempted to separate A and C grade

evidences from B grade ones. We obtained an accuracy of over 60% using this approach, which

was a significant improvement over the baseline. Our system participated in the 2011 ALTA

shared task [Mollá and Sarker, 2011] and obtained the top position, which illustrates the validity

and quality of this approach. We introduced an evaluation metric called Average Error Distance

(AED), which attempts to estimate the closeness of a system’s grades to actual grades, and

we showed that our sequential classification model achieves improved AEDs compared to the

baseline.

To conclude our research on this topic, we conducted a human evaluation and compared the

performance of our system with human experts. Our experiments revealed that when human

experts are given the same data as our machine learning algorithm, they only have moderate

agreement regarding the grades. The experiments also revealed that, although the performance

of the experts is comparable to our system, when compared against the gold standard, there are

still significant disagreements between the expert assigned grades, and the grades assigned by

our system. Based on our findings, we can conclude that supervised classification is a promising

approach for automatic grade recommendations. Our evaluations suggested that it may not be

possible for an evidence grading system to markedly improve on the performance using the data

that is currently available because of the relatively low human-human agreements. Our evaluations

also showed that human-human agreements are higher than human-system agreements. This

suggests that minor improvements can perhaps be made to the system, using the current data, to

increase its agreement with the human experts.

7.1.2 A Model for Content Selection via Query-focused, Extractive Summarisa-
tion

We applied a simple, data-driven sentence extraction model for the summarisation task. We

divided our specialised corpus into two parts — one for obtaining statistics and the other for

evaluation. From the source documents in the training set, we generated the best three sentence

summaries. We then used these best sentences, and the human generated summaries associated

with each source document, to compute various statistics which we used for summarisation. We

used features such as relative sentence positions, sentence lengths, the PIBOSO classifications of

sentences, similarities between sentences and the associated queries, the semantic types present
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in sentences, and the semantic associations between sentences and the associated queries. For

the sentence classification problem, we designed a classifier that obtained second position in the

2012 ALTA shared task1. We showed that using carefully extracted statistics from a specialised

corpus significantly improves summarisation performance. We applied a strategy, which we

call target-sentence-specific summarisation. Using this strategy, we applied different statistics

for different target summary sentences. We also modified the Maximal Marginal Relevance

approach to enable concept matches, and significantly utilised available domain knowledge.

Furthermore, we showed that customising the summarisation technique to the type of question

improves summarisation performance.

We used the automatic summary evaluation tool ROUGE to evaluate our extractive summaries

relative to the human generated summaries. We compared our summarisation system to various

established baselines for this domain using a percentile-rank based approach. The best ROUGE-L

F-score obtained by our system is a statistically significant improvement over the best performing

baseline system, and has a percentile rank of 96.8%.

7.1.3 A Model for the Generation of Bottom-line Recommendations from Single-
document Extracts

We explored possible approaches for the generation of bottom-line recommendations, and the

possibility of using single-document summaries, rather than full source abstracts, to generate

the final recommendations. For our investigation, we introduced several variants of coverage

scores, and using them we compared the differences in the extent to which various types of

summaries and source abstracts contain the information from the bottom-line recommendations.

Our analysis showed that our single-document summariser (QSpec) is capable of generating

content-rich summaries by discarding significant amounts of noise. Our scrutiny of the uncovered

elements from this analysis showed that only a small percentage of useful content is lost during

the summarisation task by QSpec. Based on this analysis, we argued that there is promise in

a two-step summarisation approach, where the first step involves content selection via query-

focused, extractive, single-document summarisation, and the second step involves the synthesis

of information from the various single-document summaries.

We investigated the applicability of two possible approaches for the generation of bottom-line

summaries from single-document summaries. We first explored the possibility of using sentence

fusion, which utilises the redundant information in texts from distinct documents, to perform

abstractive summarisation. Our experiments showed that the single-document summary sentences

exhibit relatively low inter-sentence similarities/redundancies, which makes it difficult to apply

1http://www.alta.asn.au/events/sharedtask2012/. Accessed on 26th May, 2014.
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redundancy reliant approaches for the task of bottom-line summary generation. Following this,

we investigated the possibility of using automatic sentence level polarity classification using

supervised machine learning for the task of bottom-line summary generation. We experimented

with supervised machine learning, using a small sample of manually annotated data and showed

that it is possible to obtain high accuracies using a combination of context-sensitive and context-

free features. Our post-classification analysis suggested that classification accuracies can be

further improved via the use of larger training data.

7.2 Future Work

In this section, we briefly discuss possible future work that we envision based on the research

described in this thesis.

7.2.1 Automatic Retrieval of Relevant Documents

In our work, we provide our system with the relevant documents. Thus, our system operates under

the assumption that an IR process identifies the relevant documents and filters out unimportant

documents. For future work, it will be interesting to integrate an IR system and explore the

impact of using automatically retrieved documents as inputs to our system. It is likely that this

approach of selecting documents will introduce noise, negatively affecting the performance of

our system. However, they may also introduce redundancies that can be exploited to build the

final summaries.

7.2.2 Improving Automatic Evidence Grading

Our experiments on evidence grading verified that a supervised classification model can be

effectively applied to automate the process. Our evaluations revealed that the performance of

our approach is comparable to human performance on the same data (when compared against

the gold standard). However, we also discovered that inter-human agreements for the grades are

higher than system-human agreements. This suggests that there is room for modifications to the

approach, which can increase the system-human agreements. In our supervised classification

strategy, we incorporated publication types, word n-grams and title n-grams as features. When

human experts perform the grading, they take into account more factors. These include, among

other things, the sizes of studies, the type of evidence (i.e., patient-oriented/disease-oriented), and

consistency of outcomes between distinct studies. Solving each of these problems individually

are interesting tasks for the future. It is possible that if each of these problems can be solved,

similar to our approach to identify the publication types of medical papers, the outputs of these
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processes can be plugged into our classification algorithm. However, these are also difficult

problems to solve. We have attempted to incorporate consistency information by identifying

document-level polarity classification [Sarker et al., 2011], but the results are not sufficiently

good to utilise that approach as an intermediate step in the evidence grading task. Attempting to

solve these intermediate problems and incorporating the results of these tasks in the evidence

grading approach will be very interesting future challenges to pursue.

7.2.3 Improving Content Extraction from Single Documents

Our extractive summarisation approach showed excellent performance compared to baseline and

benchmark systems. There is, however, still room for improvement. We used various intermediate

steps to generate the features for our summarisation task. These include automatic sentence

classification and question classification. It will be interesting future research to investigate how

the performance of our summarisation module is affected if improvements in these intermediate

steps can be achieved.

We used a medium sized corpus for our research. Thus, for some of the features, there was little

data available for the generation of statistics. For example, in our query type dependent scores,

we generated statistics for each question type. For some of the question types, such as History

and Device, our corpus only contained a few samples. Having a larger corpus would make the

statistics associated with sparse data more reliable. Thus, future research should focus on the

generation of more annotated data, such that sufficient data is available for the generation of the

various statistics.

Our summariser generates three sentence extracts. There are, however, cases when three sentences

are not sufficient to cover all the information required to generate bottom-line recommendations.

Thus, long term future research should investigate the possibility of generating single-document

abstractive summaries that combine required information from more than just three sentences.

7.2.4 Bottom-line Summary Generation

Our experiments on predicting bottom-line recommendations from single-document extracts

produced promising results, suggesting that context-sensitive polarity classification is a possible

approach for the generation of bottom-line recommendations. However, applying this approach

in real life evidence-based medicine practice requires solving several related problems. We now

briefly discuss some possible future work in this area.
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Annotation of Data

In Chapter 6, our sentence level polarity classification experiments clearly indicated that the

availability of large amounts of annotated data will increase the performance of the classification

strategy. Thus, the most important future task that we would like to undertake is the annotation

of large volumes of data which can be utilised in the supervised classification task.

Automatic Identification of Context Interventions

In our context-sensitive polarity classification approach, we manually specified the context-

interventions. In a fully automatic recommendation generation system, the interventions need

to be automatically identified. Our brief analysis suggested that automatic identification of the

context interventions is a difficult task. So, it will be very important to focus future research on

investigating techniques for the automatic identification of candidate context interventions from

sentences.

Cross-sentence polarities

Finally, a small number of mistakes in the recommendations generated by our system were

due to conflicting information presented in distinct sentences. Future research should focus on

investigating approaches for combining multiple sentence level polarities associated with the

same context interventions.

7.3 Final Words

This thesis described computational models for the core aspects of automatic evidence-based

text summarisation. Our research identified the key tasks associated with evidence-based answer

generation and proposed models for two crucial tasks: automatic appraisal of evidence and

automatic bottom-line recommendation generation. The new insights gained from this research

take us closer towards a fully automated Question Answering system that can take natural

language questions as input and generate bottom-line recommendations in response.
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A Sample PubMed Abstract

<?xml version=’1.0’ encoding=’utf-8’?>

<!DOCTYPE PubmedArticleSet PUBLIC "-//NLM//DTD PubMedArticle,

1st January 2011//EN"

"http://www.ncbi.nlm.nih.gov/entrez/query/DTD/pubmed_110101.dtd">

<pubmedarticleset>

<pubmedarticle>

<medlinecitation owner="NLM" status="MEDLINE">

<pmid version="1">

8600478

</pmid>

<datecreated>

<year>

1996

</year>

<month>

05

</month>

<day>

01

</day>

</datecreated>

<datecompleted>

<year>

1996

</year>

<month>
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05

</month>

<day>

01

</day>

</datecompleted>

<daterevised>

<year>

2009

</year>

<month>

11

</month>

<day>

19

</day>

</daterevised>

<article pubmodel="Print">

<journal>

<issn issntype="Print">

0033-3174

</issn>

<journalissue citedmedium="Print">

<volume>

57

</volume>

<issue>

6

</issue>

<pubdate>

<medlinedate>

1995 Nov-Dec

</medlinedate>

</pubdate>

</journalissue>

<title>

Psychosomatic medicine

</title>
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<isoabbreviation>

Psychosom Med

</isoabbreviation>

</journal>

<articletitle>

Nonpharmacological management of headaches during pregnancy.

</articletitle>

<pagination>

<medlinepgn>

527-35

</medlinepgn>

</pagination>

<abstract>

<abstracttext>

Concerns about the effects of maternal medications on the

growing baby limit the use of medication treatment for benign

conditions, such as recurring headaches, during pregnancy and

lactation. Nonpharmacological therapies hold particular promise

for pregnant women due to the limited medication options. No

controlled studies, however, have reported on the efficacy of

nonpharmacological treatments for pregnant women. The first study

evaluated the effectiveness of a combined nonpharmacological

treatment (CT) consisting of relaxation, skin-warming biofeedback,

and physical therapy for pregnant women with chronic headaches.

In a second study, the CT protocol was compared with an attention

control (AC) that received headache education and skin-cooling

biofeedback. The first study resulted in significant symptom improvement

in 79% of subjects, with an overall 72.9% reduction in headaches. In the

second study, both groups improved with treatment; however the CT

group was more likely to experience significant headache relief

(72.7%) than the AC group (28.6%, chi 2(1) = 4.97, p &lt; .03).

Significant improvement was maintained at a 6-month follow-up

for over 50% of patients. It is concluded that the combined

nonpharmacological treatment was more effective than an attention

control in reducing headaches during pregnancy. This treatment was

effective regardless of predisposing variables.

</abstracttext>

</abstract>
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B Important Question and Answer
Semantic Types

Here we present the important question and answer semantic types, for each of the twelve

categories of questions, that we identified during our analysis explained in Section 5.4.3. These

semantic types are utilised when performing sentence scoring using semantic associations.

Treatment and Prevention:
Important question semantic types: topp, dsyn, phsu, hlca, orch, strd, sosy, mobd, bacs, mobd,

inpo, fndg, ftcn, acab, anab

Important answer semantic types: phsu, topp, orch, acty, gngm, aggp, sosy, hlca, resa, ftcn, inpr,

podg, spco, idcn, popg, dsyn, fndg

Diagnosis:
Important question semantic types: diap, dsyn, fndg, patf, lbpr, medd, hlca, ftcn, sosy, mnob,

inpo, idcn, orch, bsoj, blor, bdsy, bpoc, bdsu

Important answer semantic types: diap, lbpr, patf, dsyn, clna, fndg, bpoc, hlca, sosy, ftcn, popg,

spco, inpr, aggp, resa, acty, topp, phsu, orch

History:
Important question semantic types: ocdi, imft, aapp, sosy, podg, popg, sosy

Important answer semantic types: irda, menp, patf, bodm, sosy, cnce, dsyn, podg, clna, idcn, acty,

ftcn, diap, lbpr, resa, fndg, orch, topp, phsu

Etiology:
Important question semantic types: bdsu, cnce, bmod, socb, lbpr, antb, mobd, sosy, orch, hlca,

ftcn, dsyn
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Important answer semantic types: antb, inpr, aapp, orch, dsyn, patf, cnce, lbpr, hlca, aggp, popg,

phsu, podg, ftcn, fndg, acty

Pharmacological:
Important question semantic types: antb, strd, orch, phsu, bacs, podg, patf, dsyn, bpoc, orgf,

popg, topp, ftcn, sosy, aggp, fndg

Important answer semantic types: antb, orch, phsu, resa, podg, ftcn, inpr, idcn, topp, spco, aggp,

dsyn, popg, fndg, strd, bacs

Prognosis:
Important question semantic types: bmod, strd, podg, lbpr, spco, orch, fndg, inpr, ftcn, phsu, idcn,

dsyn, acty, topp, hlca

Important answer semantic types: acty, bmod, menp, podg, lbpr, hlca, ftcn, fndg, dsyn, qlco, orch,

idcn, phsu, topp, sosy, aggp

Management:
Important question semantic types: orga, carb, ocac, cnce, spco, dora, inpo, fndg, idcn, bpoc,

sosy, orgf, aggp, podg, menp, ftcn, dsyn, orch, patf, hlca, popg, topp, phsu

Important answer semantic types: diap, gngm, bpoc, fndg, dsyn, podg, hlca, idcn, aggp, inpr, ftcn,

sosy, popg, acty, resa, topp, orch

Physical Finding:
Important question semantic types: clna, prog, vita, virs, orga, blor, patf, inch, cnce, diap, sosy,

socb, orgf, hlca, food, orch, menp, topp, popg, ftcn, dsyn, podg, phsu

Important answer semantic types: aggp, lbpr, prog, orgf, orga, horm, patf, fndg, diap, idcn, hlca,

inpr, sosy, popg, topp, dsyn, ftcn, acty, resa, podg

Epidemiology:
Important question semantic types: carb, virs, orga, bmod, hlca, socb, neop, inpr, bacs, strd,

menp, sosy, idcn, podg, dsyn, popg, fndg, phsu, aggp, ftcn

Important answer semantic types: carb, inpo, sosy, orgf, horm, orga, podg, dsyn, bpoc, hlca, diap,

inpr, fndg, lbpr, fndg, lbpr, ftcn, idcn, phsu, acty, topp, orch

Test:
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Important question semantic types: lbpr, neop, hlca, orga, diap, socb, medd, mnob, patf, bacs,

idcn, aggp, fndg, bpoc, dsyn, ftcn, popg, sosy, podg, phsu

Important answer semantic types: lbpr, diap, hlca, clna, dsyn, fndg, bpoc, popg, gngm, orga, ftcn,

podg, aggp, idcn, inpr, resa, acty, topp, phsu, orch, neop

Device:
Important question semantic types: medd, phpr, mnob, dsyn

Important answer semantic types: phpr, medd, antb, patf , blor, popg, topp, fndg, bpoc, hlca, orch,

resa, inpr, dsyn

Procedure:
Important question semantic types: acty, bmod, bodm, inpo, mnob, orga, blor, inbe, inch, neop,

topp, patf, bpoc, idcn, diap, medd, popg, aggp, strd, orgf, hlca, lbpr, podg, fndg, dsyn, orch, ftcn,

resa, hlca, inpr

Important answer semantic types: bmod, neop, orga, parf, diap, mnob, fndg, topp, dsyn, podg,

popg, spco, bpoc, acty, idcn, ftcn, resa, hlca, inpr, phsu
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Question: Can nonantidepressants help treat depression?

QSpec summary: An attempt was made to identify all placebo-controlled trials of lithium

augmentation in refractory depression. Aggregating three studies with a total of 110 patients that

used a minimum lithium dose of 800 mg/day, or a dose sufficient to reach lithium serum levels

of > or = 0.5 mEq/L, and a minimum treatment duration of 2 weeks, the authors found that the

pooled odds ratio of response during lithium augmentation compared with the response during

placebo treatment was 3.31 (95% confidence interval, 1.46-7.53). The authors conclude from

this meta-analysis that with respect to efficacy, lithium augmentation is the first-choice treatment

procedure for depressed patients who fail to respond to antidepressant monotherapy.

Human authored summary: A meta-analysis concluded that a lithium dose sufficient to

produce serum levels of at least 0.5 mEq/L and a minimum treatment duration of 2 weeks resulted

in a pooled OR of response to lithium augmentation compared with placebo of 3.31 (95% CI,

1.46-7.53). Lithium augmentation is a reasonable alternative for depressed patients who don’t

respond to conventional antidepressants.

PubMed ID: 10505584

Question: Do topical antibiotics improve wound healing?

223



Appendix C. Sample Single-document Summaries

QSpec summary: Triple antibiotic ointment, containing bacitracin, polysporin, and neomycin,

was compared to placebo ointment. Infection occurred significantly more often in children

using placebo ointment than in those using topical antibiotic (47% vs. 15%; p = 0.01). This

study further confirms the importance of skin carriage of group A streptococci as a precursor to

pyoderma and demonstrates the importance of minor skin trauma as a predisposing factor.

Human authored summary: A double-blind study of 59 patients found Neosporin superior to

placebo ointment in the prevention of streptococcal pyoderma for children with minor wounds.

Infection occurred in 47% of placebo-treated children compared with 15% treated with the

triple-antibiotic ointment (NNT=32; P=.01).

PubMed ID: 2995463

Question: Do topical antibiotics improve wound healing?

QSpec summary: To evaluate the ability of a novel topical antimicrobial gel containing cetrim-

ide, bacitracin, and polymyxin B sulfate to prevent infections of minor wounds. Accidental

injuries occurring at school were treated in a standardized manner by nurses at each site. The

novel gel preparation containing cetrimide, bacitracin, and polymyxin B sulfate showed therapeu-

tic action and reduced the incidence of clinical infections in minor accidental wounds.

Human authored summary: A clinical trial compared the efficacy of a cetrimide, bacitracin

zinc, and polymyxin B sulfate gel (a combination not available in the US) with placebo and

povidone-iodine cream in preventing infections in 177 minor wounds (cuts, grazes, scrapes, and

scratches) among children. The antibiotic gel was found to be superior to placebo and equivalent

to povidone-iodine, in that it reduced clinical infections from 12.5% to 1.6% (absolute risk

reduction [ARR]=0.109; 95% confidence interval [CI], 0.011-0.207; NNT=11).

PubMed ID: 9161648
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Question: Do topical antibiotics improve wound healing?

QSpec summary: We compared mupirocin cream with oral cephalexin in the treatment of

wounds such as small lacerations, abrasions, or sutured wounds. In 2 identical randomized

double-blind studies, 706 patients with secondarily infected wounds (small lacerations, abrasions,

or sutured wounds) received either mupirocin cream topically 3 times daily or cephalexin orally

4 times daily for 10 days. The occurrence of adverse experiences related to study treatment was

similar for the 2 groups, with fewer patients in the mupirocin cream group reporting diarrhea

(1.1% vs 2.3% for cephalexin).

Human authored summary: A study with 2 parallel, identical RCTs of a total of 706 patients

found mupirocin cream (Bactroban) to be equivalent to oral cephalexin in the treatment of

secondarily infected minor wounds, such as small lacerations, abrasions, or sutured wounds.

Clinical success (95.1% for mupirocin and 95.3% for cephalexin), bacteriologic success (96.9%

for mupirocin and 98.9% for cephalexin), as well as the intention-to-treat success rate of 83% at

follow-up were equivalent in the 2 groups.

PubMed ID: 9866667

Question: Should you use steroids to treat infectious mononucleosis?

QSpec summary: To evaluate the efficacy of a single oral dose of dexamethasone for pain relief

in acute exudative pharyngitis associated with infectious mononucleosis. Patients aged between 8

and 18 years with a sore throat from clinically suspected infectious mononucleosis were eligible.

The short-lived relief of pain in acute exudative pharyngitis in children with suspected infectious

mononucleosis may suggest that a single oral dose of dexamethasone may not be sufficient and

that additional doses may be necessary for ensuring lasting relief.

Human authored summary: In an RCT of 40 patients, 1 dose of dexamethasone reduced

throat pain at 12 hours in 60% of the treatment group, compared with placebo. However, no

significant differences were noted at 1 and 7 days.
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Appendix C. Sample Single-document Summaries

PubMed ID: 14993084

Question: How effective are pharmacologic agents for alcoholism?

QSpec summary: Nalmefene is a newer opioid antagonist that is structurally similar to nal-

trexone but with a number of potential pharmacological advantages for the treatment of alcohol

dependence, including no dose-dependent association with toxic effects to the liver, greater oral

bioavailability, longer duration of antagonist action, and more competitive binding with opioid

receptor subtypes that are thought to reinforce drinking. Significantly fewer patients treated with

nalmefene than patients given placebo relapsed to heavy drinking through 12 weeks of treatment

(P<.02), with a significant treatment effect at the first weekly study visit (P<.02). Treatment

with nalmefene was effective in preventing relapse to heavy drinking relative to placebo in

alcohol-dependent outpatients and was accompanied by acceptable side effects.

Human authored summary: Naltrexone (50 mg qd), nalmefene (10-80 mg qd), and acam-

prosate (dose based on patient weight) are all superior to placebo and other agents such as the

SSRIs, disulfiram, and serotonergic agents in reducing relapse rates and the phenomena of craving

and in increasing abstinence rates.

PubMed ID: 10435606

Question: What medications are effective for treating symptoms of premenstrual syndrome

(PMS)?

QSpec summary: Forty women with premenstrual tension received either placebo, 100, 200 or

400 mg danazol daily for 3 months in a pilot study arranged as a double-blind trial. In patients

treated with danazol, symptom scores for breast pain during the second and third months and for

irritability, anxiety and lethargy during the third month were significantly (P less than 0.05) lower

than scores in those given placebo. By the end of the trial more than 75% of patients who were

still taking danazol were essentially free of breast pain, lethargy, anxiety and increased appetite,

but results for other common symptoms were no better than with placebo.
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Human authored summary: Gonadotropin-releasing hormone agonists may be effective, but

troublesome anti-estrogenic side effects limit their utility. Estrogen and progesterone “add-back"

therapy to counter side effects further complicates this approach. The gonadotropin inhibitor

danazol has a high treatment dropout rate at higher doses 200-400 mg/d continuously, but can be

effective in individuals who are able to tolerate it.

PubMed ID: 3545282
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D List of Words for the Change Phrases
Features

This list shows the list of good, bad, more and less words that were used for the change phrases

features.

Good:
benefit, beneficial, improve, advantage, resolve, good, fantastic, relief, superior, efficacious,

effective, improve effectiveness, importance of protecting, significant advantage, significant

therapeutic advantage, may be effective, effective approach, simple and effective, simple and

effective treatment, safe, well tolerated, well-tolerated, useful, maybe useful, illustrate the bene-

fits, significant improvement, significantly improve, clinically worthwhile, worthwhile, recover

rapid, satisfactory outcome, satisfactory, similarly effective, supports, approve, more effective,

high efficacy, cured, vitality, relaxing, benefit, tolerability, improvement right, effective, stable,

best, better, pleasurable, relaxation, favour, beneficial, safety, prevents, successful satisfaction,

significant, superior, contributions, reliability, robust, tolerated, improving, survival, favourable,

reliable, recovered, judiciously, consciousness, efficacy, prevented, satisfied, prevent, advantage,

encouraging, tolerance, success, significance, improve, improvements

Bad:
complication, risk, adverse, mortality, morbidity, death, fatal, danger, no benefit, discourage,

short-term risk, long-term risk, damage, ineffective, suffer, depression, acute, sore, outpatient,

disabling, diabetes, difficulties, dysfunction, distorted, poorer, unable, prolonged, irritation,

disruptive, pathological, mutations, disease, infection, harms, difficulty, weakened, inactive, stres-

sors, hypertension, adverse, insomnia, relapsing, malignant, suffer, exacerbate, dryness, fever,

overestimate, constipation, deposition, colic, tension, hazards, diarrhoea, weakness, irritability, in-

sidious, distress, weak, cancer, emergency, risk, block, unsatisfactory, blinding, nausea, traumatic,

wound, intention, loses, intensive, relapse, recurrent, extension, die, cancers, malaise, crying,
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Appendix D. List of Words for the Change Phrases Features

toxic, injury, confounding, complaints, misuse, insignificant, poisoning, anoxic, amputation,

death, nightmares, deteriorate, fatal, injuries, fatigue, invasive, suicide, chronic, relapsed, distur-

bances, confusion, died, fluctuating, severities, delusions, compulsions, conflict, trauma, cried,

impair, severe, tremor, weaker, illness, inpatients, worry, rebound, worse, reversible, dizziness,

attacks, pointless, disorders, dyskinesia, risks, fatty, negative, conflicting, upset, fishy, hard, harm,

bleeding, inflammatory, hampered, underpowered, obstruction, headache, problem, bleeds, panic,

loss, odds, retardation, dysfunctional, render, difficult, drowsiness, lack, suicidal, obsessions,

impaired, cough, severity, suffering, violent, strokes, virus, stroke, flatulence, fibrates, blind,

burning, faintness, suffered, threatening, misdiagnosing, bitter, excessive, diabetics, malfunction,

abnormal, deterioration, bad, confounded, sadness, mortality, disturbance, agitated, attack, infec-

tions, negativistic, deaths, poor, wrong, worsening, adversely, insufficient, scarring, headaches,

disability, overdose, serious, delayed, discomfort, sweating, morbidity, nerve, parkinson, toxicity,

nervous, pain, stress, weakens, incorrect, disorder, worsened, malformations, blinded, rigidity,

prolong, adversity, abuse, lacked, dyspepsia, sads, onset, failure, inadequate, sensitivity, impair-

ment, dementia, harmful

More:
enhance, augment, increase, amplify, raise, boost, add to, higher, exceed, rise, go up, surpass,

more, additional, extra, added, greater, positive, high, prolong, increase, enhance, elevation,

higher, exceed, enhancement, peaked, more, excess

Less:
drop, fewer, slump, fall, down, pummel, less, lower, low, decrease, reduce, decline, descend,

collapse, fail, subside, lesser, poorer, worse, smaller, negative, prevent, reduce, prevent, below,

lower, decrease, fall, low, reduce, decline, less, little, mild, drop, fewer
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