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What is statistical learning?

I Statistical learners learn from statistical distributional
properties of input

I not just whether something occurs (logical learning),
but how often

I assumes input follows some (unknown) probability
distribution

I Statistical learning (a.k.a. machine learning) is a
separate field

I mathematical theories relating learning goal with
statistics

I most informative statistic depends on:
I what learner is trying to learn
I current state of learner

I much more than transitional probabilities!

Vapnik (1998) Statistical Learning Theory



Statistical learning and implicit negative
evidence

I Logical approach to acquisition
L1

L2
I No negative evidence
⇒ subset problem: guess L2 when true lg is L1

I Statistical approach to learning
I if L2 − L1 is expected to occur but doesn’t

⇒ L2 is probably wrong
I implicit negative evidence
I succeeds where logical learning fails (e.g., PCFGs)

I stronger input assumptions (follows distribution)
I weaker success criteria (probabilistic)

I Both logic and statistics are kinds of inference
I statistical inference uses more information from input



Units of generalization in learning

1. Colorless green ideas sleep furiously.
2. *Furiously sleep ideas green colorless.

I Both sentences have zero frequency
⇒ frequency 6= well-formedness

I Hidden class bigram model

P(colorless green ideas sleep furiously)

= P(colorless)P(green|colorless) . . .

= 2 × 105 × P(furiously sleep ideas green colorless)

Chomsky (1957) Syntactic Structures
Pereira (2000) “Formal grammar and information theory: Together again?”



What are the right units of generalization?
I grammars are tools for investigating different units of

generalization
I grammars can model wide variety of phenomena

I various types of grammatical dependencies
I word segmentation (Brent)
I syllable structure (Goldwater and Johnson)
I morphological dependencies (Goldsmith)
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Why grammars?

1. Useful for both production and comprehension
2. Compositional representations seem necessary for

semantic interpretation
3. Curse of dimensionality: the number of possibly related

entities grows exponentially
I 1,000 words = 1,000 unigrams, 1,000,000 bigrams,

1,000,000,000 trigrams, . . . (sparse data)
I grammars identify relationships to generalize over
I sparse data problems are more severe with larger,

more specialized representations
4. “Glass-box” models: (you can see inside)

the learner’s assumptions and conclusions are
explicit
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Probabilistic Context-Free Grammars

I The probability of a tree is the product of the
probabilities of the rules used to construct it

1.0 S → NP VP 1.0 VP → V
0.75 NP → George 0.25 NP → Al
0.6 V → barks 0.4 V → snores
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There are stochastic variants of most
grammars

I Grammar generates candidate structures
(e.g., string of words, trees, OT candidates,
construction grammar analyses, minimalist
derivations, . . . )

I Associate numerical weights with configurations that
occur in these structures

I pairs of adjacent words
I rules used to derive structure
I constructions occuring in structure
I P&P parameters (e.g., HEADFINAL)

I Combine (e.g., multiply) the weights of
configurations occuring in a structure to get its score

Abney (1997) “Stochastic Attribute-Value Grammars”
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Learning as optimization

I Pick a task that the correct grammar should be able to
do well

I predicting sentences and their structures (supervised
learning)

I predicting the (next) words in sentences
(unsupervised learning)

I Find weights that optimize performance on task
I Searching for optimal weights is usually easier than

searching for optimal categorical grammars

Rummelhart and McClelland (1986) Parallel Distributed Processing
Tesar and Smolensky (2000) Learnability in Optimality Theory



Learning PCFGs from trees (supervised)
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Rule Count Rel Freq
S → NP VP 3 1
NP → rice 2 2/3
NP → corn 1 1/3
VP → grows 3 1

Rel freq is maximum likelihood estimator
(selects rule probabilities that
maximize probability of trees)
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Learning from words alone (unsupervised)
I Training data consists of strings of words w
I Optimize grammar’s ability to predict w: find

grammar that makes w as likely as possible
I Expectation maximization is an iterative procedure for

building unsupervised learners out of supervised
learners

I parse a bunch of sentences with current guess at
grammar

I weight each parse tree by its probability under
current grammar

I estimate grammar from these weighted parse trees as
before

I Each iteration is guaranteed not to decrease P(w) (but
can get trapped in local minima)

Dempster, Laird and Rubin (1977) “Maximum likelihood from incomplete
data via the EM algorithm”



Expectation Maximization with a toy
grammar

Initial rule probs
rule prob
· · · · · ·
VP → V 0.2
VP → V NP 0.2
VP → NP V 0.2
VP → V NP NP 0.2
VP → NP NP V 0.2
· · · · · ·
Det → the 0.1
N → the 0.1
V → the 0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·



Probability of “English”
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Rule probabilities from “English”
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Probability of “Japanese”

Iteration

Geometric
average
sentence

probability

543210

1

0.1

0.01

0.001

1e-04

1e-05

1e-06



Rule probabilities from “Japanese”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability
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Statistical grammar learning

I Simple algorithm: learn from your best guesses
I requires learner to parse the input

I “Glass box” models: learner’s prior knowledge and
learnt generalizations are explicitly represented

I Optimization of smooth function of rule weights ⇒
learning can involve small, incremental updates

I Learning structure (rules) is hard, but . . .
I Parameter estimation can approximate rule learning

I start with “superset” grammar
I estimate rule probabilities
I discard low probability rules



The importance of starting small

I EM works by learning from its own parses
I Each parse is weighted by its probability
I Rules used in high-probability parses receive strong

reinforcement
I In grammar-based models, ambiguity grows with

sentence length
I longer sentences are typically highly ambiguous
⇒ lower average parse probability
⇒ less clear information about which rules are most

useful
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Applying EM learning to real language
I ATIS treebank consists of 1,300 hand-constructed

parse trees
I ignore the words (in this experiment)
I about 1,000 PCFG rules are needed to build these

trees
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.



Training from real language

1. Extract productions from trees and estimate
probabilities probabilities from trees to produce
PCFG.

2. Initialize EM with the treebank grammar and MLE
probabilities

3. Apply EM (to strings alone) to re-estimate
production probabilities.

4. At each iteration:
I Measure the likelihood of the training data and the

quality of the parses produced by each grammar.
I Test on training data (so poor performance is not due

to overlearning).



Probability of training strings

Iteration

log P

20151050
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Accuracy of parses produced using the learnt
grammar

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7



Discussion

I Predicting words 6= finding correct structure
I Why didn’t the learner find the right structures?

I Grammar ignores semantics (Zettlemoyer and Collins)
I Predicting words is wrong objective
I Wrong kind of grammar (Klein and Manning)
I Wrong training data (Yang)
I Wrong learning algorithm (much work in CL and ML)

de Marken (1995) “Lexical heads, phrase structure and the induction of
grammar”
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Summary

I Statistical learning extracts more information from input
I Curse of dimensionality: something must guide learner

to focus on correct generalizations
I Stochastic versions of most kinds of grammar
I Statistical grammar learning combines:

I compositional representations
I optimization-based learning

I Glass box: grammars use explicit representations
I generalizations learnt
I prior knowledge assumed
I predicting the input 6= correctly analysing the input

I Applied to psycholinguistics (Jurafsky, Crocker)

I Should be useful for child language



Bayesian learning

I A statistical learning framework that integrates:
I likelihood of the data (prediction)
I bias or prior knowledge (e.g., innate constraints)

I “hard” priors ignore some analyses, focus on others
I “soft” priors bias learner toward certain hypotheses

I markedness constraints (e.g., syllables have onsets)
I can be over-ridden by sufficient data

I evaluate different kinds of universals



Grammars in computational linguistics

1980s: hand-written linguistic grammars on
linguistically interesting examples

early 1990s: simple statistical models dominate speech
recognition and computational linguistics

I they can learn
I corpus-based evaluation methodology

late 1990s: techniques for statistical learning of
probabilitstic grammars

today: loosely linguistic grammar-based approaches
are competitive, but so are
non-grammar-based approaches
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