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High-level overview

• Probability distributions and graphical models

• (Probabilistic) finite state machines and context-free grammars

– computation (dynamic programming)

– estimation

• Log-linear models

– stochastic unification-based grammars

– reranking parsing

• Weighted CFGs and proper PCFGs
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Topics

• Graphical models and Bayes networks

• (Hidden) Markov models

• (Probabilistic) context-free grammars and finite-state machines

• Computation with and estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Features in reranking parsing

• Stochastic unification-based grammar

• Weighted CFGs and proper PCFGs
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What is computational linguistics?

Computational linguistics studies the computational processes involved in

language production, comprehension and acquisition.

• assumption that language is inherently computational

• scientific side:

– modeling human performance (computational psycholinguistics)

– understanding how it can be done at all

• technological applications:

– speech recognition

– information extraction (who did what to whom) and question answering

– machine translation (translation by computer)
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(Some of the) problems in modeling language

+ Language is a product of the human mind

⇒ any structure we observe is a product of the mind

− Language involves a transduction between form and meaning, but we don’t

know much about the way meanings are represented

+/− We have (reasonable?) guesses about some of the computational processes

involved in language

− We don’t know very much about the cognitive processes that language

interacts with

− We know little about the anatomical layout of language in the brain

− We know little about neural networks that might support linguistic

computations
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Aspects of linguistic structure

• Phonetics: the (production and perception) of speech sounds

• Phonology: the organization and regularities of speech sounds

• Morphology: the structure and organization of words

• Syntax: the way words combine to form phrases and sentences

• Semantics: the way meaning is associated with sentences

• Pragmatics: how language can be used to do things

In general the further we get from speech, the less well we understand what’s

going on!
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Aspects of syntactic and semantic structure
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• Anaphora: it refers to baked beans

• Predicate-argument structure: the students is agent of eat

• Discourse structure: second clause is contrasted with first

These all refer to phrase structure entities! Parsing is the process of recovering

these entities.
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A very brief history

(Antiquity) Birth of linguistics, logic, rhetoric

(1900s) Structuralist linguistics (phrase structure)

(1900s) Mathematical logic

(1900s) Probability and statistics

(1940s) Behaviorism (discovery procedures, corpus linguistics)

(1940s) Ciphers and codes

(1950s) Information theory

(1950s) Automata theory

(1960s) Context-free grammars

(1960s) Generative grammar dominates (US) linguistics (Chomsky)

(1980s) “Neural networks” (learning as parameter estimation)

(1980s) Graphical models (Bayes nets, Markov Random Fields)

(1980s) Statistical models dominate speech recognition

(1980s) Probabilistic grammars

(1990s) Statistical methods dominate computational linguistics

(1990s) Computational learning theory
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Topics

• Graphical models and Bayes networks

• (Hidden) Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Probability distributions

• A probability distribution over a countable set Ω is a function P : Ω → [0, 1]

which satisfies 1 =
∑

ω∈Ω P(ω).

• A random variable is a function X : Ω → X . P(X=x) =
∑

ω:X(ω)=x

P(ω)

• If there are several random variables X1, . . . , Xn, then:

– P(X1, . . . , Xn) is the joint distribution

– P(Xi) is the marginal distribution of Xi

• X1, . . . , Xn are independent iff P(X1, . . . , Xn) = P(X1) . . .P(Xn),

i.e., the joint is the product of the marginals

• The conditional distribution of X given Y is P(X|Y ) = P(X,Y )/P(Y )

so P(X,Y ) = P(Y )P(X|Y ) = P(X)P(Y |X) (Bayes rule)

• X1, . . . , Xn are conditionally independent given Y iff

P(X1, . . . , Xn|Y ) = P(X1|Y ) . . .P(Xn|Y )
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Bayes inversion and the noisy channel model

Given an acoustic signal a, find words ŵ(a) most likely to correspond to a

w?(a) = arg max
w

P(W = w|A = a)

P(A)P(W |A) = P(W,A) = P(W )P(A|W )

P(W |A) =
P(W )P(A|W )

P(A)

w?(a) = arg max
w

P(W = w)P(A = a|W = w)

P(A = a)

= arg max
w

P(W = w)P(A = a|W = w)

Language model

Acoustic model

Acoustic signal A

P(W )

P(A|W )

Advantages of noisy channel model:

• P(W |A) is hard to construct directly; P(A|W ) is easier

• noisy channel also exploits language model P(W )
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Why graphical models?

• Graphical models depict factorizations of probability distributions

• Statistical and computational properties depend on the factorization

– complexity of dynamic programming is size of a certain cut in the

graphical model

• Two different (but related) graphical representations

– Bayes nets (directed graphs; products of conditionals)

– Markov Random Fields (undirected graphs; products of arbitrary terms)

• Each random variable Xi is represented by a node
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Bayes nets (directed graph)

• Factorize joint P(X1, . . . , Xn) into product of conditionals

P(X1, . . . , Xn) =
n∏

i=1

P(Xi|XPa(i))

where Pa(i) ⊆ (X1, . . . , Xi−1)

• The Bayes net contains an arc from each j ∈ Pa(i) to i

P(X1, X2, X3, X4) = P(X1)P(X2)P(X3|X1, X2)P(X4|X3)

X1

X2

X3 X4
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Markov Random Field (undirected)

• Factorize P(X1, . . . , Xn) into product of potentials gc(Xc), where

c ⊆ (1, . . . , n) and c ∈ C (a set of tuples of indices)

P(X1, . . . , Xn) =
1

Z

∏

c∈C

gc(Xc)

• If i, j ∈ c ∈ C, then an edge connects i and j

C = {(1, 2, 3), (3, 4)}

P(X1, X2, X3, X4) =
1

Z
g123(X1, X2, X3) g34(X3, X4)

X1

X2

X3 X4

14



A rose by any other name ...

• MRFs have the same form as Maximum Entropy models, Exponential

models, Log-linear models, Harmony models, . . .

P(X) =
1

Z

∏

c∈C

gc(Xc)

=
1

Z

∏

c∈C,xc∈Xc

(θXc=xc
)[[Xc=xc]],where θXc=xc

= gc(xc)

=
1

Z
exp

∑

c∈C,Xc∈Xc

[[Xc = xc]]φXc=xc
,where φXc=xc

= log gc(xc)

P(X) =
1

Z
g123(X1, X2, X3) g34(X3, X4)

=
1

Z
exp


 [[X123 = 000]]φ000 + [[X123 = 001]]φ001 + . . .

[[X34 = 00]]φ00 + [[X34 = 01]]φ01 + . . .




15



Bayes nets and MRFs

• MRFs are more general than Bayes nets

• Its easy to find the MRF representation of a Bayes net

P(X1, X2, X3, X4) = P(X1)P(X2)P(X3|X1, X2)︸ ︷︷ ︸
g123(X1, X2, X3)

P(X4|X3)︸ ︷︷ ︸
g34(X3, X4)

• Moralization, i.e, “marry the parents”

X1

X2

X3 X4

X1

X2

X3 X4
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Conditionalization in MRFs

• Conditionalization is fixing the value of certain variables

• To get a MRF representation of the conditional distribution, delete nodes

whose values are fixed and arcs connected to them

P(X1, X2, X4|X3 = v) =
1

Z P(X3 = v)
g123(X1, X2, v) g34(v,X4)

=
1

Z ′(v)
g′12(X1, X2) g′4(X4)

X1

X2

X3 = v X4

X1

X2

X4
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Marginalization in MRFs

• Marginalization is summing over all possible values of certain variables

• To get a MRF representation of the marginal distribution, delete the

marginalized nodes and interconnect all of their neighbours

P(X1, X2, X4) =
∑

X3

P(X1, X2, X3, X4)

=
∑

X3

g123(X1, X2, X3) g34(X3, X4)

= g′124(X1, X2, X4)

X1

X2

X3 X4

X1

X2

X4
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Classification

• Given value of X, predict value of Y

• Given a probabilistic model P(Y |X), predict:

y?(x) = arg max
y

P(y|x)

• Learn P(Y |X) from data D = ((x1, y1), . . . , (xn, yn))

• Restrict attention to a parametric model class Pθ parameterized by

parameter vector θ

– learning is estimating θ from D

19



ML and CML Estimation

• Maximum likelihood estimation (MLE) picks the θ that makes the data

D = (x, y) as likely as possible

θ̂ = arg max
θ

Pθ(x, y)

• Conditional maximum likelihood estimation (CMLE) picks the θ that

maximizes conditional likelihood of the data D = (x, y)

θ̂′ = arg max
θ

Pθ(y|x)

• P(X,Y ) = P(X)P(Y |X), so CMLE ignores P(X)
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MLE and CMLE example

• X,Y ∈ {0, 1}, θ ∈ [0, 1], Pθ(X = 1) = θ, Pθ(Y = X|X) = θ

Choose X by flipping a coin with weight θ, then set Y to same value as X

if flipping same coin again comes out 1.

• Given data D = ((x1, y1), . . . , (xn, yn)),

θ̂ =

∑n
i [[xi = 1]] + [[xi = yi]]

2n

θ̂′ =

∑n
i [[xi = yi]]

n

• CMLE ignores P(X), so less efficient if model correctly relates P(Y |X) and

P(X)

• But if model incorrectly relates P(Y |X) and P(X), MLE converges to

wrong θ

– e.g., if xi are chosen by some different process entirely
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Complexity of decoding and estimation

• Finding y?(x) = arg maxy P(y|x) is equally hard for Bayes nets and MRFs

with similar architectures

• A Bayes net is a product of independent conditional probabilities

⇒ MLE is relative frequency (easy to compute)

– no closed form for CMLE if conditioning variables have parents

• A MRF is a product of arbitrary potential functions g

– estimation involves learning values of each g takes

– partition function Z changes as we adjust g

⇒ usually no closed form for MLE and CMLE
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Multiple features and Naive Bayes

• Predict label Y from features X1, . . . , Xm

P(Y |X1, . . . , Xm) ∝ P(Y )
m∏

j=1

P(Xj |Y,X1, . . . , Xj−1)

≈ P(Y )
m∏

j=1

P(Xj |Y )

X1 Xm

Y

. . .

• Naive Bayes estimate is MLE θ̂ = arg maxθ P(x1, . . . , xn, y)

– Trivial to compute (relative frequency)

– May be poor if Xj aren’t really conditionally independent
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Multiple features and MaxEnt

• Predict label Y from features X1, . . . , Xm

P(Y |X1, . . . , Xm) ∝

m∏

j=1

gj(Xj , Y )

X1 Xm

Y

. . .

• MaxEnt estimate is CMLE θ̂′ = arg maxθ P(y|x1, . . . , xm)

– Makes no assumptions about P(X)

– Difficult to compute (iterative numerical optimization)
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Conditionalization in MRFs

• Conditionalization is fixing the value of certain variables

• To get a MRF representation of the conditional distribution, delete nodes

whose values are fixed and arcs connected to them

P(X1, X2, X4|X3 = v) =
1

Z P(X3 = v)
g123(X1, X2, v) g34(v,X4)

=
1

Z ′(v)
g′12(X1, X2) g′4(X4)

X1

X2

X3 = v X4

X1

X2

X4
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Marginalization in MRFs

• Marginalization is summing over all possible values of certain variables

• To get a MRF representation of the marginal distribution, delete the

marginalized nodes and interconnect all of their neighbours

P(X1, X2, X4) =
∑

X3

P(X1, X2, X3, X4)

=
∑

X3

g123(X1, X2, X3) g34(X3, X4)

= g′124(X1, X2, X4)

X1

X2

X3 X4

X1

X2

X4
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Computation in MRFs

• Given a MRF describing a probability distribution

P(X1, . . . , Xn) =
1

Z

∏

c∈C

gc(Xc)

where each Xc is a subset of X1, . . . , Xn, involve sum/max of products

expressions

Z =
∑

X1,...,Xn

∏

c∈C

gc(Xc)

P(Xi = xi) =
1

Z

∑

X1,...,Xi−1,Xi+1,Xn

∏

c∈C

gc(Xc) with Xi = xi

x?i = arg max
Xi

∑

X1,...,Xi−1,Xi+1,Xn

∏

c∈C

gc(Xc)

• Dynamic programming involves factorizing the sum/max of products

expression
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Factorizing a sum/max of products

Order the variables, repeatedly marginalize each variable, and introduce a new

auxiliary function ci for each marginalized variable Xi.

Z =
∑

X1,...,Xn

∏

c∈C

gc(Xc)

=
∑

Xn

(. . . (
∑

X1

. . .) . . .)

See Geman and Kochanek, 2000, “Dynamic Programming and the

Representation of Soft-Decodable Codes”
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MRF factorization example (1)

W1,W2 are adjacent words, and T1, T2 are their POS.

��
��
��
��

��
��

��
��

W1 W2

T1 T2

P(W1,W2, T1, T2) =
1

Z
g(W1, T1)h(T1, T2)g(W2, T2)

Z =
∑

W1,T1,W2,T2

g(W1, T1)h(T1, T2)g(W2, T2)

|W|2|T |2 different combinations of variable values in direct enumeration of Z
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MRF factorization example (2)

Z =
∑

W1,T1,W2,T2

g(W1, T1)h(T1, T2)g(W2, T2)

=
∑

T1,W2,T2

(
∑

W1

g(W1, T1))h(T1, T2)g(W2, T2)

=
∑

T1,W2,T2

cW1
(T1)h(T1, T2)g(W2, T2) where cW1

(T1) =
∑

W1
g(W1, T1)

=
∑

W2,T2

(
∑

T1

cW1
(T1)h(T1, T2))g(W2, T2)

=
∑

W2,T2

cT1
(T2)g(W2, T2) where cT1

(T2) =
∑

T1
cW1

(T1)h(T1, T2)

=
∑

W2

(
∑

T2

cT1
(T2)g(W2, T2))

=
∑

W2

cT2
(W2) where cT2

(W2) =
∑

T2
cT1

(T2)g(W2, T2)

= cW2
where cW2

=
∑

W2
cT2

(W2)
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MRF factorization example (3)

Z = cW2

cW2
=

∑

W2

cT2
(W2) (|W|operations)

cT2
(W2) =

∑

T2

cT1
(T2)g(W2, T2) (|W||T |operations)

cT1
(T2) =

∑

T1

cW1
(T1)h(T1, T2) (|T |

2
operations)

cW1
(T1) =

∑

W1

g(W1, T1) (|W||T |operations)

So computing Z in this way |W| + 2|W||T | + |T |2 operations, as opposed to

|W|2|T |2 operations for direct enumeration
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Factoring sum/max product expressions

• In general the function cj for marginalizing Xj will have Xk as an

argument if there is an arc from Xi to Xk for some i ≤ j

• Computational complexity is exponential in the number of arguments to

these functions cj

• Finding the optimal ordering of variables that minimizes computational

complexity for arbitrary graphs is NP-hard

32



Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Markov chains

Let X = X1, . . . , Xn, . . ., where each Xi ∈ X .

By Bayes rule: P(X1, . . . , Xn) =
n∏

i=1

P(Xi|X1, . . . , Xi−1)

X is a Markov chain iff P(Xi|X1, . . . , Xi−1) = P(Xi|Xi−1), i.e.,

P(X1, . . . , Xn) = P (X1)

n∏

i=2

P(Xi|Xi−1)

Bayes net representation of a Markov chain:

X1 −→ X2 −→ . . . −→ Xi−1 −→ Xi −→ Xi+1 −→ . . .

A Markov chain is homogeneous or time-invariant iff

P(Xi|Xi−1) = P(Xj |Xj−1) for all i, j

A homogeneous Markov chain is completely specified by

• start probabilities ps(x) = P(X1 = x), and

• transition probabilities pm(x|x′) = P(Xi = x|Xi−1 = x′)
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Bigram models

A bigram language model B defines a probability distribution over strings of

words w1 . . . wn based on the word pairs (wi, wi+1) the string contains.

A bigram model is a homogenous Markov chain:

PB(w1 . . . wn) = ps(w1)
n−1∏

i=1

pm(wi+1|wi)

W1 −→W2 −→ . . . −→Wi−1 −→Wi −→Wi+1 −→ . . .

We need to define a distribution over the lengths n of strings. One way to do

this is by appending an end-marker $ to each string, and set pm($|$) = 1

P(Howard hates brocolli $)

= ps(Howard)pm(hates|Howard)pm(brocolli|hates)pm($|brocolli)
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n-gram models

An m-gram model Ln defines a probability distribution over strings based on

the m-tuples (wi, . . . , wi+m−1) the string contains.

An m-gram model is also a homogenous Markov chain, where the chain’s

random variables are m− 1 tuples of words Xi = (Wi, . . . ,Wi+m−2). Then:

PLn
(W1, . . . ,Wn+m−2) = PLn

(X1 . . .Xn) = ps(x1)
n−1∏

i=1

pm(xi+1|xi)

= ps(w1, . . . , wm−1)

n+m−2∏

j=m

pm(wj |wj−1, . . . , wj−m+1)

Wi Wi+1Wi−1

Xi−1 Xi. . .

. . .

. . .

PL3
(Howard likes brocolli $) = ps(Howard likes)pm(brocolli|Howard likes)pm($|likes brocolli)
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Sequence labeling

• Predict hidden labels S1, . . . , Sm given visible features V1, . . . , Vm

• Example: Parts of speech

S = DT JJ NN VBS JJR

V = the big dog barks loudly

• Example: Named entities

S = [NP NP NP] − −

V = the big dog barks loudly
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Hidden Markov models

A hidden variable is one whose value cannot be directly observed.

In a hidden Markov model the state sequence S1 . . . Sn . . . is a hidden Markov

chain, but each state Si is associated with a visible output Vi.

P(S1, . . . , Sn;V1, . . . , Vn) = P(S1)P(V1|S1)
n−1∏

i=1

P(Si+1|Si)P(Vi+1|Si+1)

Si−1 Si Si+1 . . .

Vi−1 Vi Vi+1

. . .
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Hidden Markov Models

P(X,Y ) =




m∏

j=1

P(Yj |Yj−1)P(Xj |Yj)


P(Ym, stop)

X1 X2 Xm

Y1 Y2 Ym Ym+1Y0

. . .

. . .

• Usually assume time invariance or stationarity

i.e., P(Yj |Yj−1) and P(Xj |Yj) do not depend on j

• HMMs are Naive Bayes models with compound labels Y

• Estimator is MLE θ̂ = arg maxθ Pθ(x, y)
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Applications of homogeneous HMMs

Acoustic model in speech recognition: P(A|W )

States are phonemes, outputs are acoustic features

Si−1 Si Si+1 . . .

Vi−1 Vi Vi+1

. . .

Part of speech tagging:

States are parts of speech, outputs are words

NNP VB NNS $

Howard likes mangoes $

40



Properties of HMMs

. . . . . .States S

Outputs V

Conditioning on outputs P(S|V ) results in Markov state dependencies

. . . . . .States S

Outputs V

Marginalizing over states P(V ) =
∑
S P(S, V ) completely connects outputs

. . . . . .States S

Outputs V . . .. . .
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Conditional Random Fields

P(Y |X) =
1

Z(x)




m∏

j=1

f(Yj , Yj−1)g(Xj , Yj)


 f(Ym, stop)

X1 X2 Xm

Y1 Y2 Ym Ym+1Y0

. . .

. . .

• time invariance or stationarity, i.e., f and g don’t depend on j

• CRFs are MaxEnt models with compound labels Y

• Estimator is CMLE θ̂′ = arg maxθ Pθ(y|x)
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Decoding and Estimation

• HMMs and CRFs have same complexity of decoding i.e., computing

y?(x) = arg maxy P(y|x)

– dynamic programming algorithm (Viterbi algorithm)

• Estimating a HMM from labeled data (x, y) is trivial

– HMMs are Bayes nets ⇒MLE is relative frequency

• Estimating a CRF from labeled data (x, y) is difficult

– Usually no closed form for partition function Z(x)

– Use iterative numerical optimization procedures (e.g., Conjugate

Gradient, Limited Memory Variable Metric) to maximize Pθ(y|x)
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When are CRFs better than HMMs?

• When HMM independence assumptions are wrong, i.e., there are

dependences between Xj not described in model

X1 X2 Xm

Y1 Y2 Ym Ym+1Y0

. . .

. . .

• HMM uses MLE ⇒models joint P(X,Y ) = P(X)P(Y |X)

• CRF uses CMLE ⇒models conditional distribution P(Y |X)

• Because CRF uses CMLE, it makes no assumptions about P(X)

• If P(X) isn’t modeled well by HMM, don’t use HMM!
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Overlapping features

• Sometimes label Yj depends on Xj−1 and Xj+1 as well as Xj

P(Y |X) =
1

Z(x)




m∏

j=1

f(Xj , Yj , Yj−1)g(Xj , Yj , Yj+1)




X1 X2 Xm

Y1 Y2 Ym Ym+1Y0

. . .

. . .

• Most people think this would be difficult to do in a HMM
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Summary

• HMMs and CRFs both associate a sequence of labels (Y1, . . . , Ym) to items

(X1, . . . , Xm)

• HMMs are Bayes nets and estimated by MLE

• CRFs are MRFs and estimated by CMLE

• HMMs assume that Xj are conditionally independent

• CRFs do not assume that the Xj are conditionally independent

• The Viterbi algorithm computes y?(x) for both HMMs and CRFs

• HMMs are trivial to estimate

• CRFs are difficult to estimate

• It is easier to add new features to a CRF

• There is no EM version of CRF
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Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Languages and Grammars

If V is a set of symbols (the vocabulary, i.e., words, letters, phonemes, etc):

• V? is the set of all strings (or finite sequences) of members of V (including

the empty sequence ε)

• V+ is the set of all finite non-empty strings of members of V

A language is a subset of V? (i.e., a set of strings)

A probabilistic language is probability distribution P over V?, i.e.,

• ∀w ∈ V? 0 ≤ P(w) ≤ 1

•
∑

w∈V? P(w) = 1, i.e., P is normalized

A (probabilistic) grammar is a finite specification of a (probabilistic) language

48



Trees depict constituency

Some grammars G define a language by defining a set of trees ΨG.

The strings G generates are the terminal yields of these trees.

VP

NP

N

the man

PP

NP

N

the

VP

DD

telescopewithsawI

Pro V

NP

S

P Preterminals

Nonterminals

Terminals or terminal yield

Trees represent how words combine to form phrases and ultimately sentences.
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Probabilistic grammars

Some probabilistic grammars G defines a probability distribution PG(ψ) over

the set of trees ΨG, and hence over strings w ∈ V?.

PG(w) =
∑

ψ∈ΨG(w)

PG(ψ)

where ΨG(w) are the trees with yield w generated by G

Standard (non-stochastic) grammars distinguish grammatical from

ungrammatical strings (only the grammatical strings receive parses).

Probabilistic grammars can assign non-zero probability to every string, and

rely on the probability distribution to distinguish likely from unlikely strings.
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Context free grammars

A context-free grammar G = (V,S, s,R) consists of:

• V, a finite set of terminals (V0 = {Sam, Sasha, thinks, snores})

• S, a finite set of non-terminals disjoint from V (S0 = {S,NP,VP,V})

• R, a finite set of productions of the form A→ X1 . . .Xn, where A ∈ S and

each Xi ∈ S ∪ V

• s ∈ S is called the start symbol (s0 = S)

G generates a tree ψ iff

• The label of ψ’s root node is s

• For all local trees with parent A

and children X1 . . .Xn in ψ

A→ X1 . . . Xn ∈ R

G generates a string w ∈ V? iff w is

the terminal yield of a tree generated

by G

NP VP

S

Sam V S

NP VP

Sasha V

snores

thinks

Productions

S→ NP VP

NP→ Sam

V→ thinks

V→ snores

VP→ V S

VP→ V

NP→ Sasha
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CFGs as “plugging” systems

Sam+ hates+ George+

V+ NP+

V− NP−

VP−NP−

NP+ VP+

Sam− hates− George−

S+

Sam hates George

V NP

VPNP

S

“Pluggings” Resulting tree

S→ NP VP

VP→ V NP

NP→ Sam

NP→ George

V→ hates

V→ likes

Productions

S−

• Goal: no unconnected “sockets” or “plugs”

• The productions specify available types of components

• In a probabilistic CFG each type of component has a “price”
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Structural Ambiguity

R1 = {VP → V NP,VP → VP PP,NP → D N,N → N PP, . . .}

N

man

V

saw

NP

I

NP

I

V

saw

VP

NP

N

the man

PP

NP

N

the telescope

P

with

VP

S

D

N

NP

VP

S

the

D

PP

NP

N

the telescope

P

with D

D

• CFGs can capture structural ambiguity in language.

• Ambiguity generally grows exponentially in the length of the string.

– The number of ways of parenthesizing a string of length n is Catalan(n)

• Broad-coverage statistical grammars are astronomically ambiguous.
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Derivations

A CFG G = (V,S, s,R) induces a rewriting relation ⇒G, where γAδ ⇒G γβδ

iff A→ β ∈ R and γ, δ ∈ (S ∪ V)?.

A derivation of a string w ∈ V? is a finite sequence of rewritings

s⇒G . . .⇒G w. ⇒?
G is the reflexive and transitive closure of ⇒G.

The language generated by G is {w : s⇒? w,w ∈ V?}.

G0 = (V0,S0, S,R0), V0 = {Sam, Sasha, likes, hates}, S0 = {S,NP,VP,V},

R0 = {S → NP VP,VP → V NP,NP → Sam,NP → Sasha,V → likes,V → hates}

S

⇒ NP VP

⇒ NP V NP

⇒ Sam V NP

⇒ Sam V Sasha

⇒ Sam likes Sasha

Steps in a terminating

derivation are always cuts in

a parse tree

Left-most and right-most

derivations are normal forms

S

NP VP

V NPSam

likes Sasha
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Enumerating trees and parsing strategies

A parsing strategy specifies the order in which nodes in trees are enumerated

Parent

Child1 Childn. . .

Top-down
Pre-order

Parent
Child1

. . .
Childn

Child1

Parent
. . .

Childn

Bottom-up
Post-order

Child1

. . .
Childn
Parent

In-order
Left-corner

Enumeration

Parsing strategy

55



Top-down parses are left-most derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

S S

Leftmost derivation
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Top-down parses are left-most derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

NP VP

S S
NP VP

Leftmost derivation
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Top-down parses are left-most derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

D N

NP VP

S S
NP VP
D N VP

Leftmost derivation
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Top-down parses are left-most derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no

D N

NP VP

S S
NP VP
D N VP
no N VP

Leftmost derivation
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Top-down parses are left-most derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican

D N

NP VP

S S
NP VP
D N VP
no N VP
no politican VP

Leftmost derivation
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Top-down parses are left-most derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican

D N V

NP VP

S S
NP VP
D N VP
no N VP
no politican VP
no politican V

Leftmost derivation
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Top-down parses are left-most derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies

D N V

NP VP

S S
NP VP
D N VP
no N VP
no politican VP
no politican V
no politican lies

Leftmost derivation
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Bottom-up parses are reversed right-most

derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies
no politican lies

Rightmost derivation
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Bottom-up parses are reversed right-most

derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies

D

D politican lies
no politican lies

Rightmost derivation
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Bottom-up parses are reversed right-most

derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies

D N D N lies
D politican lies
no politican lies

Rightmost derivation
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Bottom-up parses are reversed right-most

derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies

D N

NP

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies
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Bottom-up parses are reversed right-most

derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies

D N V

NP NP V

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies
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Bottom-up parses are reversed right-most

derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies

D N V

NP VP
NP VP
NP V

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies
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Bottom-up parses are reversed right-most

derivations

Productions

S→ NP VP

NP→ D N

D→ no

N→ politican

VP→ V

V→ lies

no politican lies

D N V

NP VP

S S
NP VP
NP V

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies
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Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar (PCFG) G consists of

• a CFG (V,S, S,R) with no useless productions, and

• production probabilities p(A→ β) = P(β|A) for each A→ β ∈ R,

the conditional probability of an A expanding to β

A production A→ β is useless iff it is not used in any terminating derivation,

i.e., there are no derivations of the form S ⇒? γAδ ⇒ γβδ ⇒∗ w for any

γ, δ ∈ (N ∪ T )? and w ∈ T ?.

If r1 . . . rn is a sequence of productions used to generate a tree ψ, then

PG(ψ) = p(r1) . . . p(rn)

=
∏

r∈R

p(r)fr(ψ)

where fr(ψ) is the number of times r is used in deriving ψ
∑

ψ PG(ψ) = 1 if p satisfies suitable constraints
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Example PCFG

1.0 S → NP VP 1.0 VP → V

0.75 NP → George 0.25 NP → Al

0.6 V → barks 0.4 V → snores

P




S

NP VP

George V

barks




= 0.45 P




S

NP VP

Al V

snores




= 0.1
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Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Finite-state automata - Informal description

Finite-state automata are devices that generate arbitrarily long strings one

symbol at a time.

At each step the automaton is in one of a finite number of states.

Processing proceeds as follows:

1. Initialize the machine’s state s to the start state and w = ε (the empty

string)

2. Loop:

(a) Based on the current state s, decide whether to stop and return w

(b) Based on the current state s, append a certain symbol x to w and

update to s′

Mealy automata choose x based on s and s′

Moore automata (homogenous HMMs) choose x based on s′ alone

Note: I’m simplifying here: Mealy and Moore machines are transducers

In probabilistic automata, these actions are directed by probability distributions
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Mealy finite-state automata

Mealy automata emit terminals from arcs.

A (Mealy) automaton M = (V,S, s0,F ,M) consists of:

• V, a set of terminals, (V3 = {a, b})

10

a

b

a

• S, a finite set of states, (S3 = {0, 1})

• s0 ∈ S, the start state, (s03
= 0)

• F ⊆ S, the set of final states (F3 = {1}) and

• M ⊆ S × V × S, the state transition relation.

(M3 = {(0, a, 0), (0, a, 1), (1, b, 0)})

A accepting derivation of a string v1 . . . vn ∈ V? is a sequence of states

s0 . . . sn ∈ S? where:

• s0 is the start state

• sn ∈ F , and

• for each i = 1 . . . n, (si−1, vi, si) ∈ M.

00101 is an accepting derivation of aaba.
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Probabilistic Mealy automata

A probabilistic Mealy automaton M = (V,S, s0, pf , pm) consists of:

• terminals V, states S and start state s0 ∈ S as before,

• pf (s), the probability of halting at state s ∈ S, and

• pm(v, s′|s), the probability of moving from s ∈ S to s′ ∈ S and emitting a

v ∈ V.

where pf (s) +
∑

v∈V,s′∈S pm(v, s′|s) = 1 for all s ∈ S (halt or move on)

The probability of a derivation with states s0 . . . sn and outputs v1 . . . vn is:

PM (s0 . . . sn; v1 . . . vn) =

(
n∏

i=1

pm(vi, si|si−1)

)
pf (sn)

Example: pf (0) = 0, pf (1) = 0.1,

pm(a, 0|0) = 0.2, pm(a, 1|0) = 0.8, pm(b, 0|1) = 0.9

PM (00101, aaba) = 0.2 × 0.8 × 0.9 × 0.8 × 0.1
10

a

b

a
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Bayes net representation of Mealy PFSA

In a Mealy automaton, the output is determined by the current and next state.

Si−1 Si

Vi

Si+1

Vi+1

. . .

. . .

. . .

. . .

Example: state sequence 00101 for string aaba

10

a

b

a

Mealy FSA

0 0

a

1

a

0

b

1

a

Bayes net for aaba
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The trellis for a Mealy PFSA

Example: state sequence 00101 for string aaba

10

a

b

a
0 0

a

1

a

0

b

1

a

Bayes net for aaba

1

0

1 1

00 0

1

0

1

a a b a
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Probabilistic Mealy FSA as PCFGs

Given a Mealy PFSA M = (V,S, s0, pf , pm), let GM have the same terminals,

states and start state as M , and have productions

• s→ ε with probability pf (s) for all s ∈ S

• s→ v s′ with probability pm(v, s′|s) for all s, s′ ∈ S and v ∈ V

p(0 → a 0) = 0.2, p(0 → a 1) = 0.8, p(1 → ε) = 0.1, p(1 → b 0) = 0.9

10

a

b

a

Mealy FSA

0

a 1

b 0

a 1

a

0

PCFG parse of aaba

The FSA graph depicts the machine (i.e., all strings it generates), while the

CFG tree depicts the analysis of a single string.
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Moore finite state automata

Moore machines emit terminals from states.

A Moore finite state automaton M = (V,S, s0,F ,M,L) is composed of:

• V, S, s0 and F are terminals, states, start state and final states as before

• M ⊆ S × S, the state transition relation

• L ⊆ S × V, the state labelling function

(V4 = {a, b},S4 = {0, 1}, s04
= 0,F4 = {1},M4 = {(0, 0), (0, 1), (1, 0)},

L4 = {(0, a), (0, b), (1, b)})

A derivation of v1 . . . vn ∈ V? is a sequence of states s0 . . . sn ∈ S? where:

• s0 is the start state, sn ∈ F ,

{b}{a, b}

• (si−1, si) ∈ M, for i = 1 . . . n

• (si, vi) ∈ L for i = 1 . . . n

0101 is an accepting derivation of bab
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Probabilistic Moore automata

A probabilistic Moore automaton M = (V,S, s0, pf , pm, p`) consists of:

• terminals V, states S and start state s0 ∈ S as before,

• pf (s), the probability of halting at state s ∈ S,

• pm(s′|s), the probability of moving from s ∈ S to s′ ∈ S, and

• p`(v|s), the probability of emitting v ∈ V from state s ∈ S.

where pf (s) +
∑

s′∈S pm(s′|s) = 1 and
∑

v∈V p`(v|s) = 1 for all s ∈ S.

The probability of a derivation with states s0 . . . sn and output v1 . . . vn is

PM (s0 . . . sn; v1 . . . vn) =

(
n∏

i=1

pm(si|si−1)p`(vi|si)

)
pf (sn)

Example: pf (0) = 0, pf (1) = 0.1,

p`(a|0) = 0.4, p`(b|0) = 0.6, p`(b|1) = 1,

pm(0|0) = 0.2, pm(1|0) = 0.8, pm(0|1) = 0.9

PM (0101, bab) = (0.8×1)×(0.9×0.4)×(0.8×1)×0.1

{b}{a, b}
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Bayes net representation of Moore PFSA

In a Moore automaton, the output is determined by the current state, just as

in an HMM (in fact, Moore automata are HMMs)

Si−1 Si Si+1 . . .. . .

Vi+1ViVi−1

Example: state sequence 0101 for string bab

{b}{a, b}

Moore FSA

0 1 0 1

ab b

Bayes net for bab
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Trellis representation of Moore PFSA

Example: state sequence 0101 for string bab

{b}{a, b}

Moore FSA

0 1 0 1

ab b

Bayes net for bab

0 00

1

0

1

b a b

1
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Probabilistic Moore FSA as PCFGs

Given a Moore PFSA M = (V,S, s1, pf , pm, p`), let GM have the same

terminals and start state as M , two nonterminals s and s̃ for each state s ∈ S,

and productions

• s→ s̃′ s′ with probability pm(s′|s)

• s→ ε with probability pf (s)

• s̃→ v with probability p`(v|s)

p(0 → 0̃ 0) = 0.2, p(0 → 1̃ 1) = 0.8,

p(1 → ε) = 0.1, p(1 → 0̃ 0) = 0.9,

p(0̃ → a) = 0.4, p(0̃ → b) = 0.6, p(1̃ → b) = 1

{b}{a, b}

Moore FSA

0

1̃

b

1

0̃

a

0

1̃ 1

b

PCFG parse of bab
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Bi-tag POS tagging

HMM or Moore PFSA whose states are POS tags

NNP VB NNS

Howard likes mangoes

Start $

$

Howard likes mangoes

NNS′ NNS

VBVB′

NNPNNP′

Start
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Mealy vs Moore automata

• Mealy automata emit terminals from arcs

– a probabilistic Mealy automaton has |V||S|2 + |S| parameters

• Moore automata emit terminals from states

– a probabilistic Moore automaton has (|V| + 1)|S| parameters

In a POS-tagging application, |S| ≈ 50 and |V| ≈ 2 × 104

• A Mealy automaton has ≈ 5 × 107 parameters

• A Moore automaton has ≈ 106 parameters

A Moore automaton seems more reasonable for POS-tagging

The number of parameters grows rapidly as the number of states grows

⇒ Smoothing is a practical necessity
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Tri-tag POS tagging

NNP VB NNS

Howard likes mangoes

Start $

$

Howard likes mangoes

NNS′ VB NNS

NNP VBVB′

Start NNPNNP′

Start Start

Given a set of POS tags T , the tri-tag PCFG has productions

t0t1 → t′2 t1t2 t′ → v

for all t0, t1, t2 ∈ T and v ∈ V
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Advantages of using grammars

PCFGs provide a more flexible structural framework than HMMs and FSA

Sesotho is a Bantu language with rich agglutinative morphology

A two-level HMM seems appropriate:

• upper level generates a sequence of words, and

• lower level generates a sequence of morphemes in a word

o tla pheha di jo

NSNS’

PRE’ PRE

VS’ VS

TNSTNS’

SMSM’

START

VERB’ VERB

NOUN’ NOUN

(s)he will cook food
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Finite state languages and linear grammars

• The classes of all languages generated by Mealy and Moore FSA is the

same. These languages are called finite state languages.

• The finite state languages are also generated by left-linear and by

right-linear CFGs.

– A CFG is right linear iff every production is of the form A→ β or

A→ β B for B ∈ S and β ∈ V?

(nonterminals only appear at the end of productions)

– A CFG is left linear iff every production is of the form A→ β or

A→ B β for B ∈ S and β ∈ V?

(nonterminals only appear at the beginning of productions)

• The language wwR, where w ∈ {a, b}? and wR is the reverse of w, is not a

finite state language, but it is generated by a CFG

⇒ some context-free languages are not finite state languages
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Things you should know about FSA

• FSA are good ways of representing dictionaries and morphology

• Finite state transducers can encode phonological rules

• The finite state languages are closed under intersection, union and

complement

• FSA can be determinized and minimized

• There are practical algorithms for computing these operations on large

automata

• All of this extends to probabilistic finite-state automata

• Much of this extends to PCFGs and tree automata
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Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Binarization

Almost all efficient CFG parsing algorithms require productions have at most

two children.

Binarization can be done as a preprocessing step, or implicitly during parsing.

A

B1 B2 B3 B4

B1 B2

B1B2 B3

B1B2B3 B4

A

Left-factored

H B3

HB3 B4

HB3B4B1

A

Head-factored

(assuming H = B2)

B4B3

B3B4B2

B2B3B4B1

A

Right-factored
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More on binarization

• Binarization usually produces large numbers of new nonterminals

• These all appear in a certain position (e.g., end of production)

• Design your parser loops and indexing so this is maximally efficient

• Top-down and left-corner parsing benefit from specially designed

binarization that delays choice points as long as possible

A

B1 B2 B3 B4

Unbinarized

B4B3

B3B4B2

B2B3B4B1

A

Right-factored

A−B1B2B2

A−B1B1

A

B3 A−B1B2B3

B4

Right-factored

(top-down version)
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Markov grammars

• Sometimes it can be desirable to smooth or generalize rules beyond what

was actually observed in the treebank

• Markov grammars systematically “forget” part of the context

AP V NP PP PP

VP

Unbinarized

V NP

V NP PP

V NP PP PP

AP

VP

V NP PP PP

Head-factored

(assuming H = B2)

V NP

V NP PP

V...PP

V...PP

PP

V...AP

AP V...

VP

Markov grammar
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String positions

String positions are a systematic way of representing substrings in a string.

A string position of a string w = x1 . . . xn is an integer 0 ≤ i ≤ n.

A substring of w is represented by a pair (i, j) of string positions, where

0 ≤ i ≤ j ≤ n.

wi,j represents the substring wi+1 . . . wj

Howard likes mangoes

0 1 2 3

Example: w0,1 = Howard, w1,3 = likes mangoes, w1,1 = ε

• Nothing depends on string positions being numbers, so

• this all generalizes to speech recognizer lattices, which are graphs where

vertices correspond to word boundaries

the how us

house

a rose

arose
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Dynamic programming computation

Assume G = (V,S, s,R, p) is in Chomsky Normal Form, i.e., all productions are

of the form A→ B C or A→ x, where A,B,C ∈ S, x ∈ V.

Goal: To compute P(w) =
∑

ψ∈ΨG(w)

P(ψ) = P(s⇒? w)

Data structure: A table P(A⇒? wi,j) for A ∈ S and 0 ≤ i < j ≤ n

Base case: P(A⇒? wi−1,i) = p(A→ wi−1,i) for i = 1, . . . , n

Recursion: P(A⇒? wi,k)

=
k−1∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

Return: P(s⇒? w0,n)
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Dynamic programming recursion

PG(A⇒∗ wi,k) =
k−1∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

PG(A⇒∗ wi,k) is called an “inside probability”.
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Example PCFG parse

1.0 S → NP VP 1.0 VP → V NP

0.7 NP → George 0.3 NP → John

0.5 V → likes 0.5 V → hates

George hates John

NP 0.7 V 0.5 NP 0.3

S 0.105

1 2 30

VP 0.15

Right string position

0 NP 0.7

2

1

S 0.105

VP 0.15

1 2 3

V 0.5

NP 0.3

L
ef

t
st

ri
n
g

p
os

it
io

n
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CFG Parsing takes n3|R| time

PG(A⇒∗ wi,k)

=
k−1∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

The algorithm iterates over all

rules R and all triples of string

positions 0 ≤ i < j < k ≤ n

(there are n(n − 1)(n − 2)/6 =

O(n3) such triples) B C

A

wi,j wj,k

S
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PFSA parsing takes n|R| time

Because FSA trees are uniformly right branching,

• All non-trivial constituents end at the right edge of the sentence

⇒ The inside algorithm takes n|R| time

PG(A⇒∗ wi,n)

=
∑

A→BC∈R(A)

p(A→ BC)PG(B ⇒∗ wi,i+1)PG(C ⇒∗ wi+1,n)

• The standard FSM algorithms are just CFG algorithms, restricted to

right-branching structures

0

a 1

b 0

a 1

a

0
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Unary productions and unary closure

Dealing with “one level” unary productions A→ B is easy, but how do we deal

with “loopy” unary productions A⇒+ B ⇒+ A?

The unary closure matrix is Cij = P(Ai ⇒
? Aj) for all Ai, Aj ∈ S

Define Uij = p(Ai → Aj) for all Ai, Aj ∈ S

If x is a (column) vector of inside weights, Ux is a vector of the inside weights

of parses with one unary branch above x

The unary closure is the sum of the inside weights with any

number of unary branches:

x+ Ux+ U2x+ . . . = (1 + U + U2 + . . .)x

= (1 − U)−1x

The unary closure matrix C = (1−U)−1 can be pre-computed,

so unary closure is just a matrix multiplication.

Because “new” nonterminals introduced by binarization never

occur in unary chains, unary closure is (relatively) cheap.

x

Ux

U2x

. . .
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Finding the most likely parse of a string

Given a string w ∈ V?, find the most likely tree ψ̂ = arg maxψ∈ΨG(w) PG(ψ)

(The most likely parse is also known as the Viterbi parse).

Claim: If we substitute “max” for “+” in the algorithm for PG(w), it returns

PG(ψ̂).

PG(ψ̂A,i,k) = max
j=i+1,...,k−1

max
A→BC∈R(A)

p(A→ BC)PG(ψ̂B,i,j)PG(ψ̂C,j,k)

To return ψ̂, add “back-pointers” to keep track of best parse ψ̂A,i,j for each

A⇒? wi,j

Implementation note: There’s no need to actually build these trees ψ̂A,i,k;

rather, the back-pointers in each table entry point to the table entries for the

best parse’s children
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Semi-ring of rule weights

Our algorithms don’t actually require that the values associated with

productions are probabilities . . .

Our algorithms only require that productions have values in some semi-ring

with operations “⊕” and “⊗” with the usual associative and distributive laws

⊕ ⊗

+ × sum of probabilities or weights

max × Viterbi parse

max + Viterbi parse with log probabilities

∧ ∨ Categorical CFG parsing
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Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Two approaches to computational linguistics

“Rationalist”: Linguist formulates generalizations and expresses them in a

grammar

“Empiricist”: Collect a corpus of examples, linguists annotate them with

relevant information, a machine learning algorithm extracts generalizations

• I don’t think there’s a deep philosophical difference here, but many people

do

• Continuous models do much better than categorical models

(statistical inference uses more information than categorical inference)

• Humans are lousy at estimating numerical probabilities, but luckily

parameter estimation is the one kind of machine learning that (sort of)

works
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Treebanks, prop-banks and discourse banks

• A treebank is a corpus of phrase structure trees

– The Penn treebank consists of about a million words from the Wall

Street Journal, or about 40,000 trees.

– The Switchboard corpus consists of about a million words of treebanked

spontaneous conversations, linked up with the acoustic signal.

– Treebanks are being constructed for other languages also

• The Penn treebank is being annotated with predicate argument structure

(PropBank) and discourse relations.
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Maximum likelihood estimation

An estimator p̂ for parameters p ∈ P of a model Pp(X) is a function from data

D to p̂(D) ∈ P.

The likelihood LD(p) and log likelihood `D(p) of data D = (x1 . . . xn) with

respect to model parameters p is:

LD(p) = Pp(x1) . . .Pp(xn)

`D(p) =
n∑

i=1

log Pp(xi)

The maximum likelihood estimate (MLE) p̂MLE of p from D is:

p̂MLE = arg max
p

LD(p) = arg max
p

`D(p)
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Optimization and Lagrange multipliers

∂f(x)/∂x = 0 at the unconstrained optimum of f(x)

But maximum likelihood estimation often requires optimizing f(x) subject to

constraints gk(x) = 0 for k = 1, . . . ,m.

Introduce Lagrange multipliers λ = (λ1, . . . , λm), and define:

F (x, λ) = f(x) − λ · g(x) = f(x) −

m∑

k=1

λkgk(x)

Then at the constrained optimum, all of the following hold:

0 = ∂F (x, λ)/∂x = ∂f(x)/∂x−

m∑

k=1

λk∂gk(x)/∂x

0 = ∂F (x, λ)/∂λ = g(x)
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Biased coin example

Model has parameters p = (ph, pt) that satisfy constraint ph + pt = 1.

Log likelihood of data D = (x1, . . . , xn), xi ∈ {h, t}, is

`D(p) = log(px1
. . . pxn

) = nh log ph + nt log pt

where nh is the number of h in D, and nt is the number of t in D.

F (p, λ) = nh log ph + nt log pt − λ(ph + pt − 1)

0 = ∂F/∂ph = nh/ph − λ

0 = ∂F/∂pt = nt/pt − λ

From the constraint ph + pt = 1 and the last two equations:

λ = nh + nt

ph = nh/λ = nh/(nh + nt)

pt = nt/λ = nt/(nh + nt)

So the MLE is the relative frequency

108



PCFG MLE from visible data

Data: A treebank of parse trees D = ψ1, . . . , ψn.

`D(p) =

n∑

i=1

log PG(ψi) =
∑

A→α∈R

nA→α(D) log p(A→ α)

Introduce |S| Lagrange multipliers λB , B ∈ S for the constraints∑
B→β∈R(B) p(B → β) = 1. Then:

∂


`(p) −

∑

B∈S

λB


 ∑

B→β∈R(B)

p(B → β) − 1






∂p(A→ α)
=

nA→α(D)

p(A→ α)
− λA

Setting this to 0, p(A→ α) =
nA→α(D)∑

A→α′∈R(A) nA→α′(D)

So the MLE for PCFGs is the relative frequency estimator
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Example: Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P




S

NP VP

rice grows


 = 2/3

P




S

NP VP

corn grows


 = 1/3
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Properties of MLE

• Consistency: As the sample size grows, the estimates of the parameters

converge on the true parameters

• Asymptotic optimality: For large samples, there is no other consistent

estimator whose estimates have lower variance

• The MLEs for statistical grammars work well in practice.

– The Penn Treebank has ≈ 1.2 million words of Wall Street Journal text

annotated with syntactic trees

– The PCFG estimated from the Penn Treebank has ≈ 15,000 rules
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PCFG estimation from hidden data

Data: A corpus of sentences D′ = w1, . . . , wn.

`D′(p) =
n∑

i=1

log PG(wi). PG(w) =
∑

ψ∈ΨG(w)

PG(ψ).

∂`D′(p)

∂p(A→ α)
=

∑n
i=1 EG[nA→α|wi]

p(A→ α)

where the expected number of times A→ α is used in the parses of w is:

EG[nA→α|w] =
∑

ψ∈ΨG(w)

nA→α(ψ)PG(ψ|w).

Setting ∂`D′/∂p(A→ α) to the Lagrange multiplier λA and imposing the

constraint
∑

B→β∈R(B) p(B → β) = 1 yields:

p(A→ α) =

∑n
i=1 EG[nA→α|wi]∑

A→α′∈R(A)

∑n
i=1 EG[nA→α′ |wi]

This is an iteration of the expectation maximization algorithm!
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Expectation maximization

EM is a general technique for approximating the MLE when estimating

parameters p from the visible data x is difficult, but estimating p from

augmented data z = (x, y) is easier (y is the hidden data).

The EM algorithm given visible data x:

1. guess initial value p0 of parameters

2. repeat for i = 0, 1, . . . until convergence:

Expectation step: For all y1, . . . , yn ∈ Y, generate pseudo-data

(x, y1), . . . , (x, yn), where (x, yj) has frequency Ppi
(yj |x)

Maximization step: Set pi+1 to the MLE from the pseudo-data

The likelihood Pp(x) of the visible data x stays the same or increases on each

iteration.

Sometimes it is not necessary to explicitly generate the pseudo-data (x, y);

often it is possible to perform the maximization step directly from sufficient

statistics (for PCFGs, the expected production frequencies)
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Dynamic programming for expected rule counts

EG[nA→BC |w] =
∑

0≤i<j<k≤n

EG[Ai,k → Bi,jCj,k|w]

The expected fraction of parses of w in which Ai,k rewrites as Bi,jCj,k is:

EG[Ai,k → Bi,jCj,k|w]

=
P(S ⇒∗ w1,iAwk,n)p(A→ BC)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n
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Calculating PG(S ⇒∗ w0,i Awk,n)

Known as “outside probabilities” (but if G contains unary productions, they

can be greater than 1).

Recursion from larger to smaller substrings in w.

Base case: P(S ⇒∗ w0,0 S wn,n) = 1

Recursion: P(S ⇒∗ w0,j C wk,n) =
j−1∑

i=0

∑

A,B∈S
A→BC∈R

P(S ⇒∗ w0,iAwk,n)p(A→ BC)P(B ⇒∗ wi,j)

+
n∑

l=k+1

∑

A,D∈S
A→CD∈R

P(S ⇒∗ w0,j Awl,n)p(A→ C D)P(D ⇒∗ wk,l)
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Recursion in PG(S ⇒∗ w0,i Awk,n)

P(S ⇒∗ w0,j C wk,n) =
j−1∑

i=0

∑

A,B∈S
A→BC∈R

P(S ⇒∗ w0,iAwk,n)p(A→ BC)P(B ⇒∗ wi,j)

+
n∑

l=k+1

∑

A,D∈S
A→CD∈R

P(S ⇒∗ w0,j Awl,n)p(A→ C D)P(D ⇒∗ wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n
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The EM algorithm for PCFGs

Infer hidden structure by maximizing likelihood of visible data:

1. guess initial rule probabilities

2. repeat until convergence

(a) parse a sample of sentences

(b) weight each parse by its conditional probability

(c) count rules used in each weighted parse, and estimate rule frequencies

from these counts as before

EM optimizes the marginal likelihood of the strings D = (w1, . . . , wn)

Each iteration is guaranteed not to decrease the likelihood of D, but EM can

get trapped in local minima.

The Inside-Outside algorithm can produce the expected counts without

enumerating all parses of D.

When used with PFSA, the Inside-Outside algorithm is called the

Forward-Backward algorithm (Inside=Backward, Outside=Forward)

117



Example: The EM algorithm with a toy PCFG

Initial rule probs
rule prob

· · · · · ·

VP → V 0.2

VP → V NP 0.2

VP → NP V 0.2

VP → V NP NP 0.2

VP → NP NP V 0.2

· · · · · ·

Det → the 0.1

N → the 0.1

V → the 0.1

“English” input

the dog bites

the dog bites a man

a man gives the dog a bone

· · ·

“pseudo-Japanese” input

the dog bites

the dog a man bites

a man the dog a bone gives

· · ·
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Probability of “English”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06
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Rule probabilities from “English”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
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Probability of “Japanese”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06
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Rule probabilities from “Japanese”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
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Learning in statistical paradigm

• The likelihood is a differentiable function of rule probabilities

⇒ learning can involve small, incremental updates

• Learning new structure (rules) is hard, but . . .

• Parameter estimation can approximate rule learning

– start with “superset” grammar

– estimate rule probabilities

– discard low probability rules
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Applying EM to real data

• ATIS treebank consists of 1,300 hand-constructed parse trees

• ignore the words (in this experiment)

• about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.
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Experiments with EM

1. Extract productions from trees and estimate probabilities probabilities

from trees to produce PCFG.

2. Initialize EM with the treebank grammar and MLE probabilities

3. Apply EM (to strings alone) to re-estimate production probabilities.

4. At each iteration:

• Measure the likelihood of the training data and the quality of the parses

produced by each grammar.

• Test on training data (so poor performance is not due to overlearning).
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Likelihood of training strings

Iteration

log P

20151050

-14000

-14500

-15000

-15500

-16000
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Quality of ML parses

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7
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Why does EM do so poorly?

• Wrong data: grammar is a transduction between form and meaning ⇒

learn from form/meaning pairs

– exactly what contextual information is available to a language learner?

• Wrong model: PCFGs are poor models of syntax

• Wrong objective function: Maximum likelihood makes the sentences as

likely as possible, but syntax isn’t intended to predict sentences (Klein and

Manning)

• How can information about the marginal distribution of strings P(w)

provide information about the conditional distribution of parses ψ given

strings P(ψ|w)?

– need additional linking assumptions about the relationship between

parses and strings

• . . . but no one really knows!
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Topics

• Graphical models and Bayes networks

• (Hidden) Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Subcategorization

Grammars that merely relate categories miss a lot of important linguistic

relationships.

R3 = {VP → V,VP → V NP,V → sleeps,V → likes, . . .}

S

NP VP

Al V

sleeps
*likes

S

NP VP

Al V NP

N

mangoes

likes
*sleeps

Verbs and other heads of phrases subcategorize for the number and kind of

complement phrases they can appear with.
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CFG account of subcategorization

General idea: Split the preterminal states to encode subcategorization.

[ ]

S

NP

Al

VP

V

sleeps

likes

[ NP]

NP

Al V

pizzas

N

NP

VP

S

R4 = {VP → V
[ ] ,VP → V

[ NP] NP, V
[ ] → sleeps, V

[ NP] → likes, . . .}

The “split preterminal states” restrict which contexts verbs can appear in.
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Selectional preferences

Head-to-head dependencies are an approximation to real-world knowledge.

S

NP VP

Al V NP

N

pizzas

eats

#books

S

NP VP

Al V NP

N

#pizzas
books

reads

But note that selectional preferences involve more than head-to-head

dependencies

Al drives a (#toy model) car
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Head to head dependencies

Sam read bookaSasha

DT NN

NPNPVB

VPNP

S

Head=a Head=book

Head=bookHead=Sasha

Head=readHead=Sam

Head=read

Head=read

VP
Head=read

−→ VB
Head=read

NP
Head=Sasha

NP
Head=book
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Binarization helps sparse data

Sam read bookaSasha

DT NN

NP

NP

NPVB

VB NP

VP

S

Head=read

Head=read Head=Sasha Head=a Head=book

Head=book

Head=read

Head=read

Head=Sam

VP
Head=read

−→ VB NP
Head=read

NP
Head=book

VB NP
Head=read

−→ VB
Head=read

NP
Head=Sasha
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Bi-lexical CFG parsing takes n5 time

. . . . . .

i j k` m

B
Head=w`

C
Head=wm

A
Head=w`

There are three string positions at the edges of constituents, plus two for the

locations of the heads

• in the worst case, bilexical parsing takes |n|5 time

• the worst case arises when exhaustive parsing

Eisner and Satta’s idea: transform the grammar so that the heads are at the

constituent edges (alternatively, approximate the CFG by a dependency

grammar)
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Eisner and Satta’s bilexical parsing model

APBP Y P ZP

B A X Y Z

XP

Split each node (including each word) into a left and a right half

Xr

BP` AP`BPr

B` A`Br Ar

APr

X`

XP`XPr

Y`

Y P` ZP`Y Pr

Yr Z` Zr

ZPr

Right factor the left halves and left factor the right halves

Synchronize left and right halves if needed by splitting the nonterminal states
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Nonlocal “movement” dependencies

S

NP VP

Aux VP

V NP

Al

eat

will

pizza

D N

the

C’/NP

Aux S/NP

NP VP/NP

Aux VP/NP

V NP/NP

will

Al

eat

NP

pizza

D N

which

CP

Subcategorization and selectional preferences are preserved under movement.

Movement can be encoded using recursive nonterminals (unification grammars).
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Structured nonterminals

Structured nonterminals provide communication channels that pass

information around the tree.

will

eat

Al
which pizza

Selectional dependency

Verb movement dependency

WH movement dependency

Modern statistical parsers pass around 7 different features through the tree,

and condition productions on them

138



Topics

• Graphical models and Bayes networks

• (Hidden) Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars
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Probabilistic Context Free Grammars

S

NP

D

the

N

man

PP

P

in

NP

D

the

N

hat

VP

V

drinks

NP

AP

red

N

wine

P(t) = P(S → NP VP)×

P(NP → D N PP)×

P(D → the)×

P(N → man)×

. . .

• Rules are associated with probabilities

• Tree probability is the product of rule probabilities

• Most probable tree is “best guess” at correct syntactic structure
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Treebank corpora

ROOT

S

NP-SBJ

NNP

BELL

NNP

INDUSTRIES

NNP

Inc.

VP

VBD

increased

NP

PRP$

its

NN

quarterly

PP-DIR

TO

to

NP

CD

10

NNS

cents

PP-DIR

IN

from

NP

NP

CD

seven

NNS

cents

NP-ADV

DT

a

NN

share

.

.

• The Penn treebank contains hand-annotated parse trees for ∼ 50, 000

sentences

• Treebanks also exist for the Brown corpus, the Switchboard corpus

(spontaneous telephone conversations) and Chinese and Arabic corpora
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Estimating a grammar from a treebank

• Maximum likelihood principle: Choose the grammar and rule probabilities

that make the trees in the corpus as likely as possible

– read the rules off the trees

– for PCFGs, set rule probabilities to the relative frequency of each rule in

the treebank

P(VP → V NP) =
Number of times VP → V NP occurs

Number of times VP occurs

• If the language is generated by a PCFG and the treebank trees are its

derivation trees, the estimated grammar converges to the true grammar.
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Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P




S

NP VP

rice grows


 = 2/3

P




S

NP VP

corn grows


 = 1/3
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Why is the PCFG MLE so easy to compute?

ti

T

• Visible training data D = (t1, . . . , tn), where ti is a parse tree

• The MLE is ŵ = arg maxw
∏n
i=1 Pw(ti), where w are production

probabilities

• It is easy to compute because PCFGs are always normalized,

i.e., Z =
∑
t∈T

∏
r w(r)fr(t) = 1, where:

– fr(t) is number of times r is used in derivation of t and

– T is the set of all trees generated by the grammar
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Non-local constraints and PCFG MLE

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P




S

NP VP

rice grows




= 4/9

P




S

NP VP

bananas grow




= 1/9

partition function Z = 5/9
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Dividing by partition function Z

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P




S

NP VP

rice grows




= 4/9 4/5

P




S

NP VP

bananas grow




= 1/9 1/5

Z = 5/9
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Other values do better!

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 1/2

VP → grow 1 1/2

(Abney 1997)

P




S

NP VP

rice grows




= 2/6 2/3

P




S

NP VP

bananas grow




= 1/6 1/3

Z = 3/6

147



Make dependencies local – GPSG-style

rule count rel freq

S → NP
+singular

VP
+singular

2 2/3

S → NP
+plural

VP
+plural

1 1/3

NP
+singular

→ rice 2 1

NP
+plural

→ bananas 1 1

VP
+singular

→ grows 2 1

VP
+plural

→ grow 1 1

P




S

NP VP
+singular

rice grows

+singular




= 2/3

P




S

NP VP
+plural +plural

bananas grow




= 1/3
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“Head to head” dependencies

S

NP

D

the

N

man

PP

P

in

NP

the

N

hat

VP

V

drinks

NP

AP

red

N

wineD
the hat

hatin

inmanthe

man

drinks

drinks

drinks wine

red wine

Rules:

S
drinks

→ NP
man

VP
drinks

VP
drinks

→ V
drinks

NP
wine

NP
wine

→ AP
red

N
wine

. . .

• Lexicalization captures syntactic and semantic dependencies

• Lexicalized structural preferences may be most important
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Summary so far

• Maximum likelihood is a good way of estimating a grammar

• Maximum likelihood estimation of a PCFG from a treebank is easy if the

trees are accurate

• But real language has many more dependencies than treebank grammar

describes

⇒ relative frequency estimator not MLE

– Make non-local dependencies local by splitting categories

⇒ Astronomical number of possible categories

• Or find some way of dealing with non-local dependencies . . .
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Exponential models

• Rules are not independent ⇒ Z 6= 1, relative frequency estimator not MLE

• Exponential models permit dependencies between features

– Universe T (set of all possible parse trees)

– Features f = (f1, . . . , fm) (fj(t) = value of j feature on t ∈ T )

– Feature weights w = (w1, . . . , wm)

P(t) =
1

Z
expw · f(t) =

1

Z
exp

m∑

j=1

wjfj(t)

Z =
∑

t′∈T

expw · f(t′) =
∑

t′∈T

exp
m∑

j=1

wjfj(t
′)

Hint: Think of expw · f(t) as unnormalized probability of t
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PCFGs are exponential models

T = set of all trees generated by PCFG G

fj(t) = number of times the jth rule is used in t ∈ T

p(rj) = probability of jth rule in G

Set weight wj = log p(rj)

f




S

NP VP

rice grows




= [ 1︸︷︷︸
S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

Pw(t) =
m∏

j=1

p(rj)
fj(t) =

m∏

j=1

(expwj)
fj(t) = exp(w · f(t))

So a PCFG is just a special kind of exponential model with Z = 1.
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Advantages of exponential models

• Exponential models are very flexible . . .

• Features f can be any function of parses . . .

– whether a particular structure occurs in a parse

– conjunctions of prosodic and syntactic structure

• Parses t need not be trees, but can be anything at all

– Feature structures (LFG, HPSG), Minimalist derivations

• Exponential models are the same as (related to?) other popular models

– Harmony theory (and hence optimality theory)

– Maxent models

∗ A Maximum Entropy model is one which has as much entropy as

possible in the set of models whose expected feature counts equal the

true feature counts of the data

∗ the same model as the maximum likelihood model with the same

features
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MLE of exponential models and expectations

D = (t1, . . . , tn) (treebank trees)

Pw(t) =
1

Z
expw · f(t)

Z =
∑

t∈T

expw · f(t) (partition function)

`D(w) =
n∑

i=1

log Pw(ti) =
n∑

i=1

log
1

Z
expw · f(ti)

= w ·

(
n∑

i=1

f(ti)

)
− n logZ

∂`D(w)

∂wj
=

n∑

i=1

fj(ti) −
n

Z

∑

t∈T

fj(t) expw · f(t)

=
n∑

i=1

fj(ti) − nEw[fj ],where Ew[f ] =
∑

t∈T

f(t)Pw(t)
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Modeling dependencies

• It’s usually difficult to design a PCFG model that captures a particular set

of dependencies

– probability of the tree must be broken down into a product of

independent conditional probability distributions (c.f., Bayes nets)

– non-local dependencies must be expressed in terms of GPSG-style

feature passing

• It’s easy to make exponential models sensitive to new dependencies

– add a new feature functions to existing feature functions

– estimation is a harder computational problem (see below)

– conditional estimation ⇒ feature dependencies don’t matter

– figuring out what the right dependencies are is hard, but incorporating

them into an exponential model is easy
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Finding MLE of exponential models is hard

• An exponential model associates features f(t) = (f1(t), . . . , fm(t)) with

weights w = (w1, . . . , wm)

P(t) =
1

Z
expw · f(t)

Z =
∑

t′∈T

expw · f(t′)

• Given treebank (t1, . . . , tn), MLE chooses w to maximize

P(t1) × . . .× P(tn), i.e., make the treebank as likely as possible

• Computing P(t) requires the partition function Z

• Computing Z requires a sum over all parses T for all sentences

⇒ computing MLE of an exponential parsing model seems very hard
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ML estimation for exponential models

ti
T

D = (t1, . . . , tn)

LD(w) =
n∏

i=1

Pw(ti)

ŵ = arg max
w

LD(w)

= arg max
w

n∏

i=1

Pw(ti)

Pw(t) =
Vw(t)

Zw
, Vw(t) = exp

∑

j

wjfj(t), Zw =
∑

t′∈T

Vw(t′)

• T is set of all possible parses for all possible strings

• For a PCFG, ŵ is easy to calculate, but . . .

• in general ∂LD/∂wj and Zw are intractable analytically and numerically

• Abney (1997) suggests a Monte-Carlo calculation method
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Conditional ML estimation

• Conditional ML estimation chooses feature weights to maximize

Pw(t1|s1) × . . .× Pw(tn|sn), where si is string for ti

– choose feature weights to make ti most likely relative to parses T (si) for

si

⇒ CMLE doesn’t involve parses of other sentences

Pw(t|s) =
1

Zw(s)
expw · f(t)

Zw(s) =
∑

t′∈T (s)

expw · f(t′)

• T (s) is set of all parses for string s

• CMLE “only” involves repeatedly parsing training data

• With “wrong” models, CMLE often produces a more accurate parser than

joint MLE
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Conditional estimation

The conditional likelihood of w is the conditional probability of the hidden part

(syntactic structure) t given its visible part (yield or terminal string) s = S(t)

T

ti

T (si) = {t : S(t) = S(ti)}

ŵ′ = arg max
w

L′
D(w)

L′
D(w) =

n∏

i=1

Pw(ti|si)

Pw(t|s) =
Vw(t)

Zw(s)

Vw(t) = exp
∑

j

wjfj(t), Zw(t) =
∑

s′∈T (s)

Vw(t′)
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Conditional ML estimation

s f(t?) {f(t) : t ∈ T (s), t 6= t?(s)}

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)

sentence 2 (7, 2, 1) (2, 5, 5)

sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

. . . . . . . . .

• Parser designer specifies feature functions f = (f1, . . . , fm)

• A parser produces trees T (s) for each sentence s

• Treebank tells us correct tree t?(s) ∈ T (s) for sentence s

• Feature functions f apply to each tree t ∈ T (s), producing feature values

f(t) = (f1(t), . . . , fm(t))

• MCLE estimates feature weights w = (w1, . . . , wm)
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Conditional vs joint MLE

100×

VP

V

run 2×

V

see

NP

N

people

P

with

NP

N

telescopes

VP PP

VP

1×

VP

V

see

N

people

P

with

NP

N

telescopes

NP PP

NP

. . . × 2/105 × . . . . . . × 1/7 × . . .

. . . × 2/7 × . . . . . . × 1/7 × . . .

Rule count rel freq rel freq

VP → V 100 100/105 4/7

VP → V NP 3 3/105 1/7

VP → VP PP 2 2/105 2/7

NP → N 6 6/7 6/7

NP → NP PP 1 1/7 1/7
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Conditional estimation

• The pseudo-partition function Zw(s) is much easier to compute than the

partition function Zw

– Zw requires a sum over T

– Zw(s) requires a sum over T (s) (parses of s)

• Maximum likelihood estimates full joint distribution

– learns P(s) and P(t|s)

• Conditional ML estimates a conditional distribution

– learns P(t|s) but not P(s)

– conditional distribution is what you need for parsing

– cognitively more plausible?

• Conditional estimation requires labelled training data: no obvious EM

extension
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CML estimation and hidden data

• Conditional ML estimation ignores distribution of strings

⇒ Cannot learn from strings alone

ML CML EM CML+EM

maximizes likelihood of relative to

MLE ti T

CMLE ti T (si)

EM T (si) T

CMLE+EM T (si) T (si)
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Conditional estimation

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

. . . . . . . . .

• Training data is fully observed (i.e., parsed data)

• Choose w to maximize (log) likelihood of correct parses relative to other

parses

• Distribution of sentences is ignored

• Nothing is learnt from unambiguous examples

• Other discriminative learners solve this problem in different ways
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Pseudo-constant features are uninformative

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 2] [3, 1, 2] [2, 6, 2]

sentence 2 [7, 2, 5] [2, 5, 5]

sentence 3 [2, 4, 4] [1, 1, 4] [7, 2, 4]

. . . . . . . . .

• Pseudo-constant features are identical within every set of parses

• They contribute the same constant factor to each parses’ likelihood

• They do not distinguish parses of any sentence ⇒irrelevant
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Pseudo-maximal features ⇒ unbounded weights

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 3, 4] [3, 1, 1] [2, 1, 1]

sentence 2 [2, 7, 4] [3, 7, 2]

sentence 3 [2, 4, 4] [1, 1, 1] [1, 2, 4]

• A pseudo-maximal feature always reaches its maximum value within a

parse on the correct parse

• If fj is pseudo-maximal, ŵj
′
→ ∞ (hard constraint)

• If fj is pseudo-minimal, ŵj
′ → −∞ (hard constraint)
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Regularization

• fj is pseudo-maximal over training data 6⇒ fj is pseudo-maximal over all

strings (sparse data)

• With many more features than data, log-linear models can over-fit

• Regularization: add bias term to ensure ŵ′ is finite and small

• In these experiments, the regularizer is a polynomial penalty term

ŵ′ = arg max
w

logL′
D(w) − c

m∑

j=1

|wj |
p

p = 2 is Gaussian prior, p = 1 gives sparse solns

• p = 2 corresponds to Bayesian estimation with Gaussian prior e
−c
∑

j
w2

j

P(M |D) ∝ P(D|M)︸ ︷︷ ︸
likelihood

P(M)︸ ︷︷ ︸
prior

log P(M |D) = log P(D|M) + log P(M) + a
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More on regularization

D = ((s1, t1), . . . , (sn, tn)), string si, tree ti

Q(w) =
n∑

i=1

log P(ti|w) − c log
m∑

j=1

|wj |
p

∂Q

∂wj
=

n∑

i=1

fj(ti) −
n∑

i=1

E[fj |si]

︸ ︷︷ ︸
likelihood

− cp|xj |
p−1

︸ ︷︷ ︸
prior

∂Q

∂wj
= 0 ⇒

n∑

i=1

fj(ti) =

n∑

i=1

E[fj |si] + cp|xj |
p−1
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Optimization algorithms for finding CMLE

• Specialized algorithms: Iterative scaling and various enhancements

• General purpose numerical algorithms that use gradient: Conjugate

gradient, Limited Memory Variable Metric

– numerical analysts have spent years optimizing algorithms

– good general purpose optimization packages are freely downloadable

• Most time is spent calculating likelihood of each tree in training data

– since you’re visiting each tree, might as well calculate derivative as well

• Currently LMVM is fastest method for parsing problems
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Comparing MLE and CMLE in PCFG parsing

• MLE is relative frequency estimator (involves counting rule occurences in

training trees)

George

NNP

NP

S

VP

VB

eats

pizza quickly

RBNN

NP ADVP

P̂(VP → VB NP ADVP) =
C(VP → VB NP ADVP)∑

αs.t.VP→α C(VP → α)
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Comparing estimators: PCFG parsing

• MCLE involves maximizing a complex non-linear function

– ∂Zw(s)/∂wj involves Ew[fj |s] (expected number of times rule j appears

in training data)

∗ computed using inside-outside algorithm

– conjugate gradient (iterative optimization)

– each iteration involves summing over all parses of each training sentence

⇒ Use the small ATIS treebank corpus

– Trained on 1088 sentences of ATIS1 corpus

– Tested on 294 sentences of ATIS2 corpus

• MCLE estimator initialized with MLE probabilities
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PCFG parsing results

MLE MCLE

− log likelihood of training data 13857 13896

− log conditional likelihood of training data 1833 1769

− log marginal probability of training strings 12025 12127

Labelled precision of test data 0.815 0.817

Labelled recall of test data 0.789 0.794

• Precision/recall difference not significant (p ≈ 0.1)

SWITCH TO CoNLL 2005 talk here
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Conclusion

• It’s possible to build (moderately) accurate, broad-coverage parsers

• Generative parsing models are easy to estimate, but make questionable

independence assumptions

• Exponential models don’t assume independence, so it’s easy to add new

features, but are difficult to estimate

• Coarse-to-fine conditional MLE for exponential models is a compromise

– flexibility of exponential models

– possible to estimate from treebank data

• Gives the currently best-reported parsing accuracy results
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S1

S

NP

JJ

Colorless

JJ

green

NNS

ideas

VP

VBP

sleep

ADVP

RB

furiously

.

.

S1

SINV

ADVP

RB

Furiously

VP

VBP

sleep

NP

NP

NNS

ideas

ADJP

JJ

green

JJ

colorless

.

.
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