Weighted Context-Free Grammars and Proper PCFGs

Mark Johnson

Brown University

4th August, 2005

based heavily on Zhiyi Chi (1999) "Statistical Properties of Context-Free Grammars", Computational Linguistics Thanks to Noah Smith

Overview

- Not all PCFGs are *proper* (have a partition function Z = 1)
- Determining whether a PCFG is proper
- Maximum likelihood estimates of CFGs are always proper
- Weighted CFGs and Gibbs form CFGs
 - these arise naturally in conditional estimation
- WCFGs define the same distributions over trees as PCFGs
- how to convert a WCFG to an equivalent PCFG
- Conditional distributions
- CRF conditional distributions are HMM conditional distributions

Probabilistic Context-Free Grammars (1)

A PCFG is a tuple G = (N, T, R, S, p) where:

- N is a finite set of nonterminals
- T is a finite set of terminals
- $R \subset N \times (N \cup T)^*$ is a finite set of rules or productions - assume G does not contain useless rules or symbols
- $S \in N$ is the start symbol
- p is a function from N × (N ∪ T) to [0, 1] that is non-zero only on
 R. p(A → α) is the probability of the rule A → α.

for all
$$A \in N$$
, $\sum_{\alpha: A \to \alpha \in R} p(A \to \alpha) = 1$

Probabilistic Context-Free Grammars (2)

The "probability" of a tree is the product of the probabilities of the rules used to generate it

$$p(t) = \prod_{A \to \alpha \in R} p(A \to \alpha)^{f_{A \to \alpha}(t)}$$

where:

- t is a parse tree and p(t) is its "probability"
- $f_A(t)$ is the number of nodes labelled A in t
- $f_{A\to\alpha}(t)$ is the number of times $A\to\alpha$ is used in t

Not all PCFGs are proper

A PCFG is *proper* iff $\sum_{t \in \mathcal{T}} p(t) = 1$ where \mathcal{T} is the set of all trees $R = \begin{cases} S \to S S & q \\ S \to a & 1-q \end{cases}$

$$Z_h = \sum_{\substack{t: \text{height}(t) \le h}} p(t)$$
$$= (1-q) + qs_{h-1}^2$$

so the fixed point $Z = \lim_{h \to \infty} Z_h = \sum_t p(t)$ satisfies

$$Z = 1 - q + qZ^2$$
$$Z = \min(1, 1/q - 1)$$
$$> 1 \text{ when } p > 1/2$$

Determining if a PCFG is proper

• Define a matrix M indexed by nonterminals in N

$$M_{A,B}$$
 = the expected number of Bs that A rewrites to
= $\sum_{\alpha:A\to\alpha\in R} p(A\to\alpha)n_B(\alpha)$

where $n_B(\alpha)$ is the number of Bs in α

- $M_{A,B}^k$ is the expected number of Bs that A rewrites to in k steps
- G is proper iff each $M_{A,B}^k \to 0$ as $k \to \infty$

 \Leftrightarrow the largest eigenvalue of M is less than 1

• Wetherell (1980) describes an efficient way of determining this

MLEs of PCFGs are always proper (1)

Relative frequency estimator from weighted set *D* of trees, where *W(t)* is weight of tree *t*

$$p(A \to \alpha) = \frac{\sum_{t \in \mathcal{D}} f_{A \to \alpha}(t) W(t)}{\sum_{t \in \mathcal{D}} f_A(t) W(t)}$$

– encompasses MLE from treebanks, and M step of EM

$$q_{A} = P(A \text{ fails to terminate})$$

$$= \sum_{A \to \alpha} p(A \to \alpha) P(\bigcup_{i} \{\alpha_{i} \text{ fails to terminate}\})$$

$$\leq \sum_{A \to \alpha} p(A \to \alpha) \sum_{i} P(\{\alpha_{i} \text{ fails to terminate}\})$$

$$= \sum_{A \to \alpha} p(A \to \alpha) \sum_{B \in N} n_{B}(\alpha) q_{B}$$

MLEs of PCFGs are always proper (2)

$$q_A \leq \sum_{A \to \alpha} p(A \to \alpha) \sum_B n_B(\alpha) q_B$$

=
$$\sum_B q_B \left(\frac{\sum_{A \to \alpha} n_B(\alpha) \sum_{t \in \mathcal{D}} f_{A \to \alpha}(t) W(t)}{\sum_{t \in \mathcal{D}} f_A(t) W(t)} \right)$$

$$q_{A} \sum_{t \in \mathcal{D}} f_{A}(t)W(t) \leq \sum_{B} q_{B} \sum_{t \in \mathcal{D}} \sum_{A \to \alpha} n_{B}(\alpha) f_{A \to \alpha}(t)W(t)$$
$$\sum_{A} q_{A} \sum_{t \in \mathcal{D}} f_{A}(t)W(t) \leq \sum_{B} q_{B} \sum_{t \in \mathcal{D}} \sum_{A} \sum_{A \to \alpha} n_{B}(\alpha) f_{A \to \alpha}(t)W(t)$$
$$= \sum_{B} q_{B} \sum_{t \in \mathcal{D}} \tilde{f}_{B}(t)W(t)$$

where $\tilde{f}_B(t)$ is the number of *non-root* nodes labeled B in t. Note that $f_S(t) = \tilde{f}_S(t) + 1$, and $f_A(t) = \tilde{f}_A(t)$ for all $A \neq S$

MLEs of PCFGs are always proper (3)

$$q_A \sum_{t \in \mathcal{D}} f_A(t) W(t) \leq \sum_B q_B \sum_{t \in \mathcal{D}} \tilde{f}_B(t) W(t)$$

$$\sum_{A} q_{A} \sum_{t \in \mathcal{D}} \left(f_{A}(t) - \tilde{f}_{A}(t) \right) W(t) \leq 0$$

But since $f_A(t) = \tilde{f}_A(t)$ for $A \neq S$ and $f_S(t) = \tilde{f}_S(t) + 1$: $q_S \sum_t W(t) \leq 0$

which implies that $q_S = 0$

Weighted CFGs

• A weighted CFG G is one where each rule $A \to \alpha \in R$ is associated with a positive weight $w_{A\to\alpha}$. The weight w(t) of a tree t generated by G is the product of the weights of the rules that generate it.

$$w(t) = \prod_{A \to \alpha \in R} w_{A \to \alpha} f_{A \to \alpha}(t)$$
$$Z = \sum_{t \in T} w(t)$$
$$P(t) = w(t)/Z$$

• WCFGs can also be expressed as *Gibbs* or *log linear* models

$$\lambda_{A \to \alpha} = \log w_{A \to \alpha} \text{ for each } A \to \alpha \in R$$

$$w(t) = \prod_{A \to \alpha} \exp(\lambda_{A \to \alpha})^{f_{A \to \alpha}(t)} = \exp \sum_{A \to \alpha} \lambda_{A \to \alpha} f_{A \to \alpha}(t)$$

$$P(t) = \frac{1}{Z} \exp \sum_{A \to \alpha} \lambda_{A \to \alpha} f_{0}^{A \to \alpha}(t)$$

Reasons for using WCFGs

- Unconstrained numerical optimization is easier than constrained numerical optimization
 ⇒ numerically estimating a WCFG is easier than a PCFG
- Conditional estimation (trees given strings)
 - should be more accurate for parsing (given our bad grammars)
 - no closed form known (to me) \Rightarrow numerical methods
 - there is a dynamic programming algorithm for calculating conditional likelihood and its derivatives
- Want to impose a prior on rule probabilities or regularize
 - Except for Dirichlet prior (which is conjugate to multinomial), numerical optimization probably required
 - Often easier to state priors/regularizers in log linear parameter space $\lambda_{A\to\alpha}$

Every WCFG dist is a proper PCFG dist

- In terms of grammars, WCFGs ⊃ PCFGs ⊃ proper PCFGs, but these all define exactly the same probability distributions over trees
- Chi 1999's rule probabilities for the equivalent proper PCFG:

$$p(A \to \alpha) = \frac{1}{Z_A} w_{A \to \alpha} \prod_{k=1}^{|\alpha|} Z_{\alpha_k}, \text{ where}$$
$$Z_A = \sum_{t \in \mathcal{T}_A} w(t)$$
$$\mathcal{T}_A = \text{ set of trees rooted in } A$$
$$P_B(t) = \frac{1}{Z_B} \prod_{A \to \alpha \in R} w_{A \to \alpha} f_{A \to \alpha}(t) \text{ for } t \in \mathcal{T}_B$$

 \Rightarrow many different WCFGs define the same distribution over trees \Rightarrow WCFGs weights are not identifiable even from treebank data

WCFG to PCFG conversion (1)

Proposition: $p_B(t) = P_B(t)$ for all $B \in N$ and $t \in \mathcal{T}_B$, where

$$p(A \to \alpha) = \frac{1}{Z_A} w_{A \to \alpha} \prod_{k=1}^{|\alpha|} Z_{\alpha_k}$$
$$p_B(t) = \prod_{A \to \alpha} p(A \to \alpha)^{f_{A \to \alpha}(t)}$$
$$P_B(t) = \frac{1}{Z_B} \prod_{A \to \alpha} w_{A \to \alpha}^{f_{A \to \alpha}(t)}$$

Proof by induction on the height h of t. Trivial for h = 1 (terminals)

WCFG to PCFG conversion (2)

Suppose $t \in \mathcal{T}_B$ has height h > 1, root rule is $B \to \beta$ and t_k is subtree rooted in kth child of t.

$$P_{B}(t) = \frac{1}{Z_{B}} \prod_{A \to \alpha} w_{A \to \alpha}^{f_{A \to \alpha}(t)}$$

$$= \frac{1}{Z_{B}} w_{B \to \beta} \prod_{k=1}^{|\beta|} \prod_{A \to \alpha} w_{A \to \alpha}^{f_{A \to \alpha}(t_{k})}$$

$$= \frac{1}{Z_{B}} w_{B \to \beta} \prod_{k=1}^{|\beta|} Z_{\beta_{k}} P_{\beta_{k}}(t_{k})$$

$$= \frac{1}{Z_{B}} w_{B \to \beta} \prod_{k=1}^{|\beta|} Z_{\beta_{k}} p_{\beta_{k}}(t_{k}) \text{ by induction hyp}$$

$$= p(B \to \beta) \prod_{k=1}^{|\beta|} p_{\beta_{k}}(t_{k})$$

$$= p_{B}(t) \qquad 14$$

Calculating WCFG partition functions Z_A

$$p(A \to \alpha) = \frac{1}{Z_A} w_{A \to \alpha} \prod_{k=1}^{|\alpha|} Z_{\alpha_k}$$

Let $\mathcal{T}_A^{(h)} =$ trees rooted in A of height $\leq h$
 $Z_A^{(h)} = \sum_{t \in \mathcal{T}_A^{(h)}} \prod_{A \to \alpha} w_{A \to \alpha} f_{A \to \alpha}^{(t)}$
 $Z_A = \lim_{h \to \infty} Z_A^{(h)}$
 $Z_A^{(1)} = 1 \text{ if } A \in T, 0 \text{ otherwise}$
 $Z_A^{(h+1)} = \begin{cases} 1 & \text{for } A \in T \\ \sum_{\alpha: A \to \alpha \in R} w_{A \to \alpha} \prod_{k=1}^{|\alpha|} Z_{\alpha_k}^{(h)} & \text{for } A \in N \end{cases}$

Conditional Distributions

• Some WCFGs define *conditional* distributions of trees given strings, even though their partition functions Z diverge

$$S \to SS; 1 \qquad S \to a; 1$$

- Chi's formula requires that all partition functions Z converge
- Change the WCFG weights $w_{A\to\alpha}$ to $\gamma^{|\alpha|-1}w_{A\to\alpha}$, $\gamma > 0$
 - multiplies the weight of a tree with yield y by $\gamma^{|y|-1}$
 - \Rightarrow doesn't affect the conditional distribution
- To find a PCFG with same conditional distribution as a WCFG
 1. Search for γ that makes the WCFG partition functions converge
 2. Apply the Chi formula to obtain PCFG rule probabilities

CRF cond dists = HMM cond dists

• A CRF is a WCFG $\Rightarrow \exists$ HMM with same cond dist

Conclusion

- Not all PCFGs are *proper* (have a partition function Z = 1)
- Determining whether a PCFG is proper
- Maximum likelihood estimates of CFGs are always proper
- Weighted CFGs and Gibbs form CFGs
 - these arise naturally in conditional estimation
- WCFGs define the same distributions over trees as PCFGs
- how to convert a WCFG to an equivalent PCFG
- Conditional distributions
- CRF conditional distributions are HMM conditional distributions