
Theory and Application of

Stochastic Unification-based

Grammars

Mark Johnson

Brown Laboratory for Linguistic Information Processing

(BLLIP)

University of Edinburgh, January 2002

Joint work with Stuart Geman and Stefan Riezler

Supported by NSF grants LIS 9720368 and IIS0095940

1

Talk outline

• Motivation for and applications of stochastic grammars

• Discriminative training of stochastic grammars

– supervised training from parsed corpora

– unsupervised training from sentence-aligned bitext

• Avoiding enumerating parses

– Packed parse representations

– Feature locality

– Dynamic programming using graphical model techniques

2

Why combine grammars and statistics?

• Language is used to convey information

– Grammars capture the form-meaning mapping

• Interpretation is dependent on many interacting factors

– Grammar is about expressing linguistic constraints

• Ambiguity is pervasive in language

– Statistics is the theory of inference under uncertainty

• Learning the grammar of a language is a prerequisite

– Language learning is a statistical inference problem

3

What can we do with SUBGs?

• Identify most likely parses (focused information retrieval)

• Machine translation (find most likely translation)

• Language modelling for speech recognition and OCR

– Requires joint models

4

Two problems of non-statistical CL

1. Ambiguity explodes combinatorially
(162) Even though it’s possible to scan using the Auto Image Enhance mode,

it’s best to use the normal scan mode to scan your documents.

• Refining the grammar is often self-defeating
⇒ splits states ⇒ makes the problem worse!

• Preference information guides parser to correct analysis

2. Requiring linguistic well-formedness leads to non-robustness

• Perfectly comprehensible sentences receive no parses

5

Conventional approaches to robustness

• We want to be able to analyse ill-formed input, e.g. He walk.

– Ignoring agreement ⇒ spurious ambiguity
I saw the father of the children that speak(s) French

• Extra-grammatical rules, repair mechanisms, . . .

– How can semantic interpretation take place without a
well-formed syntactic analysis?

• A preference-based approach provides a systematic treatment of
robustness too!

6

Generation with ranked analyses

• Probability distribution over phonology/semantics pairs ω ∈ Ω

• Generation optimizes conditional probability of phonological
output given the semantic input s.

Generate(s) = argmax
ω

P(ω | semantics(ω) = s)

semantic input

optimal phonological output

optimality
increasing

Phonology

Semantics

7

Parsing with ranked analyses

• Parsing optimizes the conditional probability of the semantics
given the phonological form p

Parse(p) = argmax
ω

P(ω | phonology(ω) = p)

phonological input

optimal semantic interpretation

optimality
increasing

Phonology

Semantics

8

Robustness and ranked interpretations

• Parsing and generation involve different conditional
distributions!

• Grammar pairs “ungrammatical” sentences with interpretations

never generated, but interpretable!

optimality
increasing

Phonology

Semantics

9

Learning & comprehension involves inference

• Both language learning and language comprehension require
identifying “hidden” properties of the input

• The input is (apparently) compatible with different hidden
structures

• Statistical inference may suceed even if there is insufficient
information for deductive approaches

• Ranked analyses provide a systematic treatment of preferences
and robustness

10

Linguistic knowledge and statistical parsing

• Statistical parsers are not “linguistics-free”

– Conditioning features

– Syntactic annotations in training data

• What is the most effective way to import useful linguistic
knowledge?

– manually specify possible linguistic structures

– manually specify statistical features

– learn feature weights from training data

11

Statistical learning and parsing

• Grammar defines (universally) possible linguistic structures Ω

• Family of probability distributions Pθ on Ω parameterized by θ

• Learning involves finding θ which makes the input most likely

• Given θ and a yield (terminal string) y, parsing involves finding
most probable structure in {ω|Y (ω) = y}

• How can we define such probability distributions?

• Computationally efficient inference?

12

PCFGs and relative frequency estimator

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

corn

VP

grows

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P

S

NP

rice

VP

grows

 = 2/3

P

S

NP

corn

VP

grows

 = 1/3

13

Non-local constraints

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

bananas

VP

grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P

S

NP

rice

VP

grows

 = 4/9

P

S

NP

bananas

VP

grow

 = 1/9

Z = 5/9

14

Renormalization

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

bananas

VP

grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P

S

NP

rice

VP

grows

 = 4/9 4/5

P

S

NP

bananas

VP

grow

 = 1/9 1/5

Z = 5/9

15

Other values do better!

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

bananas

VP

grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 1/2

VP → grow 1 1/2

(Abney 1997)

P

S

NP

rice

VP

grows

 = 2/6 2/3

P

S

NP

bananas

VP

grow

 = 1/6 1/3

Z = 3/6

16

Make dependencies local – GPSG-style

rule count rel freq

S → NP
+singular

VP
+singular 2 2/3

S → NP
+plural

VP
+plural 1 1/3

NP
+singular → rice 2 1

NP
+plural → bananas 1 1

VP
+singular → grows 2 1

VP
+plural → grow 1 1

P

S

NP
+singular

rice

VP
+singular

grows

 = 2/3

P

S

NP
+plural

bananas

VP
+plural

grow

 = 1/3

17

Summary

All dependencies are local or context-free:

• rules are “natural” features of probability distribution

• relative rule frequency is MLE

Structures exhibit non-local dependencies:

• no easy way to obtain “natural” features

• with renormalization, relative frequency estimator is not
MLE
– MLE is much more complicated

• this estimator handles non-rule and rule features
⇒ no need to restrict attention to rule features

18

Log linear models

• The log likelihood is a linear function of feature values
• Ω = set of syntactic structures (not necessarily trees)
• fj(ω) = number of occurences of jth feature in ω ∈ Ω

(feature 6= attribute)

• λj are “feature weight” parameters

Wλ(ω) = exp(
m∑

j=1

λjfj(ω))

ω

Ω

Zλ =
∑
ω∈Ω

Wλ(ω)

Pλ(ω) =
Wλ(ω)

Zλ

log Pλ(ω) =
m∑

j=1

λjfj(ω)− log Zλ

19

PCFGs are log-linear models

Ω = set of all trees generated by G

fj(ω) = number of times the jth rule is used in ω ∈ Ω

θj = probability of jth rule in G λj = log θj

f

S

NP

rice

VP

grows

 = [1︸︷︷︸

S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

Pθ(ω) =
m∏

j=1

θ
fj(ω)
j = exp(

m∑
j=1

λjfj(ω)) where λj = log θj

20

Stochastic Lexical-Functional Grammar

• Unification-based grammar (competence) defines well-formed
syntactic structures Ω

– In SLFG, these are c-structure/f-structure pairs

• Stochastic model (performance) defines a probability
distribution over Ω

– Features f1, . . . , fm, where each fj maps each ω ∈ Ω to a
feature occurence count fj(ω)

– Probability distribution defined by log linear model

log Pλ(ω) =
m∑

j=1

λjfj(ω)− log Zλ

• Same approach applies to virtually any theory of grammar

21

Sample parses

TURN

SEGMENT

ROOT

Sadj

S

VPv

V

let

NP

PRON

us

VPv

V

take

NP

DATEP

N

Tuesday

COMMA

,

DATEnum

D

the

NUMBER

fifteenth

PERIOD

.

SENTENCE ID BAC002 E

OBJ

9

ANIM +
CASE ACC
NUM PL
PERS 1
PRED PRO
PRON-FORM WE
PRON-TYPE PERS

PASSIVE−
PRED LET〈2,10〉9
STMT-TYPE IMPERATIVE

SUBJ

2

PERS 2
PRED PRO
PRON-TYPE NULL

TNS-ASP MOOD IMPERATIVE

XCOMP

OBJ

13

ANIM−

APP

NTYPE NUMBER ORD
TIME DATE

NUM SG
PRED fifteen

SPEC SPEC-FORM THE
SPEC-TYPE DEF

CASE ACC
GEND NEUT

NTYPE
GRAIN COUNT
PROPER DATE
TIME DAY

NUM SG
PERS 3
PRED TUESDAY

PASSIVE−22

Features used

Rule features: For every non-terminal X, fX(ω) is the number of
times X occurs in c-structure of ω

Attribute value features: For every attribute a and every atomic
value v, fa=v(ω) is the number of times the pair a = v appears in
ω

Argument and adjunct features: For every grammatical
function g, fg(ω) is the number of times that g appears in ω

Other features: Dates, times, locations; right branching;
attachment location; parallelism in coordination; . . .

Features are not independent, but dependency structure is unknown.

23

ML estimation for log linear models

ωi
Ω

Training data D = ω1, . . . , ωn

λ̂ = argmax
λ

LD(λ)

LD(λ) =
n∏

i=1

Pλ(ωi)

Pλ(ω) =
Wλ(ω)

Zλ
Wλ(ω) = exp(

∑
j

λjfj(ω)) Zλ =
∑

ω′∈Ω

Wλ(ω′)

• For a PCFG, λ̂ is easy to calculate, but . . .

• in general ∂LD/∂λj and Zλ are intractable analytically and
numerically

• Abney (1997) suggests a Monte-Carlo calculation method

24

Pseudo-likelihood

The pseudo-likelihood of ω is the conditional probability of the hidden
part (syntactic structure) ω given its visible part (yield or terminal
string) y = Y (ω) (Besag 1974)

Ω

Ω(yi) = {ω : Y (ω) = Y (ωi)}
ωi

λ̂ = argmax
λ

PLD(λ)

PLD(λ) =
n∏

i=1

Pλ(ωi|yi)

Pλ(ω|y) =
Wλ(ω)
Zλ(y)

Wλ(ω) = exp(
∑
j

λjfj(ω)) Zλ(y) =
∑

ω′∈Ω(y)

Wλ(ω′)

25

Pseudo-likelihood versus likelihood

• The pseudo-partition function Zλ(y) is much easier to compute
than the partition function Zλ

– Zλ requires a sum over Ω

– Zλ(y) requires a sum over Ωy (parses of y)

• Maximum likelihood estimates full joint distribution

– learns distribution of both yields and parses given yields

• Maximum pseudo-likelihood estimates a conditional distribution

– learns distribution of parses given yields, but not yields

– conditional distribution is what you need for parsing

– cognitively more plausible?

• Maximizing pseudo-likelihood does not maximize likelihood

– PL estimator is consistent for the conditional distribution

26

Pseudo-likelihood estimation

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

.

• Training data is fully observed (i.e., parsed data)

• Choose λ to maximize (log) likelihood of correct parses relative
to other parses

• Distribution of sentences is ignored

27

Pseudo-constant features are uninformative

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 2] [3, 1, 2] [2, 6, 2]

sentence 2 [7, 2, 5] [2, 5, 5]

sentence 3 [2, 4, 4] [1, 1, 4] [7, 2, 4]

.

• Pseudo-constant features are identical within every set of parses

• They contribute the same constant factor to each parses’
likelihood

• They do not distinguish parses of any sentence ⇒ irrelevant

28

Pseudo-maximal features ⇒ unbounded λ̂j

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3 , 2] [2, 3 , 4] [3, 1 , 1] [2, 1 , 1]

sentence 2 [2, 7 , 4] [3, 7 , 2]

sentence 3 [2, 4 , 4] [1, 1 , 1] [1, 2 , 4]

• A pseudo-maximal feature always reaches its maximum value
within a parse on the correct parse

• If fj is pseudo-maximal, λ̂j →∞ (hard constraint)

• If fj is pseudo-minimal, λ̂j → −∞ (hard constraint)

29

Regularization

• fj is pseudo-maximal over training data 6⇒ fj is pseudo-maximal
over all of Ω (sparse data)

• Regularization: add bias term to ensure optimal λj is finite
Multiply the pseudo-likelihood by a zero-mean normal with
diagonal covariance

λ̂ = argmax
λ

log PLD(λ)−
m∑

j=1

λ2
j

2σ2
j

where σj is 7 times the maximum value of fj found in the corpus

30

Stochastic LFG experiment

• Two parsed LFG corpora provided by Xerox Parc

• Grammars unavailable, but corpus contains all parses and
hand-identified correct parse

• Features chosen by inspecting Verbmobil corpus only

Verbmobil corpus Homecentre corpus

of sentences 540 980

of ambiguous sentences 324 424

Av. length of ambig. sentences 13.8 13.1

of parses 3245 2865

of features 191 227

of rule features 59 57

31

Pseudo-likelihood estimator evaluation

Verbmobil corpus Homecentre corpus

324 sentences 424 sentences

C − log PL C − log PL

Baseline estimator 88.8 533.2 136.9 590.7

Pseudo-likelihood estimator 180.0 401.3 283.25 580.6

• Test corpus only contains sentences with more than one parse

• C is the number of maximum likelihood parses of held-out test
corpus that were the correct parses

• 10-fold cross-validation evaluation

• Combined system performance: 75% of MAP parses are correct

32

What have we achieved?

+ Log linear framework applies to any theory of grammar

+ Pseudo-likelihood estimator is practical for grammars with
thousands of analyses/sentence

+ Features can be anything “read off” a structure

+ Systematic treatment of preferences

? Where’s the linguistic structure gone? Probability distribution
determined solely by feature count vector

− Parser is just as non-robust or “brittle” as before

⇒ Re-express hard linguistic constraints as soft constraints

33

Summary

• Log-linear models provide a general way of defining probability
distributions in the face of context-sensitive dependencies

• The pseudo-likelihood estimator is computationally tractable for
realistic LFGs

• Auxiliary distributions provide a principled way of incorporating
other distributional information

• The combined LFG parser + log linear model obtains the correct
parse on 73% of Verbmobil and almost 80% of Homecentre
corpus sentences

34

PL estimation and hidden data

• PL estimation ignores distribution of strings

⇒ Cannot learn from strings alone

ML PL EM PL+EM

maximizes likelihood of relative to

ML ωi Ω

PL ωi Ω(yi)

EM Ω(yi) Ω

PL+EM Ω(yi) Ω(yi)

35

Psychologically-realistic conditional models

• Joint models P(ω) predict what is said and how it is said

• Modularity: These two processes are very different!

• Conditional models in SUBGs: P(S|Y)
(S = semantics, Y = phonology)

• A psycholinguistically realistic statistical model

– World model: P(S)

– Linguistic model: P(Y |S)

• Parsing with such models:

P(S|Y) ∝ P(Y |S)P(S)

36

Language acquisition as parameter estimation

• Ω contains every sentence structure from every possible human
language

• Each type of syntactic construction is associated with a
parameter

Verb initial λVI > 0 [S Kim [VP will love Sandy]]

Verb final λVF > 0 [S Kim [VP Sandy love will]]

Verb second λV2 > 0 [S Kim will [VP Sandy love]]

• Learning a language involves learning which constructions it
possesses

37

PL estimation is cognitively unnatural

• PL estimation requires parsed input

– Correct parse of “NP V NP” identifies λV2 value
[S Kim loves [VP Sandy]] ⇒ λV2 > 0
[S Kim [VP loves Sandy]] ⇒ λV2 < 0

– Unrealistic to assume child has access to parsed input

• PL estimator only learns from ambiguous sentences

– [S Kim [VP Sandy love will]] is uninformative to PL

• But unambiguous sentences are sometimes most informative!

38

Components of a representation

• A representation projects several components (random variables)

– yield Y (ω), semantics S(ω)

• Pseudo-likelihood can be defined with respect to each of these

– Ω(y) = {ω|Y (ω) = y} and Ω(s) = {ω|S(ω) = s} are small and
enumerable for many grammars

⇒ estimation is computationally feasible

• These sets can be used to define a wide variety of estimators

39

Semantic pseudo-likehood

ωi

Ω(yi) = {ω : Y (ω) = yi} Ω(si) = {ω : S(ω) = si}
same semanticssame phonology

• Assume learner has access to semantics si and correct parse ωi

• Treat the semantics si as visible component

• Pseudo-likelihood with semantic comparison set

PL′D(λ) =
n∏

i=1

Pλ(ωi|si)

• Learns when a semantics can be expressed in several ways
cross-linguistically
(love(Sandy, Sasha)) ⇒+ [S Sandy [VP Sasha love]]) ⇒ λVF > 0

40

Partially observed data

Ω(yi) = {ω : Y (ω) = yi} Ω(si) = {ω : S(ω) = si}
same semanticssame phonology

• Phonology and semantics are both visible
Training data D′ = 〈y1, s1〉, . . . , 〈yn, sn〉

• Maximize the semantic pseudo-likehood of the phonology

PLD′(λ) =
n∏

i=1

Pλ(yi|si)

• Learns whenever a semantics has several yields
cross-linguistically
(Fut(love(Sandy, Sasha)) ⇒+ “Sandy will Sasha love”) ⇒ λV2 > 0

41

Learning from aligned bilingual corpora

• Adjust models λa, λb to maximize probability that each
translation pair receives same semantic interpretation

• Training data D = (ya,1, yb,1), . . . , (ya,n, yb,n)

(λ̂a, λ̂b) = argmax
λa,λb

LD(λa, λb)

LD(λa, λb) =
n∏

i=1

Pλa× Pλb
(Sa = Sb|ya,i, yb,i)

Pλa× Pλb
(sa, sb|ya, yb) = Pλa(sa|ya)Pλb

(sb|yb)

• More sophisticated models are possible! (c.f., co-training)

42

Hidden data and bidirectional optimization

• Assume that P(S|Y) and P(Y |S) are highly skewed

⇒ Most sentences have one highly preferred interpretation

⇒ Most semantics have one highly preferred sentence

• Adjust λ to maximize probability of generating the observed
string from its likely interpretations

D = y1, . . . , yn

PLD(λ) =
n∏

i=1

∑
s

Pλ(yi|s)Pλ(s|yi)

yi

Y

S

43

Summary

• Log linear models provide a general framework for defining
probability distributions over linguistic representations

• Joint models are difficult/impossible to estimate

• Conditional models (conditioning on the yield) are easier to
estimate

• Learning conditional models from hidden data is difficult

• It may be useful to condition on the semantics

• There are many other interesting conditional models to
investigate!

44

Parsing and estimation from packed parses

• Maxwell and Kaplan packed parse representations

• Feature locality (e.g., a f-structure constant)

• Parsing/estimation statistics are sum/max of products

• Graphical representation of product expressions

• Sum/max computations over graphs

• Other applications

– Importance sampling

– Best-first parsing

45

Reparameterization of log linear models

θj = expλj

Wθ(ω) =
m∏

j=1

θ
fj(ω)
j

Pθ(ω|y) =
Wθ(ω)
Zθ(y)

Zθ(y) =
∑

ω′∈Ω(y)

Wθ(ω′)

• Change of variables permits zero probability events

• Zθ(y) involves summing over all possible parses

• Same kind of technique finds most likely parse and calculates
Eθ[fj |y]

46

Maxwell and Kaplan packed parses

• A parse ω consists of set of fragments ξ ∈ ω

• A fragment is in a parse when its context function is true

• Context functions are functions of zero or more context variables

• The variable assignment must satisfy “not no-good” functions

• Each parse is identified by a unique context variable assignment

y = “the cat on the mat”

y1 = “with a hat”

X1 → “attach y1 low”

¬X1 → “attach y1 high”
with a hat

the cat on

the mat
¬X1

X1

47

Packed parse example

y = “I read a book”

y1 = “on the table”

X1 ∧X2 → “attach y1 low”

X2 ∧ ¬X2 → “attach y1 high”

¬X1 → “attach y1 elsewhere”

X1 ∨X2

on the table

a book X1 ∧ ¬X2

X1 ∧X2

¬X1

I read

48

Feature locality

• Features local to fragments: fj(ω) =
∑

ξ∈ω fj(ξ)

y = “the cat on the mat”

y1 = “with a hat”

X1 → “attach y1 low” ∧ (y1 attach) = low

¬X1 → “attach y1 high” ∧ (y1 attach) = high

with a hat

the cat on

the mat
¬X1

X1

49

Feature locality decomposes Wθ

• Feature locality: the weight of a parse is the product of the
weights of its fragments

Wθ(ω) =
∏
ξ∈ω

Wθ(ξ)

Wθ(y = “the cat on the mat”)

Wθ(y1 = “with a hat”)

X1 → Wθ (“attach y1 low” ∧ (y1 attach) = low)

¬X1 → Wθ (“attach y1 high” ∧ (y1 attach) = high)

50

Wθ as a function of X

• Identify each parse ω by its corresponding variable assignment x

• Then Wθ(X) =
∏

A∈AA(X),

– Each line α(X) → ξ introduces a term Wθ(ξ)α(X)

– A “not no-good” η(X) introduces a term η(X)

– Each line is a function of a subset of the variables X

...

α(X) → ξ

...

η(X)
...

...

× Wθ(ξ)α(X)

× ...

× η(X)

× ...

51

Dependency structure graph GA

Zθ(y) =
∑
x∈X

Wθ(x) =
∑
x∈X

∏
A∈A

A(x)

• G is the dependency graph for A
– context variables X are vertices of GA
– GA has an edge (Xi,Xj) if both are arguments of some A ∈ A

A(X) = a(X1,X3)b(X2,X4)c(X3,X4,X5)d(X4,X5)e(X6,X7)

X1 X3 X5 X6

X2 X4 X7

52

Graphical model computations

Z =
∑

x∈X a(x1, x3)b(x2, x4)c(x3, x4, x5)d(x4, x5)e(x6, x7)

F1(X3) =
∑

x1∈X1
a(x1, X3)

F2(X4) =
∑

x2∈X2
b(x2, X4)

F3(X4, X5) =
∑

x3∈X3
c(x3, X4, X5)F1(x3)

F4(X5) =
∑

x4∈X4
d(x4, X5)F2(x4)F3(x4, X5)

F5 =
∑

x5∈X5
F4(x5)

F6(X7) =
∑

x6∈X6
e(x6, X7)

F7 =
∑

x7∈X7
F6(x7)

Z = F5F7

X1 X3 X5 X6

X2 X4 X7

53

Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner

plastic window and rollers.

X(0,2)

X(1,5)

X(6,2)

X(2,4)

X(3,3)

X(4,2)

X(5,3)

X(7,2)
X(8,2)

X(9,2)

X(10,2)

X(11,4)
X(12,10)

X(13,2)

X(14,2)

X(15,2)

54

Computational complexity

• Polynomial in m = the maximum number of conditioning
variables ≥ the number of variables in any function A

• m depends on the ordering of variables (and G)

• Finding the variable ordering that minimizes m is NP-complete,
but there are good heuristics

55

Conclusion

• It is possible to compute the statistics needed for parsing and
estimation from Maxwell and Kaplan packed parses

– Generalizes to all Truth Maintenance Systems (not LFG
specific)

• Features must be local to parse fragments

– May require adding features to the grammar

• Computational complexity is polynomial in the number of
connected variables

• Makes available techniques for graphical models to packed parse
representations

– Importance sampling

– Best-first parsing
56

Future directions

• Can we build a broad-coverage SUBG?

• Reformulate “hard” UFG constraints as “soft” stochastic
features

– Underlying UBG permits all possible structural combinations

– Grammatical constraints are expressed as stochastic features

• Is the computation tractable if we do this?

• For what tasks is the result significantly better than simpler
methods?

57

