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Random variables and “distributed according to”

notation

• A probability distribution F is a non-negative function whose
values sum (integrate) to 1.

• A random variable X is distributed according to F , written X ∼ F ,
iff:

P(X = x) = F (x) for all x

• You’ll sometimes see the notion

X |Y ∼ F

which means “X is distributed conditonal on Y according to F ”,
i.e.,

P(X | Y ) = F (X | Y ).
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Bayes’ rule

P(Hypothesis | Data) =
P(Data | Hypothesis) P(Hypothesis)

P(Data)

• Bayesian’s use Bayes’ Rule to update beliefs in hypotheses in
response to data

• P(Hypothesis | Data) is the posterior distribution,

• P(Hypothesis) is the prior distribution,

• P(Data | Hypothesis) is the likelihood, and

• P(Data) is a normalising constant sometimes called the evidence
(often intractable to calculate)
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Discrete distributions

• A discrete distribution has a finite set of outcomes 1, . . . ,m

• A discrete distribution is parameterized by a vector
θ = (θ1, . . . , θm), where P(X = j |θ) = θj (so

∑m
j=1 θj = 1)

I Example: An m-sided die, where θj = prob. of face j

• Suppose X = (X1, . . . ,Xn) and each Xi |θ ∼ Discrete(θ). Then:

P(X|θ) =
n∏

i=1

Discrete(Xi ;θ) =
m∏
j=1

θ
Nj

j

where Nj is the number of times j occurs in X.

• Goal of next few slides: compute posterior distribution P(θ|X)
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Multinomial distributions

• Suppose Xi ∼ Discrete(θ) for i = 1, . . . , n, and
Nj is the number of times j occurs in X

• Then N|n,θ ∼Multi(θ, n), and

P(N|n,θ) =
n!∏m

j=1 Nj !

m∏
j=1

θ
Nj

j

where n!/
∏m

j=1 Nj ! is the number of sequences of values with
occurence counts N

• The vector N is known as a sufficient statistic for θ because it
supplies as much information about θ as the original sequence X
does.
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Dirichlet distributions
• Dirichlet distributions are probability distributions over multinomial

parameter vectors
I called Beta distributions when m = 2

• Parameterized by a vector α = (α1, . . . , αm) where αj > 0 that
determines the shape of the distribution

Dir(θ | α) =
1

C (α)

m∏
j=1

θ
αj−1
j

C (α) =

∫
∆

m∏
j=1

θ
αj−1
j dθ =

∏m
j=1 Γ(αj)

Γ(
∑m

j=1 αj)

• Γ is a generalization of the factorial function
• Γ(k) = (k − 1)! for positive integer k
• Γ(x) = (x − 1)Γ(x − 1) for all x
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Plots of the Dirichlet distribution

P(θ | α) =
Γ(
∑m

j=1 αj)∏m
j=1 Γ(αj)

m∏
k=1

θαk−1
k
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Dirichlet distributions as priors for θ
• Generative model:

θ | α ∼ Dir(α)
Xi | θ ∼ Discrete(θ), i = 1, . . . , n

• We can depict this as a Bayes net using plates, which indicate
replication

α

n
Xi

θ
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Inference for θ with Dirichlet priors
• Data X = (X1, . . . ,Xn) generated i.i.d. from Discrete(θ)
• Prior is Dir(α). By Bayes Rule, posterior is:

P(θ|X) ∝ P(X|θ) P(θ)

∝

(
m∏
j=1

θ
Nj

j

) (
m∏
j=1

θ
αj−1
j

)

=
m∏
j=1

θ
Nj+αj−1
j , so

P(θ|X) = Dir(N + α)

• So if prior is Dirichlet with parameters α,
then posterior is Dirichlet with parameters N + α

⇒ can regard Dirichlet parameters α as “pseudo-counts” from
“pseudo-data”
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“Integrated out” or “collapsed”

Dirichlet-multinomials

θ | α ∼ Dir(α)
Xi | θ ∼ Discrete(θ), i = 1, . . . , n

• Integrate out θ to directly calculate probability of X

P(X|α) =

∫
P(X,θ | α) dθ =

∫
∆

P(X | θ)P(θ | α) dθ

=

∫
∆

(
m∏
j=1

θ
Nj

j

)(
1

C (α)

m∏
j=1

θ
αj−1
j

)
dθ

=
1

C (α)

∫
∆

m∏
j=1

θ
Nj+αj−1
j dθ

=
C (N + α)

C (α)
, where C (α) =

∏m
j=1 Γ(αj)

Γ(
∑m

j=1 αj)
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Predictive distribution for Dirichlet-Multinomial

• The predictive distribution is the distribution of observation Xn+1

given observations X = (X1, . . . ,Xn) and prior Dir(α)

P(Xn+1 = k | X,α) =

∫
∆

P(Xn+1 = k | θ)P(θ | X,α) dθ

=

∫
∆

θk Dir(θ | N + α) dθ

=
Nk + αk∑m
j=1 Nj + αj
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Example: rolling a die
• Data X = (2, 5, 4, 2, 6); prior = Dir((1, 1, 1, 1, 1, 1))
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Inference in complex models

• If the model is simple enough we can calculate the posterior
exactly (conjugate priors)

• When the model is more complicated, we can only approximate the
posterior

• Variational Bayes calculate the function closest to the posterior
within a class of functions

• Sampling algorithms produce samples from the posterior
distribution

I Markov chain Monte Carlo algorithms (MCMC) use a Markov
chain to produce samples

I A Gibbs sampler is a particular MCMC algorithm

• Particle filters are a kind of on-line sampling algorithm
(on-line algorithms only make one pass through the data)
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Why sample?
• Setup: Model has variables X, whose value x we observe, and

variables Y, whose value we don’t know
I Y includes any parameters we want to estimate, such as θ

• Goal: compute the expected value of some function f :

E[f |X = x] =
∑
y

f (x, y)P(Y = y|X = x)

• Suppose we can produce n samples y(t), where
Y(t) ∼ P(Y | X = x). Then we can estimate:

E[f |X = x] =
1

n

n∑
t=1

f (x, y(t))

• Example: word-tagging. X is vector of words, Y is vector of tags.
Set f (x, y) = 1 if y1 = Noun, and zero otherwise.
Then E[f |X = x] is prob. that word x1 is tagged Noun.

16/25



Markov chains
• A (first-order) Markov chain is a distribution over random variables

S (0), . . . , S (n) all ranging over the same state space S, where:

P(S (0), . . . , S (n)) = P(S (0))
n−1∏
t=0

P(S (t+1)|S (t))

S (t+1) is conditionally independent of S (0), . . . , S (t−1) given S (t)

• A Markov chain in homogeneous or time-invariant iff:

P(S (t+1) = s ′|S (t) = s) = Ps′,s for all t, s, s ′

The matrix P is called the transition probability matrix of the
Markov chain

• If P(S (t) = s) = π
(t)
s (i.e., π(t) is a vector of state probabilities at

time t) then:
I π(t+1) = P π(t)

I π(t) = P t π(0)
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Ergodicity

• A Markov chain with tpm P is ergodic iff there is a positive integer
m s.t. all elements of Pm are positive (i.e., there is an m-step path
between any two states)

• Informally, an ergodic Markov chain “forgets” its past states

• Theorem: For each homogeneous ergodic Markov chain with tpm
P there is a unique limiting distribution DP , i.e., as n approaches
infinity, the distribution of Sn converges on DP

• DP is called the stationary distribution of the Markov chain
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Using a Markov chain for inference of P(Y )

• Set the state space S of the Markov chain to the range of Y
(S may be astronomically large)

• Find a tpm P such that P(Y | X) = DP

• “Run” the Markov chain, i.e.,
I Pick y(0) somehow
I For t = 0, 1, . . .:

– sample y(t+1) from P(Y(t+1) | Y(t)=y(t),X=x),
i.e., from P·,y(t)

I After discarding the first burn-in samples, use remaining
samples to calculate statistics

• WARNING: in general the samples y(t) are not independent
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The Gibbs sampler

• The Gibbs sampler is useful when:
I Y is multivariate, i.e., Y = (Y1, . . . ,Ym), and
I easy to sample from P(Yj |Y−j)

• The Gibbs sampler for P(Y ) is the tpm P =
∏m

j=1 P (j), where:

P
(j)
y′,y =

{
0 if y′−j 6= y−j
P(Yj = y ′j |Y−j = y−j) if y′−j = y−j

• Informally, the Gibbs sampler cycles through each of the variables
Yj , replacing the current value yj with a sample from
P(Yj |Y−j = y−j)

• There are sequential scan and random scan variants of Gibbs
sampling
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A simple example of Gibbs sampling

P(Y1,Y2) =

{
c if |Y1| < 5, |Y2| < 5 and |Y1 − Y2| < 1
0 otherwise

• The Gibbs sampler for P(Y1,Y2) samples repeatedly from:

P(Y2|Y1) = Uniform(max(−5,Y1 − 1),min(5,Y1 + 1))

P(Y1|Y2) = Uniform(max(−5,Y2 − 1),min(5,Y2 + 1))
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Sample run
Y1 Y2

0 0
0 -0.119

0.363 -0.119
0.363 0.146
-0.681 0.146
-0.681 -1.551
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A non-ergodic Gibbs sampler
P(Y1,Y2) =

{
c if 1 < Y1,Y2 < 5 or −5 < Y1,Y2 < −1
0 otherwise

• The Gibbs sampler for P(Y1,Y2), initialized at (2,2), samples
repeatedly from:

P(Y2|Y1) = Uniform(1, 5)

P(Y1|Y2) = Uniform(1, 5)

I.e., never visits the negative values of Y1,Y2
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Why does the Gibbs sampler work?

• The Gibbs sampler tpm is P =
∏m

j=1 P (j), where P (j) replaces yj
with a sample from P(Yj |Y−j = y−j) to produce y ′

• But if y is a sample from P(Y), then so is y′,
since y′ differs from y only by replacing yj with a sample from
P(Yj |Y−j = y−j)

• Since P (j) maps samples from P(Y) to samples from P(Y), so
does P

⇒ P(Y) is a stationary distribution for P

• If P is ergodic, then P(Y) is the unique stationary distribution for
P , i.e., the sampler converges to P(Y)
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Summary

• Dirichlet-multinomial distributions can be handled largely
analytically

• Complex models often don’t have analytic solutions

• Approximate inference can be used on many such models

• Monte Carlo Markov chain methods produce samples from (an
approximation to) the posterior distribution

• Gibbs sampling is an MCMC procedure that resamples each
variable conditioned on the values of the other variables

• If you can sample from the conditional distribution of each hidden
variable in a Bayes net, you can use Gibbs sampling to sample from
the joint posterior distribution
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