Bayesian Inference for Dirichlet-Multinomials

Mark Johnson

Macquarie University Sydney, Australia

IPAM "Summer School" Updated slides available from http://web.science.mq.edu.au/~mjohnson/Talks.htm

Random variables and "distributed according to" notation

- A *probability distribution F* is a non-negative function whose values sum (integrate) to 1.
- A random variable X is *distributed according to F*, written X ~ F, iff:

$$P(X = x) = F(x)$$
 for all x

• You'll sometimes see the notion

$$X \mid Y \sim F$$

which means "X is distributed conditonal on Y according to F", i.e.,

$$P(X \mid Y) = F(X \mid Y).$$

Outline

Introduction to Bayesian Inference

Sampling with Markov Chains

The Gibbs sampler

Bayes' rule

 $P(Hypothesis | Data) = \frac{P(Data | Hypothesis) P(Hypothesis)}{P(Data)}$

- Bayesian's use Bayes' Rule to *update beliefs in hypotheses in response to data*
- P(Hypothesis | Data) is the *posterior distribution*,
- P(Hypothesis) is the prior distribution,
- P(Data | Hypothesis) is the *likelihood*, and
- P(Data) is a normalising constant sometimes called the *evidence* (often intractable to calculate)

Discrete distributions

- A discrete distribution has a finite set of outcomes 1, ..., m
- A discrete distribution is parameterized by a vector $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)$, where $P(X = j | \boldsymbol{\theta}) = \theta_j$ (so $\sum_{j=1}^m \theta_j = 1$)
 - Example: An *m*-sided die, where $\theta_j = \text{prob.}$ of face *j*
- Suppose $\mathbf{X} = (X_1, \dots, X_n)$ and each $X_i | \boldsymbol{\theta} \sim \text{Discrete}(\boldsymbol{\theta})$. Then:

$$\mathrm{P}(\mathbf{X}|\boldsymbol{ heta}) = \prod_{i=1}^{n} \mathrm{DISCRETE}(X_i; \boldsymbol{ heta}) = \prod_{j=1}^{m} \theta_j^{N_j}$$

where N_j is the number of times j occurs in **X**.

• Goal of next few slides: compute posterior distribution $\mathrm{P}({m{ heta}}|{m{\mathsf{X}}})$

Multinomial distributions

- Suppose X_i ~ DISCRETE(θ) for i = 1,..., n, and N_j is the number of times j occurs in X
- Then $\mathbf{N}|n, oldsymbol{ heta} \sim \mathrm{MULTI}(oldsymbol{ heta}, n)$, and

$$P(\mathbf{N}|n,\boldsymbol{\theta}) = \frac{n!}{\prod_{j=1}^{m} N_j!} \prod_{j=1}^{m} \theta_j^{N_j}$$

where $n! / \prod_{j=1}^{m} N_j!$ is the number of sequences of values with occurence counts **N**

The vector N is known as a *sufficient statistic* for θ because it supplies as much information about θ as the original sequence X does.

Dirichlet distributions

- *Dirichlet distributions* are probability distributions over multinomial parameter vectors
 - called *Beta distributions* when m = 2
- Parameterized by a vector α = (α₁,..., α_m) where α_j > 0 that determines the shape of the distribution

DIR
$$(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) = \frac{1}{C(\boldsymbol{\alpha})} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}$$

 $C(\boldsymbol{\alpha}) = \int_{\Delta} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1} d\boldsymbol{\theta} = \frac{\prod_{j=1}^{m} \Gamma(\alpha_{j})}{\Gamma(\sum_{j=1}^{m} \alpha_{j})}$

- Γ is a generalization of the factorial function
- $\Gamma(k) = (k-1)!$ for positive integer k
- $\Gamma(x) = (x-1)\Gamma(x-1)$ for all x

Plots of the Dirichlet distribution

Dirichlet distributions as priors for heta

• Generative model:

• We can depict this as a Bayes net using *plates*, which indicate *replication*

Inference for θ with Dirichlet priors

- Data $\mathbf{X} = (X_1, \dots, X_n)$ generated i.i.d. from $\text{DISCRETE}(\boldsymbol{\theta})$
- Prior is $\mathrm{Dir}(\alpha)$. By Bayes Rule, posterior is:

$$P(\boldsymbol{\theta}|\mathbf{X}) \propto P(\mathbf{X}|\boldsymbol{\theta}) P(\boldsymbol{\theta})$$
$$\propto \left(\prod_{j=1}^{m} \theta_{j}^{N_{j}}\right) \left(\prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}\right)$$
$$= \prod_{j=1}^{m} \theta_{j}^{N_{j}+\alpha_{j}-1}, \text{ so}$$
$$P(\boldsymbol{\theta}|\mathbf{X}) = DIR(\mathbf{N}+\boldsymbol{\alpha})$$

- So *if prior is Dirichlet* with parameters α , then *posterior is Dirichlet* with parameters $\mathbf{N} + \alpha$
- \Rightarrow can regard Dirichlet parameters α as "pseudo-counts" from "pseudo-data"

"Integrated out" or "collapsed" Dirichlet-multinomials

• Integrate out θ to directly calculate probability of **X**

$$P(\mathbf{X}|\boldsymbol{\alpha}) = \int P(\mathbf{X}, \boldsymbol{\theta} \mid \boldsymbol{\alpha}) d\boldsymbol{\theta} = \int_{\Delta} P(\mathbf{X} \mid \boldsymbol{\theta}) P(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) d\boldsymbol{\theta}$$
$$= \int_{\Delta} \left(\prod_{j=1}^{m} \theta_{j}^{N_{j}} \right) \left(\frac{1}{C(\boldsymbol{\alpha})} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1} \right) d\boldsymbol{\theta}$$
$$= \frac{1}{C(\boldsymbol{\alpha})} \int_{\Delta} \prod_{j=1}^{m} \theta_{j}^{N_{j}+\alpha_{j}-1} d\boldsymbol{\theta}$$
$$= \frac{C(\mathbf{N} + \boldsymbol{\alpha})}{C(\boldsymbol{\alpha})}, \text{ where } C(\boldsymbol{\alpha}) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_{j})}{\Gamma(\sum_{j=1}^{m} \alpha_{j})}$$

Predictive distribution for Dirichlet-Multinomial

• The *predictive distribution* is the distribution of observation X_{n+1} given observations $\mathbf{X} = (X_1, \dots, X_n)$ and prior $\text{Dir}(\alpha)$

$$P(X_{n+1} = k \mid \mathbf{X}, \alpha) = \int_{\Delta} P(X_{n+1} = k \mid \theta) P(\theta \mid \mathbf{X}, \alpha) d\theta$$
$$= \int_{\Delta} \theta_k \operatorname{DIR}(\theta \mid \mathbf{N} + \alpha) d\theta$$
$$= \frac{N_k + \alpha_k}{\sum_{j=1}^m N_j + \alpha_j}$$

Example: rolling a die

• Data $\mathbf{X} = (2, 5, 4, 2, 6)$; prior = DIR((1, 1, 1, 1, 1, 1))

Outline

Introduction to Bayesian Inference

Sampling with Markov Chains

The Gibbs sampler

Inference in complex models

- If the model is simple enough we can calculate the posterior exactly (conjugate priors)
- When the model is more complicated, we can only approximate the posterior
- *Variational Bayes* calculate the function closest to the posterior within a class of functions
- *Sampling algorithms* produce samples from the posterior distribution
 - Markov chain Monte Carlo algorithms (MCMC) use a Markov chain to produce samples
 - ► A Gibbs sampler is a particular MCMC algorithm
- *Particle filters* are a kind of *on-line* sampling algorithm (on-line algorithms only make one pass through the data)

Why sample?

• Setup: Model has variables **X**, whose value **x** we observe, and variables **Y**, whose value we don't know

• Y includes any *parameters* we want to estimate, such as heta

• Goal: compute the *expected value* of some function *f*:

$$\mathbf{E}[f|\mathbf{X} = \mathbf{x}] = \sum_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}) \mathbf{P}(\mathbf{Y} = \mathbf{y}|\mathbf{X} = \mathbf{x})$$

• Suppose we can produce *n* samples $\mathbf{y}^{(t)}$, where $\mathbf{Y}^{(t)} \sim P(\mathbf{Y} \mid \mathbf{X} = \mathbf{x})$. Then we can estimate:

$$\mathbf{E}[f|\mathbf{X} = \mathbf{x}] = \frac{1}{n} \sum_{t=1}^{n} f(\mathbf{x}, \mathbf{y}^{(t)})$$

 Example: word-tagging. X is vector of words, Y is vector of tags. Set f(x, y) = 1 if y₁ = Noun, and zero otherwise. Then E[f|X = x] is prob. that word x₁ is tagged Noun.

Markov chains

• A (first-order) *Markov chain* is a distribution over random variables $S^{(0)}, \ldots, S^{(n)}$ all ranging over the same *state space* S, where:

$$P(S^{(0)},...,S^{(n)}) = P(S^{(0)}) \prod_{t=0}^{n-1} P(S^{(t+1)}|S^{(t)})$$

S^(t+1) is conditionally independent of S⁽⁰⁾,..., S^(t-1) given S^(t)
A Markov chain in homogeneous or time-invariant iff:

$$P(S^{(t+1)} = s' | S^{(t)} = s) = P_{s',s}$$
 for all t, s, s'

The matrix P is called the *transition probability matrix* of the Markov chain

If P(S^(t) = s) = π^(t)_s (i.e., π^(t) is a vector of state probabilities at time t) then:

•
$$\pi^{(t+1)} = P \pi^{(t)}$$

• $\pi^{(t)} = P^t \pi^{(0)}$

Ergodicity

- A Markov chain with tpm *P* is *ergodic* iff there is a positive integer *m* s.t. all elements of *P^m* are positive (i.e., there is an *m*-step path between any two states)
- Informally, an ergodic Markov chain "forgets" its past states
- Theorem: For each homogeneous ergodic Markov chain with tpm P there is a *unique limiting distribution* D_P , i.e., as n approaches infinity, the distribution of S_n converges on D_P
- D_P is called the *stationary distribution* of the Markov chain

Using a Markov chain for inference of P(Y)

- Set the state space S of the Markov chain to the range of Y (S may be astronomically large)
- Find a tpm P such that $P(\mathbf{Y} \mid \mathbf{X}) = D_P$
- "Run" the Markov chain, i.e.,
 - Pick y⁽⁰⁾ somehow
 - For t = 0, 1, ...:
 - sample $\mathbf{y}^{(t+1)}$ from $P(\mathbf{Y}^{(t+1)} | \mathbf{Y}^{(t)} = \mathbf{y}^{(t)}, \mathbf{X} = \mathbf{x})$, i.e., from $P_{\cdot, \mathbf{y}^{(t)}}$
 - After discarding the first *burn-in* samples, use remaining samples to calculate statistics
- *WARNING:* in general the samples $\mathbf{y}^{(t)}$ are *not independent*

Outline

Introduction to Bayesian Inference

Sampling with Markov Chains

The Gibbs sampler

The Gibbs sampler

- The Gibbs sampler is useful when:
 - **Y** is multivariate, i.e., $\mathbf{Y} = (Y_1, \dots, Y_m)$, and
 - easy to sample from $P(Y_j | \mathbf{Y}_{-j})$
- The Gibbs sampler for P(Y) is the tpm $P = \prod_{j=1}^{m} P^{(j)}$, where:

$$P_{\mathbf{y}',\mathbf{y}}^{(j)} = \begin{cases} 0 & \text{if } \mathbf{y}_{-j}' \neq \mathbf{y}_{-j} \\ P(Y_j = y_j' | \mathbf{Y}_{-j} = \mathbf{y}_{-j}) & \text{if } \mathbf{y}_{-j}' = \mathbf{y}_{-j} \end{cases}$$

- Informally, the Gibbs sampler cycles through each of the variables Y_j, replacing the current value y_j with a sample from P(Y_j|Y_{-j} = y_{-j})
- There are *sequential scan* and *random scan* variants of Gibbs sampling

A simple example of Gibbs sampling

$$P(Y_1, Y_2) = \begin{cases} c & \text{if } |Y_1| < 5, |Y_2| < 5 \text{ and } |Y_1 - Y_2| < 1 \\ 0 & \text{otherwise} \end{cases}$$

• The Gibbs sampler for $P(Y_1, Y_2)$ samples repeatedly from: $P(Y_2|Y_1) = UNIFORM(max(-5, Y_1 - 1), min(5, Y_1 + 1))$ $P(Y_1|Y_2) = UNIFORM(max(-5, Y_2 - 1), min(5, Y_2 + 1))$

Sample run

- $\begin{array}{ccc}
 Y_1 & Y_2 \\
 0 & 0 \\
 0 & -0.119 \\
 0.363 & -0.119 \end{array}$
- 0.363 0.146
- -0.681 0.146

-0.681 -1.551

A non-ergodic Gibbs sampler $P(Y_1, Y_2) = \begin{cases} c & \text{if } 1 < Y_1, Y_2 < 5 \text{ or } -5 < Y_1, Y_2 < -1 \\ 0 & \text{otherwise} \end{cases}$

• The Gibbs sampler for P(Y₁, Y₂), initialized at (2,2), samples repeatedly from:

$$P(Y_2|Y_1) = UNIFORM(1,5)$$
$$P(Y_1|Y_2) = UNIFORM(1,5)$$

I.e., never visits the negative values of Y_1, Y_2

Why does the Gibbs sampler work?

- The Gibbs sampler tpm is $P = \prod_{j=1}^{m} P^{(j)}$, where $P^{(j)}$ replaces y_j with a sample from $P(Y_j | \mathbf{Y}_{-j} = \mathbf{y}_{-j})$ to produce y'
- But if y is a sample from P(Y), then so is y', since y' differs from y only by replacing y_j with a sample from P(Y_j|Y_{-j} = y_{-j})
- Since P^(j) maps samples from P(Y) to samples from P(Y), so does P
- $\Rightarrow P(\mathbf{Y})$ is a stationary distribution for P
 - If P is ergodic, then P(Y) is the unique stationary distribution for P, i.e., the sampler converges to P(Y)

Summary

- Dirichlet-multinomial distributions can be handled largely analytically
- Complex models often don't have analytic solutions
- Approximate inference can be used on many such models
- Monte Carlo Markov chain methods produce samples from (an approximation to) the posterior distribution
- Gibbs sampling is an MCMC procedure that resamples each variable conditioned on the values of the other variables
- If you can sample from the conditional distribution of each hidden variable in a Bayes net, you can use Gibbs sampling to sample from the joint posterior distribution

