Bayesian Inference for Dirichlet-Multinomials

Mark Johnson
Macquarie University
Sydney, Australia

IPAM "Summer School"
Updated slides available from
http://web.science.mq.edu.au/~mjohnson/Talks.htm

Random variables and "distributed according to"

 notation- A probability distribution F is a non-negative function whose values sum (integrate) to 1 .
- A random variable X is distributed according to F, written $X \sim F$, iff:

$$
\mathrm{P}(X=x)=F(x) \text { for all } x
$$

- You'll sometimes see the notion

$$
X \mid Y \sim F
$$

which means " X is distributed conditonal on Y according to F ", i.e.,

$$
\mathrm{P}(X \mid Y)=F(X \mid Y)
$$

Outline

Introduction to Bayesian Inference

Sampling with Markov Chains

The Gibbs sampler

Bayes' rule

$$
\mathrm{P}(\text { Hypothesis } \mid \text { Data })=\frac{\mathrm{P}(\text { Data } \mid \text { Hypothesis }) \mathrm{P}(\text { Hypothesis })}{\mathrm{P}(\text { Data })}
$$

- Bayesian's use Bayes' Rule to update beliefs in hypotheses in response to data
- $\mathrm{P}($ Hypothesis \mid Data $)$ is the posterior distribution,
- P (Hypothesis) is the prior distribution,
- P(Data | Hypothesis) is the likelihood, and
- $\mathrm{P}($ Data $)$ is a normalising constant sometimes called the evidence (often intractable to calculate)

Discrete distributions

- A discrete distribution has a finite set of outcomes $1, \ldots, m$
- A discrete distribution is parameterized by a vector $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)$, where $\mathrm{P}(X=j \mid \boldsymbol{\theta})=\theta_{j}\left(\right.$ so $\left.\sum_{j=1}^{m} \theta_{j}=1\right)$
- Example: An m-sided die, where $\theta_{j}=$ prob. of face j
- Suppose $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and each $X_{i} \mid \boldsymbol{\theta} \sim \operatorname{Discrete}(\boldsymbol{\theta})$. Then:

$$
\mathrm{P}(\mathbf{X} \mid \boldsymbol{\theta})=\prod_{i=1}^{n} \operatorname{Discrete}\left(X_{i} ; \boldsymbol{\theta}\right)=\prod_{j=1}^{m} \theta_{j}^{N_{j}}
$$

where N_{j} is the number of times j occurs in \mathbf{X}.

- Goal of next few slides: compute posterior distribution $\mathrm{P}(\boldsymbol{\theta} \mid \mathbf{X})$

Multinomial distributions

- Suppose $X_{i} \sim \operatorname{Discrete}(\boldsymbol{\theta})$ for $i=1, \ldots, n$, and N_{j} is the number of times j occurs in \mathbf{X}
- Then $\mathbf{N} \mid n, \boldsymbol{\theta} \sim \operatorname{Multi}(\boldsymbol{\theta}, n)$, and

$$
\mathrm{P}(\mathbf{N} \mid n, \boldsymbol{\theta})=\frac{n!}{\prod_{j=1}^{m} N_{j}!} \prod_{j=1}^{m} \theta_{j}^{N_{j}}
$$

where $n!/ \prod_{j=1}^{m} N_{j}!$ is the number of sequences of values with occurence counts \mathbf{N}

- The vector \mathbf{N} is known as a sufficient statistic for $\boldsymbol{\theta}$ because it supplies as much information about $\boldsymbol{\theta}$ as the original sequence \mathbf{X} does.

Dirichlet distributions

- Dirichlet distributions are probability distributions over multinomial parameter vectors
- called Beta distributions when $m=2$
- Parameterized by a vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ where $\alpha_{j}>0$ that determines the shape of the distribution

$$
\begin{aligned}
\operatorname{DIR}(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) & =\frac{1}{C(\boldsymbol{\alpha})} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1} \\
C(\boldsymbol{\alpha}) & =\int_{\Delta} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1} d \boldsymbol{\theta}=\frac{\prod_{j=1}^{m} \Gamma\left(\alpha_{j}\right)}{\Gamma\left(\sum_{j=1}^{m} \alpha_{j}\right)}
\end{aligned}
$$

- Γ is a generalization of the factorial function
- $\Gamma(k)=(k-1)$! for positive integer k
- $\Gamma(x)=(x-1) \Gamma(x-1)$ for all x

Plots of the Dirichlet distribution

$$
\mathrm{P}(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{j=1}^{m} \alpha_{j}\right)}{\prod_{j=1}^{m} \Gamma\left(\alpha_{j}\right)} \prod_{k=1}^{m} \theta_{k}^{\alpha_{k}-1}
$$

Dirichlet distributions as priors for $\boldsymbol{\theta}$

- Generative model:

$$
\begin{array}{r|l}
\boldsymbol{\theta} & \boldsymbol{\alpha} \sim \operatorname{Dir}(\boldsymbol{\alpha}) \\
X_{i} & \boldsymbol{\theta} \sim \operatorname{DiSCRETE}(\boldsymbol{\theta}), \quad i=1, \ldots, n
\end{array}
$$

- We can depict this as a Bayes net using plates, which indicate replication

Inference for $\boldsymbol{\theta}$ with Dirichlet priors

- Data $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ generated i.i.d. from $\operatorname{Discrete}(\boldsymbol{\theta})$
- Prior is $\operatorname{Dir}(\boldsymbol{\alpha})$. By Bayes Rule, posterior is:

$$
\begin{aligned}
\mathrm{P}(\boldsymbol{\theta} \mid \mathbf{X}) & \propto \mathrm{P}(\mathbf{X} \mid \boldsymbol{\theta}) \mathrm{P}(\boldsymbol{\theta}) \\
& \propto\left(\prod_{j=1}^{m} \theta_{j}^{N_{j}}\right)\left(\prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}\right) \\
& =\prod_{j=1}^{m} \theta_{j}^{N_{j}+\alpha_{j}-1}, \text { so } \\
\mathrm{P}(\boldsymbol{\theta} \mid \mathbf{X}) & =\operatorname{Dir}(\mathbf{N}+\boldsymbol{\alpha})
\end{aligned}
$$

- So if prior is Dirichlet with parameters $\boldsymbol{\alpha}$, then posterior is Dirichlet with parameters $\mathbf{N}+\boldsymbol{\alpha}$
\Rightarrow can regard Dirichlet parameters $\boldsymbol{\alpha}$ as "pseudo-counts" from "pseudo-data"

"Integrated out" or "collapsed"

Dirichlet-multinomials

$$
\begin{array}{r|l}
\boldsymbol{\theta} & \boldsymbol{\alpha} \sim \operatorname{Dir}(\boldsymbol{\alpha}) \\
X_{i} & \boldsymbol{\theta} \sim \operatorname{DiscRETE}(\boldsymbol{\theta}), \quad i=1, \ldots, n
\end{array}
$$

- Integrate out $\boldsymbol{\theta}$ to directly calculate probability of \mathbf{X}

$$
\begin{aligned}
\mathrm{P}(\mathbf{X} \mid \boldsymbol{\alpha}) & =\int \mathrm{P}(\mathbf{X}, \boldsymbol{\theta} \mid \alpha) d \boldsymbol{\theta}=\int_{\Delta} \mathrm{P}(\mathbf{X} \mid \boldsymbol{\theta}) \mathrm{P}(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) d \boldsymbol{\theta} \\
& =\int_{\Delta}\left(\prod_{j=1}^{m} \theta_{j}^{N_{j}}\right)\left(\frac{1}{C(\boldsymbol{\alpha})} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}\right) d \boldsymbol{\theta} \\
& =\frac{1}{C(\boldsymbol{\alpha})} \int_{\Delta} \prod_{j=1}^{m} \theta_{j}^{N_{j}+\alpha_{j}-1} d \boldsymbol{\theta} \\
& =\frac{C(\mathbf{N}+\boldsymbol{\alpha})}{C(\boldsymbol{\alpha})}, \text { where } C(\boldsymbol{\alpha})=\frac{\prod_{j=1}^{m} \Gamma\left(\alpha_{j}\right)}{\Gamma\left(\sum_{j=1}^{m} \alpha_{j}\right)}
\end{aligned}
$$

Predictive distribution for Dirichlet-Multinomial

- The predictive distribution is the distribution of observation X_{n+1} given observations $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and prior $\operatorname{DIR}(\boldsymbol{\alpha})$

$$
\begin{aligned}
\mathrm{P}\left(X_{n+1}=k \mid \mathbf{X}, \boldsymbol{\alpha}\right) & =\int_{\Delta} \mathrm{P}\left(X_{n+1}=k \mid \boldsymbol{\theta}\right) \mathrm{P}(\boldsymbol{\theta} \mid \mathbf{X}, \boldsymbol{\alpha}) d \boldsymbol{\theta} \\
& =\int_{\Delta} \theta_{k} \operatorname{DiR}(\boldsymbol{\theta} \mid \mathbf{N}+\boldsymbol{\alpha}) d \boldsymbol{\theta} \\
& =\frac{N_{k}+\alpha_{k}}{\sum_{j=1}^{m} N_{j}+\alpha_{j}}
\end{aligned}
$$

Example: rolling a die

- Data $\mathbf{X}=(2,5,4,2,6) ;$ prior $=\operatorname{Dir}((1,1,1,1,1,1))$

Outline

Introduction to Bayesian Inference

Sampling with Markov Chains

The Gibbs sampler

Inference in complex models

- If the model is simple enough we can calculate the posterior exactly (conjugate priors)
- When the model is more complicated, we can only approximate the posterior
- Variational Bayes calculate the function closest to the posterior within a class of functions
- Sampling algorithms produce samples from the posterior distribution
- Markov chain Monte Carlo algorithms (MCMC) use a Markov chain to produce samples
- A Gibbs sampler is a particular MCMC algorithm
- Particle filters are a kind of on-line sampling algorithm (on-line algorithms only make one pass through the data)

Why sample?

- Setup: Model has variables \mathbf{X}, whose value \mathbf{x} we observe, and variables \mathbf{Y}, whose value we don't know
- \mathbf{Y} includes any parameters we want to estimate, such as $\boldsymbol{\theta}$
- Goal: compute the expected value of some function f :

$$
\mathrm{E}[f \mid \mathbf{X}=\mathbf{x}]=\sum_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}) \mathrm{P}(\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=\mathbf{x})
$$

- Suppose we can produce n samples $\mathbf{y}^{(t)}$, where $\mathbf{Y}^{(t)} \sim \mathrm{P}(\mathbf{Y} \mid \mathbf{X}=\mathbf{x})$. Then we can estimate:

$$
\mathrm{E}[f \mid \mathbf{X}=\mathbf{x}]=\frac{1}{n} \sum_{t=1}^{n} f\left(\mathbf{x}, \mathbf{y}^{(t)}\right)
$$

- Example: word-tagging. \mathbf{X} is vector of words, \mathbf{Y} is vector of tags. Set $f(\mathbf{x}, \mathbf{y})=1$ if $y_{1}=$ Noun, and zero otherwise. Then $\mathrm{E}[f \mid \mathbf{X}=\mathbf{x}]$ is prob. that word x_{1} is tagged Noun.

Markov chains

- A (first-order) Markov chain is a distribution over random variables $S^{(0)}, \ldots, S^{(n)}$ all ranging over the same state space \mathcal{S}, where:

$$
\mathrm{P}\left(S^{(0)}, \ldots, S^{(n)}\right)=\mathrm{P}\left(S^{(0)}\right) \prod_{t=0}^{n-1} \mathrm{P}\left(S^{(t+1)} \mid S^{(t)}\right)
$$

$S^{(t+1)}$ is conditionally independent of $S^{(0)}, \ldots, S^{(t-1)}$ given $S^{(t)}$

- A Markov chain in homogeneous or time-invariant iff:

$$
\mathrm{P}\left(S^{(t+1)}=s^{\prime} \mid S^{(t)}=s\right)=P_{s^{\prime}, s} \quad \text { for all } t, s, s^{\prime}
$$

The matrix P is called the transition probability matrix of the Markov chain

- If $\mathrm{P}\left(S^{(t)}=s\right)=\pi_{s}^{(t)}$ (i.e., $\pi^{(t)}$ is a vector of state probabilities at time t) then:
- $\pi^{(t+1)}=P \pi^{(t)}$
- $\pi^{(t)}=P^{t} \pi^{(0)}$

Ergodicity

- A Markov chain with tpm P is ergodic iff there is a positive integer m s.t. all elements of P^{m} are positive (i.e., there is an m-step path between any two states)
- Informally, an ergodic Markov chain "forgets" its past states
- Theorem: For each homogeneous ergodic Markov chain with tpm P there is a unique limiting distribution D_{P}, i.e., as n approaches infinity, the distribution of S_{n} converges on D_{P}
- D_{P} is called the stationary distribution of the Markov chain

Using a Markov chain for inference of $\mathrm{P}(Y)$

- Set the state space \mathcal{S} of the Markov chain to the range of \mathbf{Y} (\mathcal{S} may be astronomically large)
- Find a tpm P such that $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})=D_{P}$
- "Run" the Markov chain, i.e.,
- Pick $\mathbf{y}^{(0)}$ somehow
- For $t=0,1, \ldots$:

$$
\begin{aligned}
& \text { - sample } \mathbf{y}^{(t+1)} \text { from } \mathrm{P}\left(\mathbf{Y}^{(t+1)} \mid \mathbf{Y}^{(t)}=\mathbf{y}^{(t)}, \mathbf{X}=\mathbf{x}\right) \text {, } \\
& \text { i.e., from } P_{\text {; }, \mathbf{y}^{(t)}}
\end{aligned}
$$

- After discarding the first burn-in samples, use remaining samples to calculate statistics
- WARNING: in general the samples $\mathbf{y}^{(t)}$ are not independent

Outline

Introduction to Bayesian Inference

Sampling with Markov Chains

The Gibbs sampler

The Gibbs sampler

- The Gibbs sampler is useful when:
- \mathbf{Y} is multivariate, i.e., $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{m}\right)$, and
- easy to sample from $\mathrm{P}\left(Y_{j} \mid \mathbf{Y}_{-j}\right)$
- The Gibbs sampler for $\mathrm{P}(Y)$ is the tpm $P=\prod_{j=1}^{m} P^{(j)}$, where:

$$
P_{\mathbf{y}^{\prime}, \mathbf{y}}^{(j)}= \begin{cases}0 & \text { if } \mathbf{y}_{-j}^{\prime} \neq \mathbf{y}_{-j} \\ \mathrm{P}\left(Y_{j}=y_{j}^{\prime} \mid \mathbf{Y}_{-j}=\mathbf{y}_{-j}\right) & \text { if } \mathbf{y}_{-j}^{\prime}=\mathbf{y}_{-j}\end{cases}
$$

- Informally, the Gibbs sampler cycles through each of the variables Y_{j}, replacing the current value y_{j} with a sample from $\mathrm{P}\left(Y_{j} \mid \mathbf{Y}_{-j}=\mathbf{y}_{-j}\right)$
- There are sequential scan and random scan variants of Gibbs sampling

A simple example of Gibbs sampling

$$
\mathrm{P}\left(Y_{1}, Y_{2}\right)= \begin{cases}c & \text { if }\left|Y_{1}\right|<5,\left|Y_{2}\right|<5 \text { and }\left|Y_{1}-Y_{2}\right|<1 \\ 0 & \text { otherwise }\end{cases}
$$

- The Gibbs sampler for $\mathrm{P}\left(Y_{1}, Y_{2}\right)$ samples repeatedly from:

$$
\begin{aligned}
& \mathrm{P}\left(Y_{2} \mid Y_{1}\right)=\operatorname{UNIFORM}\left(\max \left(-5, Y_{1}-1\right), \min \left(5, Y_{1}+1\right)\right) \\
& \mathrm{P}\left(Y_{1} \mid Y_{2}\right)=\operatorname{Uniform}\left(\max \left(-5, Y_{2}-1\right), \min \left(5, Y_{2}+1\right)\right)
\end{aligned}
$$

Sample run	
Y_{1}	Y_{2}
0	0
0	-0.119
0.363	-0.119
0.363	0.146
-0.681	0.146
-0.681	-1.551

A non-ergodic Gibbs sampler

$\mathrm{P}\left(Y_{1}, Y_{2}\right)= \begin{cases}c & \text { if } 1<Y_{1}, Y_{2}<5 \text { or }-5<Y_{1}, Y_{2}<-1 \\ 0 & \text { otherwise }\end{cases}$

- The Gibbs sampler for $P\left(Y_{1}, Y_{2}\right)$, initialized at $(2,2)$, samples repeatedly from:

$$
\begin{aligned}
& \mathrm{P}\left(Y_{2} \mid Y_{1}\right)=\operatorname{Uniform}(1,5) \\
& \mathrm{P}\left(Y_{1} \mid Y_{2}\right)=\operatorname{UNIFORM}(1,5)
\end{aligned}
$$

I.e., never visits the negative values of Y_{1}, Y_{2}

Sample run

Y_{1}	Y_{2}
2	2
2	2.72
2.84	2.72
2.84	4.71
2.63	4.71

Why does the Gibbs sampler work?

- The Gibbs sampler tpm is $P=\prod_{j=1}^{m} P^{(j)}$, where $P^{(j)}$ replaces y_{j} with a sample from $\mathrm{P}\left(Y_{j} \mid \mathbf{Y}_{-j}=\mathbf{y}_{-j}\right)$ to produce y^{\prime}
- But if \mathbf{y} is a sample from $\mathrm{P}(\mathbf{Y})$, then so is \mathbf{y}^{\prime}, since \mathbf{y}^{\prime} differs from \mathbf{y} only by replacing y_{j} with a sample from $\mathrm{P}\left(Y_{j} \mid \mathbf{Y}_{-j}=\mathbf{y}_{-j}\right)$
- Since $P^{(j)}$ maps samples from $P(\mathbf{Y})$ to samples from $P(\mathbf{Y})$, so does P
$\Rightarrow P(\mathbf{Y})$ is a stationary distribution for P
- If P is ergodic, then $\mathrm{P}(\mathbf{Y})$ is the unique stationary distribution for P, i.e., the sampler converges to $\mathrm{P}(\mathbf{Y})$

Summary

- Dirichlet-multinomial distributions can be handled largely analytically
- Complex models often don't have analytic solutions
- Approximate inference can be used on many such models
- Monte Carlo Markov chain methods produce samples from (an approximation to) the posterior distribution
- Gibbs sampling is an MCMC procedure that resamples each variable conditioned on the values of the other variables
- If you can sample from the conditional distribution of each hidden variable in a Bayes net, you can use Gibbs sampling to sample from the joint posterior distribution

