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Why grammars?

• Grammars can define probability distributions over infinitely many
trees

▶ “infinite use of finite means”
▶ expressive/computational trade-off “sweet spot”

• Why trees?
▶ simple model of hierarchical structure
▶ wide range of applications in language and beyond

• Why probability distributions?
▶ uncertainty is ubiquitous in perception and learning
▶ well-developed mathematics
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Probabilistic languages

• W is a finite set of terminal symbols,
a.k.a. the vocabulary of the language

▶ E.g., W = {likes, Sam, Sasha, thinks}
• A string is a finite sequence of elements of W

▶ E.g., Sam thinks Sam likes Sasha

• W⋆ is the set of all strings (including the empty string ϵ)

• W+ is the set of all non-empty strings (i.e., W+ = W⋆ \ {ϵ})
• A (formal) language is a set of strings (a subset of W⋆)

▶ E.g., L = {Sam, Sam thinks, Sasha thinks, . . .}

• A probabilistic language is a probability distribution over a language
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Context-free grammars

• A Context-Free Grammar (CFG) G = (W ,N , S ,R) consists of

W, a finite set of terminal symbols
N , a finite set of nonterminal symbols disjoint from W
S ∈ N is the start symbol, and
R is a finite set of rules or productions of the form A → β, where
A ∈ N and β ∈ (N ∪W)⋆

• A parse tree generated by CFG G is a finite ordered tree labeled
with labels from N ∪W , where:

▶ the root node is labeled S
▶ for each node n labeled with a nonterminal A ∈ N there is a rule

A → β ∈ R and n’s children are labeled β
▶ each node labeled with a terminal has no children
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Example of a CFG parse tree

G = (W ,N , S,R)

W = {barks, cat, dog, the}
N = {D,NP, S,V,VP}

R =


S → NP VP NP → D N VP → V
D → the N → dog V → barks

VP → V NP


S

(((hhh
NP VP

��XX
D N

the dog

V

barks

S

⇒ NP VP
⇒ D N VP
⇒ the N VP
⇒ the dog VP
⇒ the dog V
⇒ the dog barks
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CFGs can generate structural ambiguity

S

NP

Pro

I

VP

VP

V

saw

NP

D

the

N
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PP
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NP

D

the

N

telescope

S

NP

Pro

I

VP

V

saw
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N
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R = {VP → V NP,VP → VP PP,NP → D N,N → N PP, . . .}
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A small phrase-structure tree from the WSJ
S
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• Identifying phrase structure is a first step in semantic interpretation
• The U Penn Wall Street Journal treebank contains about 55,000
manually-constructed parse trees for about 1,000,000 words of
English

• Most modern statistical parsing models are trained from treebanks
like this
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Probabilistic context-free grammars

• A Probabilistic Context Free Grammar (PCFG)
G = (W ,N , S ,R,θ) is a 5-tuple where:

▶ (W,N , S ,R) is a CFG with no useless productions or
nonterminals, and

▶ θ is a vector of production probabilities, i.e., a function R → [0, 1]
that satisfies for each A ∈ N :∑

A→β ∈ R(A)

θA→β = 1

where R(A) = {A → α : A → α ∈ R}.

• A production A → α is useless iff there are no derivations of the
form S ⇒⋆ γAδ ⇒ γαδ ⇒∗ w for any γ, δ ∈ (N ∪W)⋆ and
w ∈ W⋆.
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Probability distribution defined by a PCFG

• Intuitive interpretation:
▶ the probability of rewriting nonterminal A to α is θA→α

▶ the probability of a parse tree t is the product of probabilities of
rules used to build the tree

• For each production A → α ∈ R, let fA→α(t) be the number of
times A → α is used in tree t.

• A PCFG G defines a probability distribution PG on trees t:

PG (t) =
∏
r∈R

θfr (t)r

• This distribution is properly normalized if θ satisfies suitable
constraints.
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Probabilistic context-free grammars
• Probabilistic context-free grammars (PCFGs) define probability
distributions over trees

• Each nonterminal node expands by:
▶ choosing a rule expanding that nonterminal, and
▶ recursively expanding any nonterminal children it contains

• Probability of tree is product of probabilities of rules used to
construct it

Probability θr Rule r
1 S → NP VP
0.7 NP → Sam
0.3 NP → Sandy
1 VP → V NP
0.8 V → likes
0.2 V → hates

..
S

.

NP

.

VP

.

Sam

.

V

.

NP

.

likes

.

Sandy

P(Tree) =

1× 0.7× 1× 0.8× 0.3
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Beyond context-free grammars
• Context-free grammars are called “context free” because the
expansion of a non-terminal only depends on the non-terminal’s
label

• In a PCFG, each non-terminal expansion is independent of the
other expansions
⇒ efficient dynamic programming parsing algorithms
⇒ simple learning algorithms

• There is a hierarchy of context-sensitive grammars
▶ Tree-adjoining grammars, Combinatory categorial grammars,

Minimalist grammars
• The mildly context-sensitive grammars (MCSGs) have a two-step
derivational structure:
1. Non-deterministically generate a “context-free” derivation tree
2. Deterministically map the derivation tree to a derived tree

• (In a CFG, derivation trees and derived trees are the same)
⇒ MCSGs enjoy all of the nice statistical properties of PCFGs
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Maximum likelihood estimation from visible parses
• Each rule expansion is sampled from parent’s multinomial

⇒ Maximum Likelihood Estimator (MLE) is rule’s relative frequency

Sam

NP

S

VP

barks Sam

NP

S

VP

snores Sandy

NP

S

VP

snores

Rule r nr θr Rule r nr θr
S → NP VP 3 1.0
NP → Sam 2 0.66 NP → Sandy 1 0.33
VP → barks 1 0.33 VP → snores 2 0.66

• But MLE is often overly certain, especially with sparse data
▶ E.g., “accidental zeros” nr = 0 ⇒ θr = 0.
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Bayesian estimation from visible parses
• Bayesian estimators estimate a distribution over rule probabilities

P(θ | n)︸ ︷︷ ︸
Posterior

∝ P(n | θ)︸ ︷︷ ︸
Likelihood

P(θ)︸︷︷︸
Prior

• Dirichlet distributions are conjugate priors for multinomials
▶ A Dirichlet distribution over (θ1, . . . , θm) is specified by positive

parameters (α1, . . . , αm)
▶ If Prior = Dir(α) then Posterior = Dir(α+ n)

 0
 1
 2
 3
 4
 5

 0  0.2  0.4  0.6  0.8  1

P(
θ 1

|α
)

θ1 (probability of outcome 1)

α = (1,1)
α = (3,2)

α = (21,11)
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Sparse Dirichlet priors
• As α → 0, Dirichlet distributions become peaked around 0
“Grammar includes some of these rules, but we don’t know which!”

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)
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Estimating rule probabilities from strings alone

• Input: terminal strings and grammar rules

• Output: rule probabilities θ

• In general, no closed-form solution for θ
▶ iterative algorithms usually involving repeatedly reparsing training

data

• Expectation Maximization (EM) procedure generalizes visible data
ML estimators to hidden data problems

• Inside-Outside algorithm is a cubic-time EM algorithm for PCFGs

• Bayesian estimation of θ via:
▶ Variational Bayes or
▶ Markov Chain Monte Carlo (MCMC) methods such as Gibbs

sampling
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Gibbs sampler for parse trees and rule probabilities

• Input: terminal strings (x1, . . . , xn), grammar rules and Dirichlet
prior parameters α

• Output: stream of sample rule probabilities θ and parse trees
t = (t1, . . . , tn)

• Algorithm:

Assign parse trees to the strings somehow (e.g., randomly)
Repeat forever:

Compute rule counts n from t
Sample θ from Dir(α+ n)
For each string xi :
replace ti with a tree sampled from P(t|xi ,θ).

• After burn-in, (θ, t) are distributed according to Bayesian posterior

• Sampling parse tree from P(t|xi ,θ) involves parsing string xi .
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Collapsed Gibbs samplers
• Integrate out rule probabilities θ to obtain predictive distribution
P(ti |xi , t−i) of parse ti for sentence xi given other parses t−i

• Collapsed Gibbs sampler

For each sentence xi in training data:

Replace ti with a sample from P(t|xi , t−i)

• A problem: P(ti |xi , t−i) is not a PCFG distribution
⇒ no dynamic-programming sampler (AFAIK)

S

NP

cats

VP

V

chase

NP

dogs

S

NP

dogs

VP

V

chase

NP

dogs
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Metropolis-Hastings samplers

• Metropolis-Hastings (MH) acceptance-rejection procedure uses
samples from a proposal distribution to produce samples from a
target distribution

• When sentence size ≪ training data size, P(ti |xi , t−i) is almost a
PCFG distribution

▶ use a PCFG approximation based on t−i as proposal distribution
▶ apply MH to transform proposals to P(ti |xi , t−i )

• To construct a Metropolis-Hastings sampler you need to be able
to:

▶ efficiently sample from proposal distribution
▶ calculate ratios of parse probabilities under proposal distribution
▶ calculate ratios of parse probabilities under target distribution
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Collapsed Metropolis-within-Gibbs sampler for

PCFGs

• Input: terminal strings (x1, . . . , xn), grammar rules and Dirichlet
prior parameters α

• Output: stream of sample parse trees t = (t1, . . . , tn)

• Algorithm:

Assign parse trees to the strings somehow (e.g., randomly)
Repeat forever:

For each sentence xi in training data:
Compute rule counts n−i from t−i

Compute proposal grammar probabilities θ from n−i

Sample a tree t from P(t|xi ,θ)
Replace ti with t according to

Metropolis-Hastings accept-reject formula
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Example: Learning PCFG rule probabilities (1)

bazzy

.

daxxy

.

frobby

.
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Example: Learning PCFG rule probabilities (2)
• Input strings: (each string is of form: Name Property+)

bazzy SMILE
daxxy SMILE MOUSTACHE
frobby SMILE MOUSTACHE HAT

• Rules designed to generate trees as follows:
▶ pick a property

from property
list at random

▶ generate name
from property

..
Top

.

NameMOUSTACHE

.

frobby

.

PropsMOUSTACHE

.

Prop

.

SMILE

.

PropsMOUSTACHE

.

PropMOUSTACHE

.

MOUSTACHE

.

Props

.

Prop

.

HAT
• With sparse prior (α = 10−2) on Namex → y rules, learns 1-to-1
mapping between properties and names
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Learning rules (not just their probabilities)

• Input: terminal strings

• Output: grammar rules and rule probabilities θ

• “Generate and test” approach (Carroll and Charniak, Stolcke)

Guess an initial set of rules
Repeat:

re-estimate rule probabilities from strings
prune low probability rules
propose additional potentially useful rules

• Non-parametric Bayesian methods seem to provide a more
systematic approach
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Non-parameteric Bayesian extensions to PCFGs

• Non-parametric ⇒ no fixed set of parameters

• Two obvious non-parametric extensions to PCFGs:
▶ let the set of non-terminals grow unboundedly

– given an initial grammar with coarse-grained categories, split
non-terminals into more refined categories
S12 → NP7 VP4 instead of S → NPVP.

– PCFG generalization of “infinite HMM”.

▶ let the set of rules grow unboundedly ⇒ adaptor grammars

– use a (meta-)grammar to generate potential rules
– learn subtrees and their probabilities

i.e., tree substitution grammar, where we learn the fragments
as well as their probabilities

• No reason both can’t be done at once . . .
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Plan for rest of talk

• Learning structure is hard!
▶ Bayesian PCFG estimation works well on toy data, but
▶ results are disappointing on real language data

• Strategy: study simpler cases
▶ morphological segmentation (e.g., walking = walk+ing)
▶ segmenting utterances into words, i.e., learning word

pronunciations
▶ learning the relationship between words and the objects they refer

to

• Idea: extend PCFGs by incorporating non-parametric
generalisations of Dirichlet-Multinomials

▶ Chinese restaurant processes (Dirichlet processes)
▶ Pitman-Yor processes
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Bayesian inference for Dirichlet-multinomials

• Probability of next event with uniform Dirichlet prior with mass α
over m outcomes and observed data Z1:n = (Z1, . . . ,Zn)

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

where nk(Z1:n) is number of times k appears in Z1:n

• Example: Coin (m = 2), α = 1, Z1:2 = (heads, heads)
▶ P(Z3 = heads | Z1:2, α) ∝ 2.5
▶ P(Z3 = tails | Z1:2, α) ∝ 0.5
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Dirichlet-multinomials with many outcomes

• Predictive probability:

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

• Suppose the number of outcomes m ≫ n. Then:

P(Zn+1 = k | Z1:n, α) ∝


nk(Z1:n) if nk(Z1:n) > 0

α/m if nk(Z1:n) = 0

• But most outcomes will be unobserved, so:

P(Zn+1 ̸∈ Z1:n | Z1:n, α) ∝ α
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From Dirichlet-multinomials to Chinese Restaurant

Processes

. . .

• Suppose number of outcomes is unbounded
but we pick the event labels

• If we number event types in order of occurrence
⇒ Chinese Restaurant Process

Z1 = 1

P(Zn+1 = k | Z1:n, α) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (0)

..........

• Customer → table mapping Z =

• P(z) = 1

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (1)

...

α

.........

• Customer → table mapping Z = 1

• P(z) = α/α

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (2)

...

1

....

α

......

• Customer → table mapping Z = 1, 1

• P(z) = α/α× 1/(1 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (3)

...

2

....

α

........

• Customer → table mapping Z = 1, 1, 2

• P(z) = α/α× 1/(1 + α)× α/(2 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (4)

...

2

.....

1

...

α

.....

• Customer → table mapping Z = 1, 1, 2, 1

• P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Labeled Chinese Restaurant Process (0)

..........

• Table → label mapping Y =
• Customer → table mapping Z =
• Output sequence X =
• P(X) = 1

• Base distribution P0(Y ) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (1)

..fish.

α

.........

• Table → label mapping Y = fish
• Customer → table mapping Z = 1
• Output sequence X = fish
• P(X) = α/α× P0(fish)

• Base distribution P0(Y ) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi

38/130



Labeled Chinese Restaurant Process (2)

..fish.

1

....

α

......

• Table → label mapping Y = fish
• Customer → table mapping Z = 1, 1
• Output sequence X = fish,fish
• P(X) = P0(fish)× 1/(1 + α)

• Base distribution P0(Y ) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (3)

..fish.

2

... apple.

α

.......

• Table → label mapping Y = fish,apple
• Customer → table mapping Z = 1, 1, 2
• Output sequence X = fish,fish,apple
• P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

• Base distribution P0(Y ) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (4)

..fish.

2

.... apple.

1

...

α

.....

• Table → label mapping Y = fish,apple
• Customer → table mapping Z = 1, 1, 2
• Output sequence X = fish,fish,apple,fish
• P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

• Base distribution P0(Y ) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Summary: Chinese Restaurant Processes

• Chinese Restaurant Processes (CRPs) generalise
Dirichlet-Multinomials to an unbounded number of outcomes

▶ concentration parameter α controls how likely a new outcome is
▶ CRPs exhibit a rich get richer power-law behaviour

• Pitman-Yor Processes (PYPs) generalise CRPs with an additional
concentration parameter

▶ this parameter specifies the asymptotic power-law behaviour

• Labeled CRPs use a base distribution to define distributions over
arbitrary objects

▶ base distribution “labels the tables”
▶ base distribution can have infinite support
▶ concentrates mass on a countable subset
▶ power-law behaviour ⇒ Zipfian distributions
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Nonparametric extensions of PCFGs
• Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied
tables) depends on the data

• Two obvious nonparametric extensions of PCFGs:
▶ let the number of nonterminals grow unboundedly

– split the nonterminals of a base grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG (Finkel et al 2007, Liang et al 2007)

▶ let the number of rules grow unboundedly

– “new” rules are compositions of several rules from base
grammar

– equivalent to caching tree fragments
⇒ Adaptor grammars

• No reason both can’t be done together . . .
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Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
▶ by picking a rule and recursively expanding its children, or
▶ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Implemented by having a CRP for each adapted nonterminal

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs
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A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

..
Word

.

Stem

.

Chars

.

Char

.

t

.

Chars

.

Char

.

a

.

Chars

.

Char

.

l

.

Chars

.

Char

.

k

.

Suffix

.

Chars

.

Char

.

i

.

Chars

.

Char

.

n

.

Chars

.

Char

.

g

.

Chars

.

Char

.

#

• Grammar’s trees can
represent any segmentation
of words into stems and
suffixes

⇒ Can represent true
segmentation

• But grammar’s units of
generalization (PCFG rules)
are “too small” to learn
morphemes
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A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

..
Word

.

Stem

.

t

.

a

.

l

.

k

.

Suffix

.

i

.

n

.

g

.

#

..
Word

.

Stem

.

j

.

u

.

m

.

p

.

Suffix

.

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
▶ not a practical problem, as only a finite set of rules could possibly

be used in any particular data set

47/130



From PCFGs to Adaptor grammars

• An adaptor grammar is a PCFG where a subset of the nonterminals
are adapted

• Adaptor grammar generative process:
▶ to expand an unadapted nonterminal B: (just as in PCFG)

– select a rule B → β ∈ R with prob. θB→β, and
recursively expand nonterminals in β

▶ to expand an adapted nonterminal B:

– select a previously generated subtree TB

with prob. ∝ number of times TB was generated, or
– select a rule B → β ∈ R with prob. ∝ αB θB→β, and

recursively expand nonterminals in β
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Adaptor grammar for stem-suffix morphology

Word → Stem Suffix
Stem → Phons
Suffix → Phons
Phons → Phon
Phons → Phon Phons

or in abbreviated form with
non-adapted nonterminals suppressed

..
Word

.

Stem

.

Phons

.

Phon

.

t

.

Phons

.

Phon

.

a

.

Phons

.

Phon

.

l

.

Phons

.

Phon

.

k

.
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.
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.
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.
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.
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.
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.
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.
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.
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.
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.

#

Word → Stem Suffix
Stem → Phon+

Suffix → Phon+

..
Word

.

Stem

.

t

.

a

.

l

.

k

.

Suffix

.

i

.

n

.

g

.

#
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Adaptor grammar for stem-suffix morphology (0)

..Word → Stem Suffix ........

Stem → Phoneme+

....

Suffix → Phoneme⋆

.......

Generated words:

50/130



Adaptor grammar for stem-suffix morphology (1a)

..Word → Stem Suffix .........

Stem → Phoneme+

....

Suffix → Phoneme⋆

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1b)

..Word → Stem Suffix .........

Stem → Phoneme+

.....

Suffix → Phoneme⋆

........

Generated words:
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Adaptor grammar for stem-suffix morphology (1c)

..Word → Stem Suffix .........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1d)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2a)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2b)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

.....

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2c)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2d)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

..
Word

Stem

d o g

Suffix

s

.......

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats, dogs
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Adaptor grammar for stem-suffix morphology (3)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

...
Word

Stem

d o g

Suffix

s

.......

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats, dogs, cats
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Posterior samples from adaptor grammar
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort
reports report s repo rts rep orts

reported report ed repo rted rep orted
report ing report ing repo rting rep orting

transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing
dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

60/130



Adaptor grammars as generative processes
• The sequence of trees generated by an adaptor grammar are not
independent

▶ it learns from the trees it generates
▶ if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

• but the sequence of trees is exchangable (important for sampling)

• An unadapted nonterminal A expands using A → β with
probability θA→β

• Each adapted nonterminal A is associated with a CRP (or PYP)
that caches previously generated subtrees rooted in A

• An adapted nonterminal A expands:
▶ to a subtree TA rooted in A with probability proportional to the

number of times TA was previously generated
▶ using A → β with probability proportional to αAθA→β
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Adaptor grammars as non-parametric PCFGs

• An adaptor grammar reuses whole previously-generated subtrees
TA of adapted nonterminals A

• This is equivalent to adding a rule A → w to the grammar, where
w is the yield of TA

• If the base CFG generates an infinite number of trees TA for A,
then the adaptor grammar is non-parametric

• But any set of sample parses for a finite training corpus only
contains a finite number of number of adapted subtrees

⇒ sampling methods (e.g., MCMC) are a natural approach to
learning and parsing adaptor grammars

▶ in implementation terms, an adaptor grammar is like a PCFG with
a constantly changing set of rules
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Properties of adaptor grammars

• Probability of reusing an adapted subtree TA

∝ number of times TA was previously generated
▶ adapted subtrees are not independent

– an adapted subtree can be more probable than the rules used
to construct it

▶ but they are exchangable ⇒ efficient sampling algorithms
▶ “rich get richer” ⇒ Zipf power-law distributions

• Each adapted nonterminal is associated with a
Chinese Restaurant Process or Pitman-Yor Process

▶ CFG rules define base distribution of CRP or PYP

• CRP/PYP parameters (e.g., αA) can themselves be estimated
(e.g., slice sampling)
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Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is
composed of a Stem and a
Suffix, which are composed
of Chars

• To generate a new Word
from an Adaptor Grammar:

▶ reuse an old Word, or
▶ generate a fresh one from

the base distribution, i.e.,
generate a Stem and a
Suffix
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#
• Lower in the tree ⇒ higher in Bayesian hierarchy
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Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

j △ u ▲ w △ ɑ △ n △ t ▲ t △ u ▲ s △ i ▲ ð △ ə ▲ b △ ʊ △ k
“you want to see the book”

• Ignoring phonology and morphology, this involves learning the
pronunciations of the lexical items in the language
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CFG models of word segmentation

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
Phon → a | b | . . .

• CFG trees can describe
segmentation, but

• PCFGs can’t distinguish good
segmentations from bad ones

▶ PCFG rules are too small a unit of generalisation
▶ need to learn e.g., probability that bʊk is a Word

..
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Word
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Phons
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.

ð

.

Phons

.

Phon

.

ə

.

Words

.

Word

.
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k
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Towards non-parametric grammars

Words → Word
Words → Word Words
Word → all possible phoneme sequences

• Learn probability Word → b ʊ k
• But infinitely many possible Word expansions

⇒ this grammar is not a PCFG

..
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.

Word

.

ð
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ə

.

Words

.

Word

.

b

.

ʊ

.

k

• Given fixed training data, only finitely many useful rules

⇒ use data to choose Word rules as well as their probabilities

• An adaptor grammar can do precisely this!
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Unigram adaptor grammar (Brent)

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
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• Word nonterminal is adapted

⇒ To generate a Word:
▶ select a previously generated Word subtree

with prob. ∝ number of times it has been generated
▶ expand using Word → Phons rule with prob. ∝ αWord

and recursively expand Phons
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Unigram model of word segmentation
• Unigram “bag of words” model (Brent):

▶ generate a dictionary, i.e., a set of words, where each word is a
random sequence of phonemes

– Bayesian prior prefers smaller dictionaries
▶ generate each utterance by choosing each word at random from

dictionary

• Brent’s unigram model as an adaptor grammar:

Words → Word+

Word → Phoneme+
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• Accuracy of word segmentation learnt: 56% token f-score
(same as Brent model)

• But we can construct many more word segmentation models using
AGs
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Adaptor grammar learnt from Brent corpus
• Initial grammar

1 Words → WordWords 1 Words → Word
1 Word → Phon
1 Phons → PhonPhons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

• A grammar learnt from Brent corpus

16625 Words → WordWords 9791 Words → Word
1575 Word → Phons
4962 Phons → PhonPhons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))
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Undersegmentation errors with Unigram model

Words → Word+ Word → Phon+

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)
• Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)
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Collocations ⇒ Words

Sentence → Colloc+

Colloc → Word+

Word → Phon+
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• A Colloc(ation) consists of one or more words
• Both Words and Collocs are adapted (learnt)
• Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)
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Two hypotheses about language acquisition

1. Pre-programmed staged acquisition of linguistic components
▶ Conventional view of lexical acquisition, e.g., Kuhl (2004)

– child first learns the phoneme inventory, which it then uses to
learn

– phonotactic cues for word segmentation, which are used to
learn

– phonological forms of words in the lexicon, . . .

2. Interactive acquisition of all linguistic components together
▶ corresponds to joint inference for all components of language
▶ stages in language acquisition might be due to:

– child’s input may contain more information about some
components

– some components of language may be learnable with less data
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Synergies: an advantage of interactive learning

• An interactive learner can take advantage of synergies in
acquisition

▶ partial knowledge of component A provides information about
component B

▶ partial knowledge of component B provides information about
component A

• A staged learner can only take advantage of one of these
dependencies

• An interactive or joint learner can benefit from a positive feedback
cycle between A and B

• Are there synergies in learning how to segment words and learning
the referents of words?
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Jointly learning words and syllables

Sentence → Colloc+ Colloc → Word+

Word → Syllable{1:3} Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+
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• Rudimentary syllable model (an improved model might do better)

• With 2 Collocation levels, f-score = 84%
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Distinguishing internal onsets/codas helps
Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF SyllableIF → (OnsetI) RhymeF
OnsetI → Consonant+ RhymeF → Nucleus (CodaF)
Nucleus → Vowel+ CodaF → Consonant+
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• With 2 Collocation levels, not distinguishing initial/final clusters,
f-score = 84%

• With 3 Collocation levels, distinguishing initial/final clusters,
f-score = 87%
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Collocations2 ⇒ Words ⇒ Syllables
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Summary of English word segmentation

• Word segmentation accuracy depends on the kinds of
generalisations learnt.

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 84%
+ interaction between

segmentation and syllable structure 87%

• Synergies in learning words and syllable structure
▶ joint inference permits the learner to explain away potentially

misleading generalizations
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The Sesotho corpus
• Sesotho is a Bantu language spoken in southern Africa
• Orthography is (roughly) phonemic
⇒ use orthographic forms as broad phonemic representations

• Rich agglutinative morphology (especially in verbs)
u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”
• The Demuth Sesotho corpus (1992) contains transcripts of child
and child-directed speech

• We used a subset of size roughly comparable to Brent corpus of
infant-directed speech

Brent Demuth
utterances 9,790 8,503
word tokens 33,399 30,200
phonemes 95,809 100,113
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Sesotho verbs are morphologically complex

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

• Input:
u △e △n △k △i △l △e △k △a △e

• What I’d like to be able to learn eventually:

Sentence

Verb

SubjMarker

u

ObjMarker

e

Stem

Root

nk

Perf

il

TenseAspect

e

WHNP

kae
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Unigram segmentation grammar – word

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence → Word+

Word → Phon+

Sentence

Word

u e n k i l e

Word

k a e

• The word grammar has a word segmentation f-score of 43%
• Lower than 56% f-score on the Brent corpus.
• Sesotho words are longer and more complex.
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Collocation grammar – colloc

Sentence → Colloc+

Colloc → Word+

Word → Phon+

Sentence

Colloc

Word

u e

Word

n

Word

k i l e

Colloc

Word

k a

Colloc

Word

e

• Learning Collocations improves word segmentation in English; will
it help in Sesotho?

• If we treat lower-level units as Words, f-score = 27%

• If we treat upper-level units as Words, f-score = 48%

• English improves by learning dependencies above words, but
Sesotho improves by learning generalizations below words
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Adding more levels – colloc2

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence → Colloc+

Colloc → Word+

Word → Morph+

Morph → Phon+

Sentence

Colloc

Word

Morph

u

Morph

e

Word

Morph

n k i

Morph

l e

Word

Morph

k a

Morph

e

• If two levels are good, maybe three would be better?
• Word segmentation f-score drops to 47%
• Doesn’t seem to be much value in adding dependencies above
Word level in Sesotho
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Using syllable structure – word-syll
u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence → Word+

Word → Syll+

Syll → (Onset) Nuc (Coda)
Syll → SC
Onset → C+

Nuc → V+

Coda → C+

Sentence

Word

Syll

u

Syll

e

Syll

n k i

Syll

l e

Word

Syll

k a e

• SC (syllablic consonants) are ‘l ’, ‘m’ ‘n’ and ‘r’
• Word segmentation f-score = 50%
• Assuming that words are composed of syllables does improve
Sesotho word segmentation
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Using syllable structure – colloc-syll

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence → Colloc+

Colloc → Word+

Syll → (Onset) Nuc (Coda)
Syll → SC
Onset → C+

Nuc → V+

Coda → C+

Sentence

Colloc

Word

Syll

u

Word

Syll

e

Word

Syll

n k i

Syll

l e

Colloc

Word

Syll

k a e

• Word segmentation f-score = 48%

• Additional collocation level doesn’t help
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Morpheme positions – word-morph

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence → Word+

Word → T1 (T2 (T3 (T4 (T5))))
T1 → Phon+

T2 → Phon+

T3 → Phon+

T4 → Phon+

T5 → Phon+

Sentence

Word

T1

u e

T2

n k i l e

T3

k a e

• Each word consists of 1–5 morphemes
• Learn separate morphemes for each position
• Improves word segmentation f-score to 53%
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Building in language-specific information –

word-smorph
u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”
Sentence → Word+

Word → (P1 (P2 (P3))) T (S)
P1 → Phon+

P2 → Phon+

P3 → Phon+

T → Phon+

S → Phon+

Sentence

Word

P1

u

P2

e

T

n k

S

i l e

Word

T

k a

S

e

• In Sesotho many words consist of a stem T, an optional suffix S
and up to 3 prefixes P1,P2 and P3

• Achieves highest f-score = 56%
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Prior work: mapping words to referents

• Input to learner:
▶ word sequence: Is that the pig?
▶ objects in nonlinguistic context: dog, pig

• Learning objectives:
▶ identify utterance topic: pig
▶ identify word-topic mapping: pig 7→ pig
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Frank et al (2009) “topic models” as PCFGs

• Prefix sentences with possible
topic marker, e.g., pig|dog

• PCFG rules choose a topic from
topic marker and propagate it
through sentence

• Each word is either generated
from sentence topic or null
topic ∅

..
Sentence

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig

.

pig|dog

.

Word∅

.

is

.

Word∅

.

that

.

Word∅

.

the

.

Wordpig

.

pig

• Grammar can require at most one topical word per sentence
• Bayesian inference for PCFG rules and trees corresponds to
Bayesian inference for word and sentence topics using topic model
(Johnson 2010)
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Word segmentation with adaptor grammars

• Adaptor grammars (AGs) can learn the probability of entire
subtrees (as well as rules)

• AGs can express several different word segmentation models

• Learning collocations as well as words significantly improves
segmentation accuracy

Sentence → Colloc+

Colloc → Word+

Word → Phon+

..
Sentence

.

Colloc

.

Word

.

ɪ

.

z

.

Word

.

ð

.

æ

.

t

.

Colloc

.

Word

.

ð

.

ə

.

Word

.

p

.

ɪ

.

g
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AGs for joint segmentation and referent-mapping
• Combine topic-model PCFG with word segmentation AGs

• Input consists of unsegmented phonemic forms prefixed with
possible topics:

pig|dog ɪ z ð æ t ð ə p ɪ g

• E.g., combination of Frank “topic model”
and unigram segmentation model

▶ equivalent to Jones et al (2010)

• Easy to define other
combinations of topic
models and
segmentation models

..
Sentence

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig

.

pig|dog

.

Word∅

.

ɪ

.

z

.

Word∅

.

ð

.

æ

.

t

.

Word∅

.

ð

.

ə

.

Wordpig

.

p

.

ɪ

.

g
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Collocation topic model AG

..
Sentence

.

Topicpig

.

Topicpig

.

Topicpig

.

pig|dog

.

Colloc∅

.

Word∅

.

ɪ

.

z

.

Word∅

.

ð

.

æ

.

t

.

Collocpig

.

Word∅

.

ð

.

ə

.

Wordpig

.

p

.

ɪ

.

g

• Collocations are either “topical” or not
• Easy to modify this grammar so

▶ at most one topical word per sentence, or
▶ at most one topical word per topical collocation
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Experimental set-up
• Input consists of unsegmented phonemic forms prefixed with
possible topics:

pig|dog ɪ z ð æ t ð ə p ɪ g

▶ Child-directed speech corpus collected by Fernald et al (1993)
▶ Objects in visual context annotated by Frank et al (2009)

• Bayesian inference for AGs using MCMC (Johnson et al 2009)
▶ Uniform prior on PYP a parameter
▶ “Sparse” Gamma(100, 0.01) on PYP b parameter

• For each grammar we ran 8 MCMC chains for 5,000 iterations
▶ collected word segmentation and topic assignments at every 10th

iteration during last 2,500 iterations
⇒ 2,000 sample analyses per sentence

▶ computed and evaluated the modal (i.e., most frequent) sample
analysis of each sentence
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Does non-linguistic context help segmentation?
Model word segmentation

segmentation topics token f-score
unigram not used 0.533
unigram any number 0.537
unigram one per sentence 0.547

collocation not used 0.695
collocation any number 0.726
collocation one per sentence 0.719
collocation one per collocation 0.750

• Not much improvement with unigram model
▶ consistent with results from Jones et al (2010)

• Larger improvement with collocation model
▶ most gain with one topical word per topical collocation

(this constraint cannot be imposed on unigram model)
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Does better segmentation help topic identification?

• Task: identify object (if any) this sentence is about

Model sentence referent
segmentation topics accuracy f-score

unigram not used 0.709 0
unigram any number 0.702 0.355
unigram one per sentence 0.503 0.495

collocation not used 0.709 0
collocation any number 0.728 0.280
collocation one per sentence 0.440 0.493
collocation one per collocation 0.839 0.747

• The collocation grammar with one topical word per topical
collocation is the only model clearly better than baseline
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Does better segmentation help learning

word-to-referent mappings?
• Task: identify head nouns of NPs referring to topical objects
(e.g. pɪg 7→ pig in input pig | dog ɪ z ð æ t ð ə p ɪ g)

Model topical word
segmentation topics f-score

unigram not used 0
unigram any number 0.149
unigram one per sentence 0.147

collocation not used 0
collocation any number 0.220
collocation one per sentence 0.321
collocation one per collocation 0.636

• The collocation grammar with one topical word per topical
collocation is best at identifying head nouns of referring NPs
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Summary of segmentation and word-to-referent

mappings

• Word to object mapping is learnt more accurately when words are
segmented more accurately

▶ improving segmentation accuracy improves topic detection and
acquisition of topical words

• Word segmentation accuracy improves when exploiting
non-linguistic context information

▶ incorporating word-topic mapping improves segmentation accuracy
(at least with collocation grammars)

⇒ There are synergies a learner can exploit when learning word
segmentation and word-object mappings

▶ Caveat: results seem to depend on details of model

• Models limited by ability to simulate “feature-passing” in a PCFG
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LDA topic models
• LDA topic models are admixture models of documents

▶ topics are assigned to words (not sentences or documents)

• An LDA topic model learns:
▶ the topics expressed in a document
▶ the words characteristic of a topic

• Each topic i is a distribution over words ϕi

• Each document j has a distribution θj over topics
• To generate document j :

▶ for each word position in document:

– choose a topic z according to θj , and then
– choose a word belonging to that topic according to ϕz

• “Sparse priors” on ϕ and θ
⇒ most documents have few topics
⇒ most topics have few words
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LDA topic models as Bayes nets

ϕi ∼ Dir(β) i = 1, . . . , ℓ = number of topics
θj ∼ Dir(α) j = 1, . . . ,m = number of documents
zj ,k ∼ θj j = 1, . . . ,m

k = 1, . . . , n = number of words in a document
wj ,k ∼ ϕzj,k

j = 1, . . . ,m

k = 1, . . . , n

WZθα

ϕβ

n m

ℓ
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LDA topic models as PCFGs (1)

• Prefix strings from document j with a document identifier “ j”

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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LDA topic models as PCFGs (2)

• Spine propagates document id up through tree

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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LDA topic models as PCFGs (3)

• Docj → Topici rules map documents to topics

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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LDA topic models as PCFGs (4)

• Topici → w rules map topics to words

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Topic model with collocations

• Combines PCFG topic model and segmentation adaptor grammar

Sentence → Docj j ∈ 1, . . . ,m
Docj → j j ∈ 1, . . . ,m
Docj → Docj Topici i ∈ 1, . . . , ℓ;

j ∈ 1, . . . ,m
Topici → Words i ∈ 1, . . . , ℓ

Words → Word
Words → Words Word
Word → w w ∈ V

Sentence

Doc3

Doc3

Doc3

_3

Topic5

Words

Words

Word

polynomial

Word

size

Topic15

Words

Words

Word

threshold

Word

circuits
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Finding topical collocations in NIPS abstracts

• Run topical collocation adaptor grammar on NIPS corpus

• Run with ℓ = 20 topics (i.e., 20 distinct Topici nonterminals)

• Corpus is segmented by punctuation
▶ terminal strings are fairly short

⇒ inference is fairly efficient

• Used standard AG implementation
▶ Pitman-Yor adaptors
▶ sampled Pitman-Yor a and b parameters
▶ flat and “vague Gamma” priors on Pitman-Yor a and b parameters
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Sample output on NIPS corpus, 20 topics
• Multiword subtrees learned by adaptor grammar:

T 0 → gradient descent T 1 → associative memory
T 0 → cost function T 1 → standard deviation
T 0 → fixed point T 1 → randomly chosen
T 0 → learning rates T 1 → hamming distance
T 3 → membrane potential T 10 → ocular dominance
T 3 → action potentials T 10 → visual field
T 3 → visual system T 10 → nervous system
T 3 → primary visual cortex T 10 → action potential

• Sample skeletal parses:
3 (T 5 polynomial size) (T 15 threshold circuits)
4 (T 11 studied) (T 19 pattern recognition algorithms)
4 (T 2 feedforward neural network) (T 1 implements)
5 (T 11 single) (T 10 ocular dominance stripe) (T 12 low)

(T 3 ocularity) (T 12 drift rate)
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What do we have to learn?
• To learn an adaptor grammar, we need:

▶ probabilities of grammar rules
▶ adapted subtrees and their probabilities for adapted non-terminals

• If we knew the true parse trees for a training corpus, we could:
▶ read off the adapted subtrees from the corpus
▶ count rules and adapted subtrees in corpus
▶ compute the rule and subtree probabilities from these counts

– simple computation (smoothed relative frequencies)

• If we aren’t given the parse trees:
▶ there can be infinitely many possible adapted subtrees

⇒ can’t track the probability of all of them (as in EM)
▶ but sample parses of a finite corpus only include finitely many

• Sampling-based methods learn the relevant subtrees as well as their
weights
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A Gibbs sampler for learning adaptor grammars

• Gibbs sampling for learning adaptor grammars
▶ Assign (random) parse trees to each sentence, and compute rule

and subtree counts
▶ Repeat forever:

– pick a sentence (and corresponding parse) at random
– deduct the counts for the sentence’s parse from current rule

and subtree counts
– sample a parse for sentence according to updated grammar
– add sampled parse’s counts to rule and subtree counts

• Sampled parse trees and grammar converges to Bayesian posterior
distribution
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Sampling parses from an adaptor grammar

• Sampling a parse tree for a sentence is computationally most
demanding part of learning algorithm

• Component-wise Metropolis-within-Gibbs sampler for parse trees:
▶ adaptor grammar rules and probabilities change on the fly
▶ construct PCFG proposal grammar from adaptor grammar for

previous sentences
▶ sample a parse from PCFG proposal grammar
▶ use accept/reject to convert samples from proposal PCFG to

samples from adaptor grammar

• For particular adaptor grammars, there are often more efficient
algorithms
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Details about sampling parses

• Adaptor grammars are not context-free

• The probability of a rule (and a subtree)
can change within a single sentence

▶ breaks standard dynamic programming

Sentence

Colloc

Word

D 6

Word

d O g i

Colloc

Word

D 6

Word

d O g i

• But with moderate or large corpora, the probabilities don’t change
by much

▶ use Metropolis-Hastings accept/reject with a PCFG proposal
distribution

• Rules of PCFG proposal grammar G ′(t−j) consist of:
▶ rules A → β from base PCFG: θ′A→β ∝ αAθA→β

▶ A rule A → Yield(t) for each table t in A’s restaurant:
θ′
A→Yield(t) ∝ nt , the number of customers at table t

• Map parses using G ′(t−j) back to adaptor grammar parses
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Random vs incremental initialization

• The Gibbs sampler parse trees t needs to be initialized somehow

Random initialization: Assign each string xi a random parse ti
generated by base PCFG

Incremental initialization: Sample ti from P(t | xi , t1:i−1)

• Incremental initialization is easy to implement in a Gibbs sampler

• Incremental initialization improves token f-score in all models,
especially on simple models

Model Random Incremental
unigram 56% 81%
colloc 76% 86%
colloc-syll 87% 89%

but see caveats on next slide!
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Incremental initialization produces low-probability

parses

185000

190000

195000

200000

205000

210000

215000

220000

0 500 1000 1500 2000

−
lo
g
P
(x
,t
)

Iteration

incremental initialization
random initialization
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Why incremental initialization produces

low-probability parses

• Incremental initialization produces sample parses t with lower
probability P(t | x)

• Possible explanation: (Goldwater’s 2006 analysis of Brent’s model)
▶ All the models tend to undersegment (i.e., find collocations

instead of words)
▶ Incremental initialization greedily searches for common substrings
▶ Shorter strings are more likely to be recurr early than longer ones
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Table label resampling

• Each adapted non-terminal has a CRP with tables labelled with
parses

• “Rich get richer” ⇒ resampling a sentence’s parse reuses the same
cached subtrees

• Resample table labels as well sentence parses
▶ A table label may be used in many sentence parses

⇒ Resampling a single table label may change the parses of a single
sentence

⇒ table label resampling can improve mobility with grammars with a
hierarchy of adapted non-terminals

• Essential for grammars with a complex hierarchical structure
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Table label resampling example
Label on table in Chinese Restaurant for colloc

Colloc

Word

y u

Word

w a n t t u

⇒
Colloc

Word

y u

Word

w a n t

Word

t u

Resulting changes in parse trees
Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

⇒

Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t

⇒

Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t
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Table label resampling produces much

higher-probability parses

185000

190000

195000

200000
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210000
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Iteration

no table label resampling
table label resampling
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Summary: learning adaptor grammars

• Unbounded number of possible cached subtrees ⇒ Expectation
Maximisation isn’t sufficient

• Gibbs sampler batch learning algorithm
▶ assign every sentence a (random) parse
▶ repeatedly cycle through training sentences:

– withdraw parse (decrement counts) for sentence
– sample parse for current sentence and update counts
– Metropolis-Hastings correction
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Conclusions and future work
• Adaptor grammars can express a variety of useful HDP models

▶ generic AG inference code makes it easy to explore a variety of
models

• AGs have a variety of applications
▶ unsupervised acquisition of morphology
▶ unsupervised word segmentation
▶ learning word to referent mappings
▶ learning collocations in topic models

• Joint learning often uses information in the input more effectively
than staged learning

• Future work:
▶ extend expressive power of AGs (e.g., feature-passing)
▶ richer data (e.g., more non-linguistic context)
▶ more realistic data (e.g., stress, phonological variation)
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The future of Bayesian models of language

acquisition

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

• So far our grammars and priors don’t encode much linguistic
knowledge, but in principle they can!

▶ how do we represent this knowledge?
▶ how can we learn efficiently using this knowledge?

• Should permit us to empirically investigate effects of specific
universals on the course of language acquisition

• My guess: the interaction between innate knowledge and learning
will be richer and more interesting than either the rationalists or
empiricists currently imagine!
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Interested in statistical models,
machine learning and computational linguistics?

Macquarie University is recruiting
PhD students and post-docs!

Contact Mark.Johnson@mq.edu.au for more information.
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Context-free grammars
A context-free grammar (CFG) consists of:

• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N ,
• a finite set R of rules A → β, where A ∈ N and β ∈ (N ∪W )⋆

• a start symbol S ∈ N .
Each A ∈ N ∪W generates a set TA of trees.
These are the smallest sets satisfying:

• If A ∈ W then TA = {A}.
• If A ∈ N then:

TA =
∪

A→B1...Bn∈RA

TreeA(TB1 , . . . , TBn)

where RA = {A → β : A → β ∈ R}, and

TreeA(TB1 , . . . , TBn) =

{
�� PP
A

t1 tn. . .
:
ti ∈ TBi

,
i = 1, . . . , n

}
The set of trees generated by a CFG is TS . 128/130



Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector θ,
where:

• θA→β is the probability of expanding the nonterminal A using the
production A → β.

It defines distributions GA over trees TA for A ∈ N ∪W :

GA =


δA if A ∈ W∑
A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . ,Gn)

(
�� PP
A

t1 tn. . .

)
=

n∏
i=1

Gi(ti).

TDA(G1, . . . ,Gn) is a distribution over TA where each subtree ti is
generated independently from Gi .
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DP adaptor grammars

An adaptor grammar (G ,θ,α) is a PCFG (G ,θ) together with a
parameter vector α where for each A ∈ N , αA is the parameter of the
Dirichlet process associated with A.

GA ∼ DP(αA,HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)

The grammar generates the distribution GS .
One Dirichlet Process for each adapted non-terminal A (i.e., αA > 0).
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