Grammars

Mark Johnson

joint work with many people, including Eugene Charniak, Katherine Demuth, Michael Frank, Sharon Goldwater, Tom Griffiths and Bevan Jones

> Macquarie University Sydney, Australia

> > July 2011

Why grammars?

- Grammars can define *probability distributions* over infinitely many *trees*
 - "infinite use of finite means"
 - expressive/computational trade-off "sweet spot"
- Why trees?
 - simple model of *hierarchical structure*
 - wide range of applications in language and beyond
- Why probability distributions?
 - uncertainty is ubiquitous in perception and learning
 - well-developed mathematics

Probabilistic languages

- *W* is a finite set of *terminal symbols*, a.k.a. the *vocabulary* of the language
 - E.g., $W = \{$ likes, Sam, Sasha, thinks $\}$
- A string is a finite sequence of elements of $\mathcal W$
 - E.g., Sam thinks Sam likes Sasha
- \mathcal{W}^{\star} is the set of all strings (including the empty string ϵ)
- \mathcal{W}^+ is the set of all non-empty strings (i.e., $\mathcal{W}^+ = \mathcal{W}^* \setminus \{\epsilon\}$)
- A (formal) *language* is a set of strings (a subset of \mathcal{W}^{\star})
 - ▶ E.g., $L = \{$ Sam, Sam thinks, Sasha thinks, . . . $\}$
- A probabilistic language is a probability distribution over a language

Outline

Context-free grammars

- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

Context-free grammars

• A Context-Free Grammar (CFG) G = (W, N, S, R) consists of

 \mathcal{W} , a finite set of *terminal symbols* \mathcal{N} , a finite set of *nonterminal symbols* disjoint from \mathcal{W} $S \in \mathcal{N}$ is the *start symbol*, and \mathcal{R} is a finite set of *rules* or *productions* of the form $A \to \beta$, where $A \in \mathcal{N}$ and $\beta \in (\mathcal{N} \cup \mathcal{W})^*$

- A parse tree generated by CFG G is a finite ordered tree labeled with labels from N ∪ W, where:
 - ▶ the *root node* is labeled *S*
 - for each node *n* labeled with a nonterminal $A \in \mathcal{N}$ there is a rule $A \rightarrow \beta \in \mathcal{R}$ and *n*'s children are labeled β
 - each node labeled with a terminal has no children

$$G = (\mathcal{W}, \mathcal{N}, S, \mathcal{R})$$

$$\mathcal{W} = \{ barks, cat, dog, the \}$$

$$\mathcal{N} = \{ D, NP, S, V, VP \}$$

$$\mathcal{R} = \left\{ \begin{array}{ll} S \to NP \ VP & NP \to D \ N & VP \to V \\ D \to the & N \to dog & V \to barks \\ VP \to V \ NP & S \end{array} \right\}$$

$$G = (\mathcal{W}, \mathcal{N}, S, \mathcal{R})$$

$$\mathcal{W} = \{ barks, cat, dog, the \}$$

$$\mathcal{N} = \{ D, NP, S, V, VP \}$$

$$\mathcal{R} = \left\{ \begin{array}{c} S \to NP \ VP \quad NP \to D \ N \quad VP \to V \\ D \to the \quad N \to dog \quad V \to barks \\ VP \to V \ NP \end{array} \right\}$$

$$S \longrightarrow NP \ VP$$

$$G = (\mathcal{W}, \mathcal{N}, S, \mathcal{R})$$

$$\mathcal{W} = \{ barks, cat, dog, the \}$$

$$\mathcal{N} = \{ D, NP, S, V, VP \}$$

$$\mathcal{R} = \left\{ \begin{array}{cc} S \to NP \ VP & NP \to D \ N & VP \to V \\ D \to the & N \to dog & V \to barks \\ VP \to V \ NP \end{array} \right\}$$

$$S \Rightarrow NP \ VP \\ \downarrow D = S \Rightarrow D \ N \ VP$$

the

$$G = (\mathcal{W}, \mathcal{N}, S, \mathcal{R})$$

$$\mathcal{W} = \{ barks, cat, dog, the \}$$

$$\mathcal{N} = \{ D, NP, S, V, VP \}$$

$$\mathcal{R} = \left\{ \begin{array}{ll} S \to NP \ VP & NP \to D \ N & VP \to V \\ D \to the & N \to dog & V \to barks \\ VP \to V \ NP \end{array} \right\}$$

 $\begin{array}{ccc} & & S \\ \Rightarrow & & NP VP \\ \Rightarrow & & D N VP \\ \Rightarrow & & the N VP \end{array}$

$$\Rightarrow$$
 the dog VP

$$G = (\mathcal{W}, \mathcal{N}, S, \mathcal{R})$$

$$\mathcal{W} = \{ barks, cat, dog, the \}$$

$$\mathcal{N} = \{ D, NP, S, V, VP \}$$

$$\mathcal{R} = \left\{ \begin{array}{ll} S \to NP \ VP & NP \to D \ N & VP \to V \\ D \to the & N \to dog & V \to barks \\ VP \to V \ NP \end{array} \right\}$$

- $\begin{array}{cc} & S \\ \Rightarrow & NP VP \\ \Rightarrow & D N VP \end{array}$
- \Rightarrow the N VP
- \Rightarrow the dog VP
- \Rightarrow the dog V

$$G = (\mathcal{W}, \mathcal{N}, S, \mathcal{R})$$

$$\mathcal{W} = \{ barks, cat, dog, the \}$$

$$\mathcal{N} = \{ D, NP, S, V, VP \}$$

$$\mathcal{R} = \left\{ \begin{array}{ll} S \to NP \ VP & NP \to D \ N & VP \to V \\ D \to the & N \to dog & V \to barks \\ VP \to V \ NP \end{array} \right\}$$

- $\Rightarrow \qquad \begin{array}{c} S \\ \text{NP VP} \end{array}$
- \Rightarrow D N VP
- \Rightarrow the N VP
- \Rightarrow the dog VP
- \Rightarrow the dog V
- \Rightarrow the dog barks

$$G = (\mathcal{W}, \mathcal{N}, S, \mathcal{R})$$

$$\mathcal{W} = \{ barks, cat, dog, the \}$$

$$\mathcal{N} = \{ D, NP, S, V, VP \}$$

$$\mathcal{R} = \left\{ \begin{array}{ll} S \to NP \ VP & NP \to D \ N & VP \to V \\ D \to the & N \to dog & V \to barks \\ VP \to V \ NP \end{array} \right\}$$

- $\Rightarrow \qquad \begin{array}{c} S \\ \text{NP VP} \end{array}$
- \Rightarrow D N VP
- \Rightarrow the N VP
- \Rightarrow the dog VP
- \Rightarrow the dog V
- \Rightarrow the dog barks

CFGs can generate structural ambiguity

 $\mathcal{R} = \{ VP \rightarrow V NP, VP \rightarrow VP PP, NP \rightarrow D N, N \rightarrow N PP, \ldots \}$

A small phrase-structure tree from the WSJ

- Identifying phrase structure is a first step in semantic interpretation
- The U Penn Wall Street Journal treebank contains about 55,000 manually-constructed parse trees for about 1,000,000 words of English
- Most modern statistical parsing models are trained from treebanks like this MACOUARIE AND

UNIVERSIT

Outline

Context-free grammars

- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

- A Probabilistic Context Free Grammar (PCFG)
 - $G = (W, N, S, R, \theta)$ is a 5-tuple where:
 - ► (W, N, S, R) is a CFG with no useless productions or nonterminals, and
 - θ is a vector of production probabilities, i.e., a function R → [0, 1] that satisfies for each A ∈ N:

$$\sum_{A \to \beta \in \mathcal{R}(A)} \theta_{A \to \beta} = 1$$

where $\mathcal{R}(A) = \{A \rightarrow \alpha : A \rightarrow \alpha \in \mathcal{R}\}.$

A production A → α is useless iff there are no derivations of the form S ⇒^{*} γAδ ⇒ γαδ ⇒^{*} w for any γ, δ ∈ (N ∪ W)^{*} and w ∈ W^{*}.

Probability distribution defined by a PCFG

- Intuitive interpretation:
 - the probability of rewriting nonterminal A to α is $\theta_{A \rightarrow \alpha}$
 - the probability of a parse tree t is the product of probabilities of rules used to build the tree
- For each production A → α ∈ R, let f_{A→α}(t) be the number of times A → α is used in tree t.
- A PCFG G defines a probability distribution P_G on trees t:

$$P_G(t) = \prod_{r \in \mathcal{R}} \theta_r^{f_r(t)}$$

• This distribution is properly normalized if θ satisfies suitable constraints.

- Probabilistic context-free grammars (PCFGs) define *probability distributions over trees*
- Each *nonterminal node* expands by:
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is *product of probabilities of rules* used to construct it

Probability θ_r	Rule r	S	
1	$S\toNP\;VP$		
0.7	$NP \to \mathit{Sam}$		
0.3	$NP o \mathit{Sandy}$		
1	$VP \rightarrow V NP$		
0.8	V ightarrow likes		
0.2	V ightarrow hates		

- Probabilistic context-free grammars (PCFGs) define *probability distributions over trees*
- Each *nonterminal node* expands by:
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is *product of probabilities of rules* used to construct it

Probability θ_r	Rule r	S	5
1	$S \to NP VP$		
0.7	$NP o \mathit{Sam}$	NP	VP
0.3	$NP o \mathit{Sandy}$		
1	$VP \to V \; NP$		
0.8	$V o \mathit{likes}$		
0.2	$V o \mathit{hates}$		

- Probabilistic context-free grammars (PCFGs) define *probability distributions over trees*
- Each *nonterminal node* expands by:
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is *product of probabilities of rules* used to construct it

Probability θ_r	Rule r	S	
1	$S \to NP VP$		
0.7	$NP o \mathit{Sam}$	NP	VP
0.3	$NP o \mathit{Sandy}$		
1	$VP \to V \; NP$	Sam	
0.8	$V \rightarrow \mathit{likes}$		
0.2	$V ightarrow \mathit{hates}$		

 $P(\mathsf{Tree}) = 1 \times 0.7 \times$

- Probabilistic context-free grammars (PCFGs) define *probability distributions over trees*
- Each *nonterminal node* expands by:
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is *product of probabilities of rules* used to construct it

Probability θ_r	Rule r		S	
1	$S \to NP VP$	/	\frown	
0.7	$NP o \mathit{Sam}$	NP	VP	
0.3	$NP o \mathit{Sandy}$			
1	$VP \to V \; NP$	Sam	V	NP
0.8	$V o \mathit{likes}$			
0.2	$V o \mathit{hates}$			

 $P(\mathsf{Tree}) = 1 \times 0.7 \times 1 \times$

- Probabilistic context-free grammars (PCFGs) define *probability distributions over trees*
- Each *nonterminal node* expands by:
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is *product of probabilities of rules* used to construct it

Probability θ_r	Rule r	S
1	$S \rightarrow NP VP$	\frown
0.7	$NP \to \textit{Sam}$	NP VP
0.3	$NP o \mathit{Sandy}$	
1	$VP \to V \; NP$	Sam V NP
0.8	$V \rightarrow \textit{likes}$	1.1
0.2	$V \rightarrow hates$	likes

 $P(\text{Tree}) = 1 \times 0.7 \times 1 \times 0.8 \times$

- Probabilistic context-free grammars (PCFGs) define *probability distributions over trees*
- Each *nonterminal node* expands by:
 - choosing a rule expanding that nonterminal, and
 - recursively expanding any nonterminal children it contains
- Probability of tree is *product of probabilities of rules* used to construct it

Probability θ_r	Rule r	S
1	$S \rightarrow NP VP$	\frown
0.7	$NP \to \textit{Sam}$	NP VP
0.3	$NP o \mathit{Sandy}$	
1	$VP \to V \; NP$	Sam V NP
0.8	$V \rightarrow \textit{likes}$	111 0 1
0.2	$V \rightarrow hates$	likes Sandy

 $P(\mathsf{Tree}) = 1 \times 0.7 \times 1 \times 0.8 \times 0.3$

Beyond context-free grammars

- Context-free grammars are called "context free" because the expansion of a non-terminal *only depends on the non-terminal's label*
- In a PCFG, each non-terminal expansion is *independent* of the other expansions
 - \Rightarrow efficient dynamic programming parsing algorithms
 - \Rightarrow simple learning algorithms
- There is a hierarchy of context-sensitive grammars
 - Tree-adjoining grammars, Combinatory categorial grammars, Minimalist grammars
- The *mildly context-sensitive grammars* (MCSGs) have a two-step derivational structure:
 - 1. Non-deterministically generate a "context-free" derivation tree
 - 2. Deterministically map the derivation tree to a *derived tree*
- (In a CFG, derivation trees and derived trees are the same)

 \Rightarrow *MCSGs enjoy all of the nice statistical properties of PCFGs*

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

Maximum likelihood estimation from visible parses

- Each rule expansion is sampled from parent's multinomial
- ⇒ Maximum Likelihood Estimator (MLE) is rule's *relative frequency*

But MLE is often *overly certain*, especially with sparse data
 E.g., "accidental zeros" n_r = 0 ⇒ θ_r = 0.

Bayesian estimation from visible parses

• Bayesian estimators estimate a *distribution* over rule probabilities

$$\underbrace{P(\theta \mid \mathbf{n})}_{\text{Posterior}} \propto \underbrace{P(\mathbf{n} \mid \theta)}_{\text{Likelihood}} \underbrace{P(\theta)}_{\text{Prior}}$$

- Dirichlet distributions are conjugate priors for multinomials
 - A Dirichlet distribution over (θ₁,...,θ_m) is specified by positive parameters (α₁,...,α_m)
 - ▶ If $\mathsf{Prior} = \mathrm{Dir}(\alpha)$ then $\mathsf{Posterior} = \mathrm{Dir}(\alpha + \mathbf{n})$

Sparse Dirichlet priors

 As α → 0, Dirichlet distributions become peaked around 0 "Grammar includes some of these rules, but we don't know which!"

Estimating rule probabilities from strings alone

- Input: terminal strings and grammar rules
- Output: rule probabilities θ
- In general, no closed-form solution for heta
 - iterative algorithms usually involving *repeatedly reparsing training data*
- *Expectation Maximization* (EM) procedure generalizes visible data ML estimators to hidden data problems
- Inside-Outside algorithm is a cubic-time EM algorithm for PCFGs
- Bayesian estimation of heta via:
 - Variational Bayes or
 - Markov Chain Monte Carlo (MCMC) methods such as Gibbs sampling

Gibbs sampler for parse trees and rule probabilities

- Input: terminal strings (x₁,..., x_n), grammar rules and Dirichlet prior parameters α
- Output: stream of sample *rule probabilities θ* and *parse trees* t = (t₁,..., t_n)
- Algorithm:

Assign parse trees to the strings somehow (e.g., randomly) Repeat forever:

Compute rule counts **n** from **t** Sample θ from Dir(α + **n**) For each string x_i : replace t_i with a tree sampled from P($t|x_i, \theta$).

• After *burn-in*, (θ, \mathbf{t}) are distributed according to Bayesian posterior

• Sampling parse tree from $P(t|x_i, \theta)$ involves parsing string x_i .

Collapsed Gibbs samplers

- Integrate out rule probabilities θ to obtain predictive distribution $P(t_i|x_i, \mathbf{t}_{-i})$ of parse t_i for sentence x_i given other parses \mathbf{t}_{-i}
- Collapsed Gibbs sampler

For each sentence x_i in training data:

Replace t_i with a sample from $P(t|x_i, \mathbf{t}_{-i})$

• A problem: $P(t_i|x_i, t_{-i})$ is not a PCFG distribution

 \Rightarrow no dynamic-programming sampler (AFAIK)

Metropolis-Hastings samplers

- Metropolis-Hastings (MH) acceptance-rejection procedure uses samples from a *proposal distribution* to produce samples from a *target distribution*
- When sentence size \ll training data size, $P(t_i|x_i, \mathbf{t}_{-i})$ is almost a PCFG distribution
 - ▶ use a PCFG approximation based on t_{-i} as *proposal distribution*
 - apply MH to transform proposals to $P(t_i|x_i, \mathbf{t}_{-i})$
- To construct a Metropolis-Hastings sampler you need to be able to:
 - efficiently sample from proposal distribution
 - calculate ratios of parse probabilities under proposal distribution
 - calculate ratios of parse probabilities under target distribution

Collapsed Metropolis-within-Gibbs sampler for PCFGs

- Input: terminal strings (x₁,..., x_n), grammar rules and Dirichlet prior parameters α
- Output: stream of sample *parse trees* $\mathbf{t} = (t_1, \dots, t_n)$
- Algorithm:

Assign parse trees to the strings somehow (e.g., randomly) Repeat forever:

For each sentence x_i in training data:

Compute rule counts \mathbf{n}_{-i} from \mathbf{t}_{-i}

Compute proposal grammar probabilities θ from \mathbf{n}_{-i} Sample a tree t from $P(t|x_i, \theta)$

Replace t_i with t according to

Metropolis-Hastings accept-reject formula

Example: Learning PCFG rule probabilities (1)

Example: Learning PCFG rule probabilities (2)

• Input strings: (each string is of form: Name Property⁺)

bazzy SMILE daxxy SMILE MOUSTACHE frobby SMILE MOUSTACHE HAT

- Rules designed to generate trees as follows:
- pick a property Top from property NameMOUSTACHE **PropsMOUSTACHE** list at random PropsMOUSTACHE frobby Prop generate name from property PropMOUSTACHE SMILE Props MOUSTACHE Prop HAT
- With sparse prior ($\alpha = 10^{-2}$) on Name_x \rightarrow y rules, learns 1-to-1 mapping between properties and names
Learning rules (not just their probabilities)

- Input: terminal strings
- Output: grammar rules and rule probabilities heta
- "Generate and test" approach (Carroll and Charniak, Stolcke) Guess an initial set of rules Repeat:

re-estimate rule probabilities from strings prune low probability rules propose additional potentially useful rules

• Non-parametric Bayesian methods seem to provide a more systematic approach

Non-parameteric Bayesian extensions to PCFGs

- Non-parametric \Rightarrow no fixed set of parameters
- Two obvious non-parametric extensions to PCFGs:
 - let the set of non-terminals grow unboundedly
 - given an initial grammar with coarse-grained categories, split non-terminals into more refined categories $S_{12} \rightarrow NP_7 VP_4$ instead of $S \rightarrow NP VP$.
 - PCFG generalization of "infinite HMM".
 - let the set of rules grow unboundedly \Rightarrow *adaptor grammars*
 - use a (meta-)grammar to generate potential rules
 - learn subtrees and their probabilities
 i.e., tree substitution grammar, where we learn the fragments as well as their probabilities
- No reason both can't be done at once ...

Plan for rest of talk

- Learning structure is hard!
 - Bayesian PCFG estimation works well on toy data, but
 - results are disappointing on real language data
- Strategy: study simpler cases
 - morphological segmentation (e.g., walking = walk+ing)
 - segmenting utterances into words, i.e., learning word pronunciations
 - learning the relationship between words and the objects they refer to
- Idea: extend PCFGs by incorporating non-parametric generalisations of Dirichlet-Multinomials
 - Chinese restaurant processes (Dirichlet processes)
 - Pitman-Yor processes

Outline

- Context-free grammars Probabilistic context-free grammars Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

Bayesian inference for Dirichlet-multinomials

Probability of next event with *uniform Dirichlet prior* with mass α over *m* outcomes and observed data Z_{1:n} = (Z₁,..., Z_n)

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}, \alpha) \propto n_k(\mathbf{Z}_{1:n}) + \alpha/m$$

where $n_k(\mathbf{Z}_{1:n})$ is number of times k appears in $\mathbf{Z}_{1:n}$

• Example: Coin (m = 2), $\alpha = 1$, $Z_{1:2} = (heads, heads)$

•
$$P(Z_3 = heads \mid \mathbf{Z}_{1:2}, \alpha) \propto 2.5$$

•
$$P(Z_3 = tails | \mathbf{Z}_{1:2}, \alpha) \propto 0.5$$

Dirichlet-multinomials with many outcomes

• Predictive probability:

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}, \alpha) \propto n_k(\mathbf{Z}_{1:n}) + \alpha/m$$

• Suppose the number of outcomes $m \gg n$. Then:

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}, \alpha) \propto \begin{cases} n_k(\mathbf{Z}_{1:n}) & \text{if } n_k(\mathbf{Z}_{1:n}) > 0 \\ \\ \alpha/m & \text{if } n_k(\mathbf{Z}_{1:n}) = 0 \end{cases}$$

• But most outcomes will be unobserved, so:

$$P(Z_{n+1} \notin \mathbf{Z}_{1:n} \mid \mathbf{Z}_{1:n}, \alpha) \propto \alpha$$

From Dirichlet-multinomials to Chinese Restaurant Processes

- Suppose *number of outcomes is unbounded* but *we* pick the event labels
- If we number event types in order of occurrence
 ⇒ Chinese Restaurant Process

$$Z_1 = 1$$

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}, \alpha) \propto \begin{cases} n_k(\mathbf{Z}_{1:n}) & \text{if } k \le m = \max(\mathbf{Z}_{1:n}) \\ \alpha & \text{if } k = m+1 \end{cases}$$

Chinese Restaurant Process (0)

- Customer \rightarrow table mapping ${f Z}=$
- P(z) = 1
- Next customer chooses a table according to:

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}) \propto \begin{cases} n_k(\mathbf{Z}_{1:n}) & \text{if } k \le m = \max(\mathbf{Z}_{1:n}) \\ \alpha & \text{if } k = m+1 \end{cases}$$

Chinese Restaurant Process (1)

- Customer \rightarrow table mapping Z=1
- $P(z) = \alpha/\alpha$
- Next customer chooses a table according to:

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}) \propto \begin{cases} n_k(\mathbf{Z}_{1:n}) & \text{if } k \le m = \max(\mathbf{Z}_{1:n}) \\ \alpha & \text{if } k = m+1 \end{cases}$$

Chinese Restaurant Process (2)

- Customer \rightarrow table mapping Z=1,1
- $P(z) = \alpha/\alpha \times 1/(1+\alpha)$
- Next customer chooses a table according to:

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}) \propto \begin{cases} n_k(\mathbf{Z}_{1:n}) & \text{if } k \le m = \max(\mathbf{Z}_{1:n}) \\ \alpha & \text{if } k = m+1 \end{cases}$$

Chinese Restaurant Process (3)

- Customer \rightarrow table mapping Z=1,1,2
- $P(z) = \alpha/\alpha \times 1/(1+\alpha) \times \alpha/(2+\alpha)$
- Next customer chooses a table according to:

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}) \propto \begin{cases} n_k(\mathbf{Z}_{1:n}) & \text{if } k \le m = \max(\mathbf{Z}_{1:n}) \\ \alpha & \text{if } k = m+1 \end{cases}$$

Chinese Restaurant Process (4)

- Customer \rightarrow table mapping $\mathbf{Z} = 1, 1, 2, 1$
- $P(z) = \alpha/\alpha \times 1/(1+\alpha) \times \alpha/(2+\alpha) \times 2/(3+\alpha)$
- Next customer chooses a table according to:

$$P(Z_{n+1} = k \mid \mathbf{Z}_{1:n}) \propto \begin{cases} n_k(\mathbf{Z}_{1:n}) & \text{if } k \le m = \max(\mathbf{Z}_{1:n}) \\ \alpha & \text{if } k = m+1 \end{cases}$$

Labeled Chinese Restaurant Process (0)

- Table \rightarrow label mapping $\mathbf{Y} =$
- Customer \rightarrow table mapping ${f Z}=$
- Output sequence $\mathbf{X} =$
- P(X) = 1
- Base distribution $P_0(Y)$ generates a label Y_k for each table k
- All customers sitting at table k (i.e., $Z_i = k$) share label Y_k
- Customer *i* sitting at table Z_i has label $X_i = Y_{Z_i}$

Labeled Chinese Restaurant Process (1)

- Table \rightarrow label mapping $\mathbf{Y} = \mathsf{fish}$
- Customer \rightarrow table mapping $\mathbf{Z} = 1$
- Output sequence $\mathbf{X} = \mathsf{fish}$
- $P(\mathbf{X}) = \alpha / \alpha \times P_0(fish)$
- Base distribution $P_0(Y)$ generates a label Y_k for each table k
- All customers sitting at table k (i.e., $Z_i = k$) share label Y_k
- Customer *i* sitting at table Z_i has label $X_i = Y_{Z_i}$

Labeled Chinese Restaurant Process (2)

- Table \rightarrow label mapping $\mathbf{Y} = \mathsf{fish}$
- Customer \rightarrow table mapping Z=1,1
- Output sequence $\mathbf{X} = \mathsf{fish},\mathsf{fish}$
- $P(X) = P_0(fish) \times 1/(1 + \alpha)$
- Base distribution $P_0(Y)$ generates a label Y_k for each table k
- All customers sitting at table k (i.e., $Z_i = k$) share label Y_k
- Customer *i* sitting at table Z_i has label $X_i = Y_{Z_i}$

Labeled Chinese Restaurant Process (3)

- Table \rightarrow label mapping $\mathbf{Y} = \mathsf{fish},\mathsf{apple}$
- Customer \rightarrow table mapping Z=1,1,2
- Output sequence $\mathbf{X} = fish, fish, apple$
- $P(\mathbf{X}) = P_0(fish) \times 1/(1 + \alpha) \times \alpha/(2 + \alpha)P_0(apple)$
- Base distribution $P_0(Y)$ generates a label Y_k for each table k
- All customers sitting at table k (i.e., $Z_i = k$) share label Y_k
- Customer *i* sitting at table Z_i has label $X_i = Y_{Z_i}$

Labeled Chinese Restaurant Process (4)

- Table \rightarrow label mapping $\mathbf{Y} = \mathsf{fish},\mathsf{apple}$
- Customer \rightarrow table mapping Z=1,1,2
- Output sequence $\mathbf{X} = \mathsf{fish},\mathsf{fish},\mathsf{apple},\mathsf{fish}$
- $P(X) = P_0(fish) \times 1/(1 + \alpha) \times \alpha/(2 + \alpha)P_0(apple) \times 2/(3 + \alpha)$
- Base distribution $P_0(Y)$ generates a label Y_k for each table k
- All customers sitting at table k (i.e., $Z_i = k$) share label Y_k
- Customer *i* sitting at table Z_i has label $X_i = Y_{Z_i}$

Summary: Chinese Restaurant Processes

- Chinese Restaurant Processes (CRPs) generalise Dirichlet-Multinomials to an *unbounded number of outcomes*
 - concentration parameter α controls how likely a new outcome is
 - CRPs exhibit a rich get richer power-law behaviour
- *Pitman-Yor Processes* (PYPs) generalise CRPs with an additional concentration parameter
 - this parameter specifies the asymptotic power-law behaviour
- Labeled CRPs use a base distribution to define distributions over arbitrary objects
 - base distribution "labels the tables"
 - base distribution can have infinite support
 - concentrates mass on a countable subset
 - ▶ power-law behaviour ⇒ Zipfian distributions

Nonparametric extensions of PCFGs

- Chinese restaurant processes are a nonparametric extension of Dirichlet-multinomials because the number of states (occupied tables) depends on the data
- Two obvious nonparametric extensions of PCFGs:
 - let the number of nonterminals grow unboundedly
 - split the nonterminals of a base grammar
 - e.g., $S_{35}~\rightarrow~NP_{27}~VP_{17}$
 - \Rightarrow infinite PCFG (Finkel et al 2007, Liang et al 2007)
 - Iet the number of rules grow unboundedly
 - "new" rules are compositions of several rules from base grammar
 - equivalent to caching tree fragments
 - \Rightarrow Adaptor grammars
- No reason both can't be done together ...

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes

Adaptor grammars

- Adaptor grammars for unsupervised word segmentation Synergies in learning syllables and words Adaptor grammars for Sesotho morphology Topic models and learning the referents of words
 - Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

Adaptor grammars: informal description

- The trees generated by an adaptor grammar are defined by CFG rules as in a CFG
- A subset of the nonterminals are *adapted*
- Unadapted nonterminals expand by picking a rule and recursively expanding its children, as in a PCFG
- Adapted nonterminals can expand in two ways:
 - by picking a rule and recursively expanding its children, or
 - by generating a previously generated tree (with probability proportional to the number of times previously generated)
- Implemented by having a CRP for each adapted nonterminal
- The CFG rules of the adapted nonterminals determine the *base distributions* of these CRPs

A CFG for stem-suffix morphology

 $\begin{array}{rrrr} \text{Word} & \to & \text{Stem Suffix} \\ \text{Stem} & \to & \text{Chars} \\ \text{Suffix} & \to & \text{Chars} \end{array}$

- Grammar's trees can represent any segmentation of words into stems and suffixes
- ⇒ Can *represent* true segmentation
 - But grammar's *units of generalization (PCFG rules) are "too small"* to learn morphemes

A "CFG" with one rule per possible morpheme

- A rule for each morpheme
 - \Rightarrow "PCFG" can represent probability of each morpheme
- Unbounded number of possible rules, so this is not a PCFG
 - not a practical problem, as only a finite set of rules could possibly be used in any particular data set

From PCFGs to Adaptor grammars

- An adaptor grammar is a PCFG where a subset of the nonterminals are *adapted*
- Adaptor grammar generative process:
 - ▶ to expand an *unadapted nonterminal B*: (just as in PCFG)
 - select a *rule* $B \to \beta \in R$ with prob. $\theta_{B \to \beta}$, and recursively expand nonterminals in β
 - to expand an *adapted nonterminal B*:
 - select a *previously generated subtree* T_B with prob. \propto number of times T_B was generated, or
 - select a *rule* $B \rightarrow \beta \in R$ with prob. $\propto \alpha_B \theta_{B \rightarrow \beta}$, and recursively expand nonterminals in β

Posterior samples from adaptor grammar

_

lpha= 0.1		$lpha=10^{-5}$		$\alpha = 10^{-10}$		$lpha=10^{-15}$		
expect		expect		expect		exp	ect	
expects		expect	S	expect	S	exp	ects	
expected		expect	ed	expect	ed	exp	ected	
expect	ing	expect	ing	expect	ing	exp	ecting	
include		includ	е	includ	е	includ	е	
include	S	includ	es	includ	es	includ	es	
included		includ	ed	includ	ed	includ	ed	
including		includ	ing	includ	ing	includ	ing	
add		add		add		add		
adds		add	S	add	S	add	S	
add	ed	add	ed	add	ed	add	ed	
adding		add	ing	add	ing	add	ing	
continue		continu	е	continu	е	continu	е	
continue	S	continu	es	continu	es	continu	es	
continu	ed	continu	ed	continu	ed	continu	ed	
continuing		continu	ing	continu	ing	continu	ing	
		report		repo	rt	rep	ort ₆₀	/130
Adaptor grammars as generative processes

- The sequence of trees generated by an adaptor grammar are *not* independent
 - it *learns* from the trees it generates
 - if an adapted subtree has been used frequently in the past, it's more likely to be used again
- but the sequence of trees is *exchangable* (important for sampling)
- An *unadapted nonterminal* A expands using $A \to \beta$ with probability $\theta_{A \to \beta}$
- Each adapted nonterminal A is associated with a CRP (or PYP) that caches previously generated subtrees rooted in A
- An *adapted nonterminal A* expands:
 - ► to a subtree T_A rooted in A with probability proportional to the number of times T_A was previously generated
 - using $A \rightarrow \beta$ with probability proportional to $\alpha_A \theta_{A \rightarrow \beta}$

Adaptor grammars as non-parametric PCFGs

- An adaptor grammar *reuses whole previously-generated subtrees* T_A of adapted nonterminals A
- This is equivalent to adding a rule $A \rightarrow w$ to the grammar, where w is the yield of T_A
- If the base CFG generates an *infinite number of trees* T_A for A, then the adaptor grammar is *non-parametric*
- But any set of sample parses for a *finite training corpus* only contains a *finite number of number of adapted subtrees*
 - ⇒ *sampling methods* (e.g., MCMC) are a natural approach to learning and parsing adaptor grammars
 - in implementation terms, an adaptor grammar is like a PCFG with a constantly changing set of rules

Properties of adaptor grammars

- Probability of reusing an adapted subtree $T_A \propto$ number of times T_A was previously generated
 - adapted subtrees are not independent
 - an adapted subtree can be *more probable* than the rules used to construct it
 - ▶ but they are *exchangable* ⇒ efficient sampling algorithms
 - ► "rich get richer" ⇒ Zipf power-law distributions
- Each adapted nonterminal is associated with a *Chinese Restaurant Process* or *Pitman-Yor Process*
 - CFG rules define base distribution of CRP or PYP
- CRP/PYP parameters (e.g., α_A) can themselves be estimated (e.g., slice sampling)

Bayesian hierarchy inverts grammatical hierarchy

- Grammatically, a Word is composed of a Stem and a Suffix, which are composed of Chars
- To generate a new Word from an Adaptor Grammar:
 - reuse an old Word, or
 - generate a fresh one from the base distribution, i.e., generate a Stem and a Suffix

• Lower in the tree \Rightarrow higher in Bayesian hierarchy

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

Unsupervised word segmentation

- Input: phoneme sequences with *sentence boundaries* (Brent)
- Task: identify word boundaries, and hence words

 $j _ u _ w _ a _ n _ t _ t _ u _ s _ i _ \delta _ a _ b _ \sigma _ k$ "you want to see the book"

• Ignoring phonology and morphology, this involves learning the pronunciations of the lexical items in the language

CFG models of word segmentation

Words \rightarrow Word Words \rightarrow Word Words Word \rightarrow Phons Phons \rightarrow Phon Phons \rightarrow Phon Phons Phon $\rightarrow a \mid b \mid \dots$

- CFG trees can *describe* segmentation, but
- PCFGs can't distinguish good segmentations from bad ones
 - PCFG rules are too small a unit of generalisation
 - need to learn e.g., probability that buk is a Word

k

Towards non-parametric grammars

Words \rightarrow Word Words \rightarrow Word Words Word \rightarrow all possible phoneme sequences

- Learn probability Word $\rightarrow b \ \sigma \ k$
- But infinitely many possible Word expansions
 ⇒ this grammar is not a PCFG
- Given *fixed training data*, only finitely many useful rules
 ⇒ use data to choose Word rules as well as their probabilities
- An adaptor grammar can do precisely this!

Words

Word

ð a

Words

Word

Unigram adaptor grammar (Brent) Words Words \rightarrow Word Word Words Words \rightarrow Word Words Phons Word Word \rightarrow Phons $Phons \rightarrow Phon$ Phon Phons Phons $Phons \rightarrow Phon Phons$ ð Phon Phon Phons h Phon Phons ə Word nonterminal is adapted Phon \Rightarrow To generate a Word: 15 select a previously generated Word subtree k with prob. \propto number of times it has been generated • expand using Word \rightarrow Phons rule with prob. $\propto \alpha_{Word}$ and recursively expand Phons

Unigram model of word segmentation

- Unigram "bag of words" model (Brent):
 - generate a *dictionary*, i.e., a set of words, where each word is a random sequence of phonemes
 - Bayesian prior prefers smaller dictionaries
 - generate each utterance by choosing each word at random from dictionary
- Brent's unigram model as an adaptor grammar:

- Accuracy of word segmentation learnt: 56% token f-score (same as Brent model)
- But we can construct many more word segmentation models using

Adaptor grammar learnt from Brent corpus

Initial grammar

- 1 $\mathsf{Words} \to \mathsf{Word} \mathsf{Words} \quad 1 \quad \mathsf{Words} \to \mathsf{Word}$
- Word \rightarrow Phon 1

1 Phon $\rightarrow D$

- $\mathsf{Phons} \to \mathsf{Phon} \; \mathsf{Phons} \qquad 1 \; \; \mathsf{Phons} \to \mathsf{Phon} \\$ 1
- - 1 Phon $\rightarrow G$
- 1 Phon $\rightarrow E$ 1 Phon $\rightarrow A$

• A grammar learnt from Brent corpus

- 16625 Words \rightarrow Word Words 9791 Words \rightarrow Word
 - 1575 Word \rightarrow Phons
 - 4962 Phons \rightarrow Phon Phons 1575 Phons \rightarrow Phon
 - 134 Phon $\rightarrow D$ 41 Phon $\rightarrow G$
 - 180 Phon $\rightarrow A$ 152 Phon $\rightarrow E$
 - 460 <u>Word</u> \rightarrow (Phons (Phon y) (Phons (Phon u)))
 - Word \rightarrow (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))) 446
 - Word \rightarrow (Phons (Phon D) (Phons (Phon 6))) 374
 - Word \rightarrow (Phons (Phon &) (Phons (Phon n) (Phons (Phon d)))

Undersegmentation errors with Unigram model

 $Words \rightarrow \underline{Word}^+ \qquad \underline{Word} \rightarrow Phon^+$

- Unigram word segmentation model assumes each word is generated independently
- But there are strong inter-word dependencies (collocations)
- Unigram model can only capture such dependencies by analyzing collocations as words (Goldwater 2006)

$\mathsf{Collocations} \Rightarrow \mathsf{Words}$

- A Colloc(ation) consists of one or more words
- Both <u>Words</u> and <u>Collocs</u> are adapted (learnt)
- Significantly improves word segmentation accuracy over unigram model (76% f-score; \approx Goldwater's bigram model)

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

Two hypotheses about language acquisition

- 1. Pre-programmed staged acquisition of linguistic components
 - ► Conventional view of *lexical acquisition*, e.g., Kuhl (2004)
 - child first learns the phoneme inventory, which it then uses to learn
 - phonotactic cues for word segmentation, which are used to learn
 - phonological forms of words in the lexicon, ...
- 2. Interactive acquisition of all linguistic components together
 - corresponds to *joint inference* for all components of language
 - stages in language acquisition might be due to:
 - child's input may contain more information about some components
 - some components of language may be learnable with less data

Synergies: an advantage of interactive learning

- An *interactive learner* can take advantage of *synergies in acquisition*
 - partial knowledge of component A provides information about component B
 - partial knowledge of component B provides information about component A
- A staged learner can only take advantage of one of these dependencies
- An interactive or *joint learner* can benefit from a positive feedback cycle between A and B
- Are there synergies in *learning how to segment words* and *learning the referents of words*?

Jointly learning words and syllables

 $\begin{array}{lll} \mbox{Sentence} \rightarrow \mbox{Colloc}^+ & \mbox{Colloc} \rightarrow \mbox{Word}^+ \\ \hline \mbox{Word} \rightarrow \mbox{Syllable}^{\{1:3\}} & \mbox{Syllable} \rightarrow \mbox{(Onset)} \mbox{ Rhyme} \\ \hline \mbox{Onset} \rightarrow \mbox{Consonant}^+ & \mbox{Rhyme} \rightarrow \mbox{Nucleus} \mbox{(Coda)} \\ \hline \mbox{Nucleus} \rightarrow \mbox{Vowel}^+ & \mbox{Coda} \rightarrow \mbox{Consonant}^+ \end{array}$

• Rudimentary syllable model (an improved model might do better)

• With 2 Collocation levels, f-score = 84%

Distinguishing internal onsets/codas helps

 $\begin{array}{l} \mathsf{Sentence} \to \mathsf{Colloc}^+ \\ \underline{\mathsf{Word}} \to \mathsf{SyllableIF} \\ \underline{\mathsf{Word}} \to \mathsf{SyllableI} \ \mathsf{SyllableSyllableF} \\ \underline{\mathsf{Onsetl}} \to \mathsf{Consonant}^+ \\ \underline{\mathsf{Nucleus}} \to \mathsf{Vowel}^+ \end{array}$

 $\begin{array}{l} \underline{Colloc} \rightarrow \mathsf{Word}^+ \\ \underline{\mathsf{Word}} \rightarrow \mathsf{Syllablel} \ \mathsf{SyllableF} \\ \mathsf{SyllableIF} \rightarrow \mathsf{(OnsetI)} \ \mathsf{RhymeF} \\ \mathsf{RhymeF} \rightarrow \mathsf{Nucleus} \ \mathsf{(CodaF)} \\ \underline{\mathsf{CodaF}} \rightarrow \mathsf{Consonant}^+ \end{array}$

- With 2 Collocation levels, not distinguishing initial/final clusters, f-score = 84%
- With 3 <u>Colloc</u>ation levels, distinguishing initial/final clusters, f-score = 87%

$\mathsf{Collocations}^2 \Rightarrow \mathsf{Words} \Rightarrow \mathsf{Syllables}$

Summary of English word segmentation

• Word segmentation accuracy depends on the kinds of generalisations learnt.

Generalization	Accuracy
words as units (unigram)	56%
+ associations between words (collocations)	76%
+ syllable structure	84%
+ interaction between	
segmentation and syllable structure	87%

- Synergies in learning words and syllable structure
 - joint inference permits the learner to *explain away* potentially misleading generalizations

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

The Sesotho corpus

- Sesotho is a Bantu language spoken in southern Africa
- Orthography is (roughly) phonemic
 - \Rightarrow use orthographic forms as broad phonemic representations
- Rich agglutinative morphology (especially in verbs)

u- e- nk- il- e kae SM-OM-take-PERF-IN where "You took it from where?"

- The Demuth Sesotho corpus (1992) contains transcripts of child and child-directed speech
- We used a subset of size roughly comparable to Brent corpus of infant-directed speech

	Brent	Demuth
utterances	9,790	8,503
word tokens	33,399	30,200
phonemes	95,809	100,113

Sesotho verbs are morphologically complex

u- e- nk- il- e kae SM-OM-take-PERF-IN where "You took it from where?"

Input:

$$u{\scriptstyle\scriptscriptstyle \vartriangle} e{\scriptstyle\scriptscriptstyle \vartriangle} n{\scriptstyle\scriptscriptstyle \vartriangle} k{\scriptstyle\scriptscriptstyle \backsim} i{\scriptstyle\scriptscriptstyle \circlearrowright} l{\scriptstyle\scriptscriptstyle \circlearrowright} e{\scriptstyle\scriptscriptstyle \backsim} k{\scriptstyle\scriptscriptstyle \backsim} a{\scriptstyle\scriptscriptstyle \circlearrowright} e$$

• What I'd like to be able to learn eventually:

Unigram segmentation grammar - word

u- e- nk- il- e kae SM-OM-take-PERF-IN where "You took it from where?"

 $\frac{\text{Sentence} \rightarrow \text{Word}^+}{\underline{\text{Word}} \rightarrow \text{Phon}^+}$

- The word grammar has a word segmentation f-score of 43%
- Lower than 56% f-score on the Brent corpus.
- Sesotho words are longer and more complex.

Collocation grammar – colloc

 $\begin{array}{l} \mathsf{Sentence} \to \mathsf{Colloc}^+ \\ \underline{\mathsf{Colloc}} \to \mathsf{Word}^+ \\ \underline{\mathsf{Word}} \to \mathsf{Phon}^+ \end{array}$

- Learning Collocations improves word segmentation in English; will it help in Sesotho?
- If we treat lower-level units as Words, f-score = 27%
- If we treat upper-level units as Words, f-score = 48%
- English improves by learning dependencies above words, but Sesotho improves by learning generalizations below words

Adding more levels – colloc2

u- e- nk- il- e kae SM-OM-take-PERF-IN where "You took it from where?"

- If two levels are good, maybe three would be better?
- Word segmentation f-score drops to 47%
- Doesn't seem to be much value in adding dependencies above Word level in Sesotho

Using syllable structure – word-syll

u- e- nk- il- e kae SM-OM-take-PERF-IN where "You took it from where?"

 $\begin{array}{l} \mathsf{Sentence} \to \mathsf{Word}^+ \\ \underline{\mathsf{Word}} \to \mathsf{Syll}^+ \\ \underline{\mathsf{Syll}} \to (\mathsf{Onset}) \, \mathsf{Nuc} \, (\mathsf{Coda}) \\ \underline{\mathsf{Syll}} \to \mathsf{SC} \\ \overline{\mathsf{Onset}} \to \mathsf{C}^+ \\ \mathsf{Nuc} \to \mathsf{V}^+ \\ \mathsf{Coda} \to \mathsf{C}^+ \end{array}$

- SC (syllablic consonants) are 'l', 'm' 'n' and 'r'
- Word segmentation f-score = 50%
- Assuming that words are composed of syllables does improve Sesotho word segmentation

Using syllable structure – colloc-syll

u- e- nk- il- e kae SM-OM-take-PERF-IN where "You took it from where?"

 $\begin{array}{l} \mathsf{Sentence} \to \mathsf{Colloc}^+ \\ \underline{\mathsf{Colloc}} \to \mathsf{Word}^+ \\ \underline{\mathsf{Syll}} \to (\mathsf{Onset}) \, \mathsf{Nuc} \, (\mathsf{Coda}) \\ \underline{\mathsf{Syll}} \to \mathsf{SC} \\ \overline{\mathsf{Onset}} \to \mathsf{C}^+ \\ \mathsf{Nuc} \to \mathsf{V}^+ \\ \mathsf{Coda} \to \mathsf{C}^+ \end{array}$

- Word segmentation f-score = 48%
- Additional collocation level doesn't help

Morpheme positions – word-morph

u- e- nk- il- e kae SM-OM-take-PERF-IN where "You took it from where?"

> Sentence \rightarrow Word⁺ <u>Word</u> \rightarrow T1 (T2 (T3 (T4 (T5)))) <u>T1</u> \rightarrow Phon⁺ <u>T2</u> \rightarrow Phon⁺ <u>T3</u> \rightarrow Phon⁺ <u>T4</u> \rightarrow Phon⁺ T5 \rightarrow Phon⁺

• Each word consists of 1–5 morphemes

MACOUARIE

- Learn separate morphemes for each position
- Improves word segmentation f-score to 53%

Building in language-specific information – word-smorph

u-e-nk-il-e kae SM-OM-take-PERF-IN where "You took it from where?" Sentence \rightarrow Word⁺ Word \rightarrow (P1 (P2 (P3))) T (S) $P1 \rightarrow Phon^+$ $P2 \rightarrow Phon^+$ $P3 \rightarrow Phon^+$ $T \rightarrow Phon^+$ $S \rightarrow Phon^+$

- In Sesotho many words consist of a stem <u>T</u>, an optional suffix <u>S</u> and up to 3 prefixes <u>P1, P2</u> and <u>P3</u>
- Achieves highest f-score = 56%

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

Prior work: mapping words to referents

- Input to learner:
 - word sequence: Is that the pig?
 - objects in nonlinguistic context: DOG, PIG
- Learning objectives:
 - identify utterance topic: PIG
 - ▶ identify word-topic mapping: pig → PIG

Frank et al (2009) "topic models" as PCFGs

- Prefix sentences with *possible topic marker*, e.g., PIG|DOG
- PCFG rules *choose a topic* from topic marker and *propagate it through sentence*
- Each word is either generated from sentence topic or null topic Ø

- Grammar can require at most one topical word per sentence
- Bayesian inference for PCFG rules and trees corresponds to Bayesian inference for word and sentence topics using topic model (Johnson 2010)

Word segmentation with adaptor grammars

- Adaptor grammars (AGs) can learn the probability of entire subtrees (as well as rules)
- AGs can express several different word segmentation models
- Learning collocations as well as words significantly improves segmentation accuracy

```
\begin{array}{l} \text{Sentence} \rightarrow \underline{\text{Colloc}}^+ \\ \underline{\text{Colloc}} \rightarrow \underline{\text{Word}}^+ \\ \underline{\text{Word}} \rightarrow \text{Phon}^+ \end{array}
```


AGs for joint segmentation and referent-mapping

- Combine topic-model PCFG with word segmentation AGs
- Input consists of unsegmented phonemic forms prefixed with possible topics:

PIG DOG IZ ðæt ð p Ig

Collocation topic model AG

- Collocations are either "topical" or not
- Easy to modify this grammar so
 - at most one topical word per sentence, or
 - at most one topical word per topical collocation

Experimental set-up

• Input consists of unsegmented phonemic forms prefixed with possible topics:

PIG DOG I z ð æ t ð ə p I g

- Child-directed speech corpus collected by Fernald et al (1993)
- Objects in visual context annotated by Frank et al (2009)
- Bayesian inference for AGs using MCMC (Johnson et al 2009)
 - Uniform prior on PYP *a* parameter
 - ▶ "Sparse" Gamma(100, 0.01) on PYP b parameter
- For each grammar we ran 8 MCMC chains for 5,000 iterations
 - collected word segmentation and topic assignments at every 10th iteration during last 2,500 iterations
 - \Rightarrow 2,000 sample analyses per sentence
 - computed and evaluated the modal (i.e., most frequent) sample analysis of each sentence

Does non-linguistic context help segmentation?

Model		word segmentation
segmentation	topics	token f-score
unigram	not used	0.533
unigram	any number	0.537
unigram	one per sentence	0.547
collocation	not used	0.695
collocation	any number	0.726
collocation	one per sentence	0.719
collocation	one per collocation	0.750

- Not much improvement with unigram model
 - consistent with results from Jones et al (2010)
- Larger improvement with collocation model
 - most gain with one topical word per topical collocation (this constraint cannot be imposed on unigram model)

Does better segmentation help topic identification?

• Task: identify object (if any) *this sentence* is about

Model		sentence referent	
segmentation	topics	accuracy	f-score
unigram	not used	0.709	0
unigram	any number	0.702	0.355
unigram	one per sentence	0.503	0.495
collocation	not used	0.709	0
collocation	any number	0.728	0.280
collocation	one per sentence	0.440	0.493
collocation	one per collocation	0.839	0.747

• The collocation grammar with *one topical word per topical collocation* is the only model clearly better than baseline

Does better segmentation help learning word-to-referent mappings?

 Task: identify *head nouns* of NPs referring to topical objects (e.g. pig → PIG in input PIG | DOG I zðætðəpIg)

Model		topical word
segmentation	topics	f-score
unigram	not used	0
unigram	any number	0.149
unigram	one per sentence	0.147
collocation	not used	0
collocation	any number	0.220
collocation	one per sentence	0.321
collocation	one per collocation	0.636

• The collocation grammar with one topical word per topical collocation is best at identifying head nouns of referring NPs

Summary of segmentation and word-to-referent mappings

- Word to object mapping is learnt more accurately when words are segmented more accurately
 - improving segmentation accuracy improves topic detection and acquisition of topical words
- Word segmentation accuracy improves when exploiting non-linguistic context information
 - incorporating word-topic mapping improves segmentation accuracy (at least with collocation grammars)
- ⇒ There are synergies a learner can exploit when learning word segmentation and word-object mappings
 - Caveat: results seem to depend on details of model
 - Models limited by ability to simulate "feature-passing" in a PCFG

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars
- Conclusion

LDA topic models

- LDA topic models are *admixture models* of documents
 - topics are assigned to words (not sentences or documents)
- An LDA topic model learns:
 - the topics expressed in a document
 - the words characteristic of a topic
- Each topic *i* is a distribution over words ϕ_i
- Each document j has a *distribution* θ_j over topics
- To generate document *j*:
 - for each word position in document:
 - choose a topic z according to θ_i , and then
 - choose a word belonging to that topic according to ϕ_z
- "Sparse priors" on ϕ and heta
 - \Rightarrow most documents have few topics
 - \Rightarrow most topics have few words

LDA topic models as Bayes nets

$$\begin{array}{lll} \phi_i & \sim & \mathrm{Dir}(\beta) & i = 1, \ldots, \ell = \text{number of topics} \\ \theta_j & \sim & \mathrm{Dir}(\alpha) & j = 1, \ldots, m = \text{number of documents} \\ z_{j,k} & \sim & \theta_j & j = 1, \ldots, m \\ & & & k = 1, \ldots, n = \text{number of words in a document} \\ w_{j,k} & \sim & \phi_{z_{j,k}} & j = 1, \ldots, m \\ & & & k = 1, \ldots, n \end{array}$$

LDA topic models as PCFGs (1)

• Prefix strings from document *j* with a *document identifier* "_*i*"

LDA topic models as PCFGs (2)

• Spine propagates document id up through tree

LDA topic models as PCFGs (3)

• $Doc_i \rightarrow Topic_i$ rules map *documents to topics*

LDA topic models as PCFGs (4)

• Topic_i $\rightarrow w$ rules map *topics to words*

Topic model with collocations

• Combines PCFG topic model and segmentation adaptor grammar

Finding topical collocations in NIPS abstracts

- Run topical collocation adaptor grammar on NIPS corpus
- Run with $\ell = 20$ topics (i.e., 20 distinct Topic_i nonterminals)
- Corpus is segmented by punctuation
 - terminal strings are fairly short
 - \Rightarrow inference is fairly efficient
- Used standard AG implementation
 - Pitman-Yor adaptors
 - sampled Pitman-Yor a and b parameters
 - ▶ flat and "vague Gamma" priors on Pitman-Yor *a* and *b* parameters

Sample output on NIPS corpus, 20 topics

- Multiword subtrees learned by adaptor grammar:
 - $T_0 \rightarrow gradient \ descent$
 - $T_0 \to cost \ function$
 - $T_0 \rightarrow fixed \ point$
 - $T_0 \rightarrow learning \ rates$
 - $T_3 \rightarrow \text{membrane potential}$
 - $T_3 \rightarrow action \ potentials$
 - $T_3 \rightarrow visual \; system$
 - $T_3 \rightarrow$ primary visual cortex
- Sample skeletal parses:

- $\mathsf{T}_1 \to \mathsf{associative\ memory}$
- $T_1 \rightarrow \text{standard deviation}$
- $T_1 \rightarrow randomly \ chosen$
- $T_1 \rightarrow hamming \ distance$
- $T_10 \rightarrow ocular \ dominance$
 - $T_10 \rightarrow visual \ field$
 - $T_10 \rightarrow nervous \; system$
 - $T_10 \rightarrow action \ potential$

_3 (T_5 polynomial size) (T_15 threshold circuits)
_4 (T_11 studied) (T_19 pattern recognition algorithms)
_4 (T_2 feedforward neural network) (T_1 implements)
_5 (T_11 single) (T_10 ocular dominance stripe) (T_12 low)
(T_3 ocularity) (T_12 drift rate)

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars

Conclusion

What do we have to learn?

- To learn an adaptor grammar, we need:
 - probabilities of grammar rules
 - adapted subtrees and their probabilities for adapted non-terminals
- If we knew the true parse trees for a training corpus, we could:
 - read off the adapted subtrees from the corpus
 - count rules and adapted subtrees in corpus
 - compute the rule and subtree probabilities from these counts
 - simple computation (smoothed relative frequencies)
- If we aren't given the parse trees:
 - there can be *infinitely many* possible adapted subtrees
 - \Rightarrow can't track the probability of all of them (as in EM)
 - but sample parses of a finite corpus only include finitely many
- Sampling-based methods learn the relevant subtrees as well as their weights

A Gibbs sampler for learning adaptor grammars

- Gibbs sampling for learning adaptor grammars
 - Assign (random) parse trees to each sentence, and compute rule and subtree counts
 - Repeat forever:
 - pick a sentence (and corresponding parse) at random
 - deduct the counts for the sentence's parse from current rule and subtree counts
 - sample a parse for sentence according to updated grammar
 - add sampled parse's counts to rule and subtree counts
- Sampled parse trees and grammar converges to Bayesian posterior distribution

Sampling parses from an adaptor grammar

- Sampling a parse tree for a sentence is computationally most demanding part of learning algorithm
- Component-wise Metropolis-within-Gibbs sampler for parse trees:
 - adaptor grammar rules and probabilities change on the fly
 - construct PCFG proposal grammar from adaptor grammar for previous sentences
 - sample a parse from PCFG proposal grammar
 - use accept/reject to convert samples from proposal PCFG to samples from adaptor grammar
- For particular adaptor grammars, there are often more efficient algorithms

Details about sampling parses

- Adaptor grammars are not context-free
- The probability of a rule (and a subtree) can change within a single sentence
 - breaks standard dynamic programming

- But with moderate or large corpora, the probabilities don't change by much
 - use Metropolis-Hastings accept/reject with a PCFG proposal distribution
- Rules of PCFG proposal grammar $G'(\mathbf{t}_{-j})$ consist of:
 - rules $A \rightarrow \beta$ from base PCFG: $\theta'_{A \rightarrow \beta} \propto \alpha_A \theta_{A \rightarrow \beta}$
 - A rule $A \rightarrow \text{YIELD}(t)$ for each table t in A's restaurant: $\theta'_{A \rightarrow \text{YIELD}(t)} \propto n_t$, the number of customers at table t
- Map parses using $G'(\mathbf{t}_{-j})$ back to adaptor grammar parses

Random vs incremental initialization

- The Gibbs sampler parse trees t needs to be initialized somehow Random initialization: Assign each string x_i a random parse t_i generated by base PCFG Incremental initialization: Sample t_i from P(t | x_i, t_{1:i-1})
- Incremental initialization is easy to implement in a Gibbs sampler
- Incremental initialization improves token f-score in all models, especially on simple models

Model	Random	Incremental
unigram	56%	81%
colloc	76%	86%
colloc-syll	87%	89%

but see caveats on next slide!

Incremental initialization produces low-probability parses

Why incremental initialization produces low-probability parses

- Incremental initialization produces sample parses t with lower probability $\mathrm{P}(t\mid \textbf{x})$
- Possible explanation: (Goldwater's 2006 analysis of Brent's model)
 - All the models tend to *undersegment* (i.e., find collocations instead of words)
 - Incremental initialization greedily searches for common substrings
 - Shorter strings are more likely to be recurr early than longer ones

Table label resampling

- Each adapted non-terminal has a CRP with tables labelled with parses
- "Rich get richer" \Rightarrow resampling a sentence's parse reuses the same cached subtrees
- Resample table labels as well sentence parses
 - A table label may be used in many sentence parses
 - ⇒ Resampling a single table label may change the parses of a single sentence
 - ⇒ table label resampling can improve mobility with grammars with a hierarchy of adapted non-terminals
- Essential for grammars with a complex hierarchical structure

Table label resampling example

Label on table in Chinese Restaurant for colloc

Resulting changes in parse trees

Table label resampling produces much higher-probability parses

Summary: learning adaptor grammars

- Unbounded number of possible cached subtrees ⇒ Expectation Maximisation isn't sufficient
- Gibbs sampler batch learning algorithm
 - assign every sentence a (random) parse
 - repeatedly cycle through training sentences:
 - withdraw parse (decrement counts) for sentence
 - sample parse for current sentence and update counts
 - Metropolis-Hastings correction

Outline

- Context-free grammars
- Probabilistic context-free grammars
- Learning rule probabilities
- Chinese Restaurant Processes
- Adaptor grammars
- Adaptor grammars for unsupervised word segmentation
- Synergies in learning syllables and words
- Adaptor grammars for Sesotho morphology
- Topic models and learning the referents of words
- Learning collocations in LDA topic models
- Bayesian inference for adaptor grammars

Conclusion

Conclusions and future work

- Adaptor grammars can express a variety of useful HDP models
 - generic AG inference code makes it easy to explore a variety of models
- AGs have a variety of applications
 - unsupervised acquisition of morphology
 - unsupervised word segmentation
 - learning word to referent mappings
 - learning collocations in topic models
- *Joint learning* often uses information in the input more effectively than staged learning
- Future work:
 - extend expressive power of AGs (e.g., feature-passing)
 - richer data (e.g., more non-linguistic context)
 - more realistic data (e.g., stress, phonological variation)

The future of Bayesian models of language acquisition

- So far our grammars and priors don't encode much linguistic knowledge, but in principle they can!
 - how do we represent this knowledge?
 - how can we learn efficiently using this knowledge?
- Should permit us to *empirically investigate effects of specific universals on the course of language acquisition*
- My guess: the interaction between innate knowledge and learning will be *richer and more interesting* than either the rationalists or empiricists currently imagine!

Interested in statistical models, machine learning and computational linguistics?

Macquarie University is recruiting PhD students and post-docs!

Contact Mark.Johnson@mq.edu.au for more information.

Context-free grammars

A context-free grammar (CFG) consists of:

- a finite set N of *nonterminals*,
- a finite set W of *terminals* disjoint from N,
- a finite set R of *rules* $A \rightarrow \beta$, where $A \in N$ and $\beta \in (N \cup W)^*$
- a start symbol $S \in N$.

Each $A \in N \cup W$ generates a set \mathcal{T}_A of trees.

These are the smallest sets satisfying:

- If $A \in W$ then $\mathcal{T}_A = \{A\}$.
- If $A \in N$ then:

$$\mathcal{T}_A = \bigcup_{A \to B_1 \dots B_n \in R_A} \operatorname{TREE}_A(\mathcal{T}_{B_1}, \dots, \mathcal{T}_{B_n})$$

where $R_A = \{A \rightarrow \beta : A \rightarrow \beta \in R\}$, and

$$\mathrm{TREE}_{A}(\mathcal{T}_{B_{1}},\ldots,\mathcal{T}_{B_{n}}) = \left\{ \begin{matrix} A \\ \vdots \\ t_{1} \cdots t_{n} \end{matrix} : \begin{array}{c} t_{i} \in \mathcal{T}_{B_{i}}, \\ i = 1, \ldots, n \end{matrix} \right\}$$

 $\mathcal{T}_{S}^{\text{CQUARIE}}$ trees generated by a CFG is \mathcal{T}_{S} .

Probabilistic context-free grammars

A *probabilistic context-free grammar* (PCFG) is a CFG and a vector θ , where:

- $\theta_{A \to \beta}$ is the probability of expanding the nonterminal A using the production $A \to \beta$.
- It defines distributions G_A over trees \mathcal{T}_A for $A \in \mathbb{N} \cup \mathbb{W}$:

$$G_A = \begin{cases} \delta_A & \text{if } A \in W \\ \sum_{A \to B_1 \dots B_n \in R_A} \theta_{A \to B_1 \dots B_n} TD_A(G_{B_1}, \dots, G_{B_n}) & \text{if } A \in N \end{cases}$$

where δ_A puts all its mass onto the singleton tree A, and:

$$\mathrm{TD}_{\mathcal{A}}(G_1,\ldots,G_n)\left(\stackrel{\mathcal{A}}{\overbrace{t_1\ldots t_n}}\right) = \prod_{i=1}^n G_i(t_i).$$

 $TD_A(G_1, \ldots, G_n)$ is a distribution over \mathcal{T}_A where each subtree t_i is generated independently from G_i .

DP adaptor grammars

An adaptor grammar (G, θ, α) is a PCFG (G, θ) together with a parameter vector α where for each $A \in N$, α_A is the parameter of the Dirichlet process associated with A.

$$\begin{aligned} G_A &\sim & \mathrm{DP}(\alpha_A, H_A) & \text{if } \alpha_A > 0 \\ &= & H_A & \text{if } \alpha_A = 0 \end{aligned}$$

$$H_{A} = \sum_{A \to B_1 \dots B_n \in R_A} \theta_{A \to B_1 \dots B_n} TD_A(G_{B_1}, \dots, G_{B_n})$$

The grammar generates the distribution G_S .

One Dirichlet Process for each adapted non-terminal A (i.e., $\alpha_A > 0$).

