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The drunk under the lamppost

Late one night, a drunk guy is crawling around under a
lamppost. A cop comes up and asks him what he’s doing.

“I’m looking for my keys,” the drunk says. “I lost them
about three blocks away.”

“So why aren’t you looking for them where you dropped
them?” the cop asks.

The drunk looks at the cop, amazed that he’d ask so
obvious a question. “Because the light is so much better
here.”

2/102



Ideas behind talk

.

Statistical methods have revolutionized computational
linguistics and cognitive science

.

But most successful learning methods are parametric
I learn values of a fixed number of parameters

.

Non-parametric Bayesian methods learn the parameters

.

Adaptor Grammars learn probability of each adapted subtree
I c.f., data-oriented parsing

.

“Rich get richer” learning rule ⇒ Zipf distributions

.

Applications of Adaptor Grammars:
I acquisition of concatenative morphology
I word segmentation and lexical acquisition
I topic models and learning the referents of words
I learning collocations in LDA topic models

.

Sampling (instead of EM) is a natural approach to Adaptor
Grammar inference
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Language acquisition as Bayesian inference

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

.

Likelihood measures how well grammar describes data

.

Prior expresses knowledge of grammar before data is seen
I can be very specific (e.g., Universal Grammar)
I can be very general (e.g., prefer shorter grammars)

.

Posterior is a distribution over grammars
I captures learner’s uncertainty about which grammar is correct

.

Language learning is non-parametric inference
I no (obvious) bound on number of words, grammatical

morphemes, etc
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Probabilistic context-free grammars

.

Probabilistic context-free grammars (PCFGs) define probability
distributions over trees

.

Each nonterminal node expands by
I choosing a rule expanding that nonterminal, and
I recursively expanding any nonterminal children it contains

.

Probability of tree is product of probabilities of rules used to
construct it

Probability θr Rule r
1 S → NP VP
0.7 NP → Sam
0.3 NP → Sandy
1 VP → V NP
0.8 V → likes
0.2 V → hates

.

.

S

.

NP

.

VP

.

Sam

.

V

.

NP

.

likes

.

Sandy

P(Tree) = 1 × 0.7 × 1 × 0.8 × 0.3
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Learning syntactic structure is hard

.

Bayesian PCFG estimation works well on toy data

.

Results are disappointing on “real” data
I wrong data?
I wrong rules?

– rules in PCFG must be given a priori
can we learn them too?

.

Strategy: study simpler cases
I Morphological segmentation (e.g., walking = walk+ing)
I Word segmentation of unsegmented utterances
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A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

.

.
Word

.
Stem

.
Chars

.
Char

.
t.

Chars

.
Char

.
a.

Chars

.
Char

.
l.

Chars

.
Char

.
k

.
Suϫx

.
Chars

.
Char

.
i.

Chars

.
Char

.
n.

Chars

.
Char

.
g.

Chars

.
Char

.
#

.

Grammar’s trees can
represent any segmentation
of words into stems and
suffixes

⇒ Can represent true
segmentation

.

But grammar’s units of
generalization (PCFG
rules) are “too small” to
learn morphemes
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A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

.

.

Word

.

Stem

.

t
.

a
.

l
.

k .

Suϫx

.

i
.

n
.

g
.

#

.

.

Word

.

Stem

.

j
.

u
.

m
.

p .

Suϫx

.

#

.

A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

.

Unbounded number of possible rules, so this is not a PCFG
I not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

9/102



Maximum likelihood estimate for θ is trivial

.

Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

.

Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

.

Maximum likelihood estimate does not find any suffixes

.

.

Word

.

Stem

.

t

.

a

.

l

.

k

.

i

.

n

.

g

.

Suϫx

.

#
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Forcing generalization via sparse priors

.

Idea: use Bayesian prior that prefers fewer rules

.

Set of rules is fixed in standard PCFG estimation,
but can “turn rule off” by setting θA→β ≈ 0

.

Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)
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Morphological segmentation experiment

.

Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

.

Uniform Dirichlet prior prefers sparse solutions as α → 0

.

Gibbs sampler samples from posterior distribution of parses
I reanalyses each word based on parses of the other words
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Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report
reports report s report s report s

reported reported reported reported
reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsiz e downsiz e

downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted
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Log posterior for models on token data

-1.2e+06

-1e+06

-800000

 1e-20  1e-10  1
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g 
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 | 
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Dirichlet prior parameter α

Null suffixes
True suffixes

Posterior

.

Correct solution is nowhere near as likely as posterior
⇒ model is wrong!
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Relative frequencies of inflected verb forms
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Types and tokens

.

A word type is a distinct word shape

.

A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

.

Estimating θ from word types rather than word tokens
eliminates (most) frequency variation

I 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g# ≈ 0.25

.

Several psycholinguists believe that humans learn morphology
from word types

.

Adaptor grammar mimics Goldwater et al “Interpolating
between Types and Tokens” morphology-learning model
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Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted
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Log posterior of models on type data

-400000
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lo
g 

P(
Pa

rs
es

 | 
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Optimal suffixes

.

Correct solution is close to optimal at α = 10−3
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Desiderata for an extension of PCFGs

.

PCFG rules are “too small” to be effective units of
generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

.

Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

I context-free rules generate types
I another process replicates types to produce tokens

.

Adaptor grammars:
I learn probability of entire subtrees (how a nonterminal expands

to terminals)
I use grammatical hierarchy to define a Bayesian hierarchy, from

which type-based inference naturally emerges
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Bayesian inference for Dirichlet-multinomials

.

Probability of next event with uniform Dirichlet prior with
mass α over m outcomes and observed data Z1:n = (Z1, . . . , Zn)

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

where nk(Z1:n) is number of times k appears in Z1:n

.

Example: Coin (m = 2), α = 1, Z1:2 = (heads, heads)
I P(Z3 = heads | Z1:2, α) ∝ 2.5
I P(Z3 = tails | Z1:2, α) ∝ 0.5
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Dirichlet-multinomials with many outcomes

.

Predictive probability:

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

.

Suppose the number of outcomes m � n. Then:

P(Zn+1 = k | Z1:n, α) ∝


nk(Z1:n) if nk(Z1:n) > 0

α/m if nk(Z1:n) = 0

.

But most outcomes will be unobserved, so:

P(Zn+1 6∈ Z1:n | Z1:n, α) ∝ α
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From Dirichlet-multinomials to Chinese

Restaurant Processes

.

Suppose number of outcomes is unbounded
but we pick the event labels

.

If we number event types in order of occurrence
⇒ Chinese Restaurant Process

Z1 = 1

P(Zn+1 = k | Z1:n, α) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (0)

.

.

.

. . .

. .
.
.

.

Customer → table mapping Z =

.

P(z) = 1

.

Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (1)

.

.

.α

.

.

.

. .

. .
.
.

.

Customer → table mapping Z = 1

.

P(z) = α/α

.

Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (2)

.

.

.1

. .

.

.α

. .

. .
.
.

.

Customer → table mapping Z = 1, 1

.

P(z) = α/α × 1/(1 + α)

.

Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (3)

.

.

.2

. .

.

.α

.

.

.

.

. .
.
.

.

Customer → table mapping Z = 1, 1, 2

.

P(z) = α/α × 1/(1 + α) × α/(2 + α)

.

Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (4)

.

.

.2

. .
.

.

.1

.

.

.α

.

. .
.
.

.

Customer → table mapping Z = 1, 1, 2, 1

.

P(z) = α/α × 1/(1 + α) × α/(2 + α) × 2/(3 + α)

.

Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Labeled Chinese Restaurant Process (0)

.

.

.

. . .

. .
.
.

.

Table → label mapping Y =

.

Customer → table mapping Z =

.

Output sequence X =

.

P(X) = 1

.

Base distribution P0(Y ) generates a label Yk for each table k

.

All customers sitting at table k (i.e., Zi = k) share label Yk

.

Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (1)

.

.fish

.α

.

.

.

. .

. .
.
.

.

Table → label mapping Y = fish

.

Customer → table mapping Z = 1

.

Output sequence X = fish

.

P(X) = α/α × P0(fish)

.

Base distribution P0(Y ) generates a label Yk for each table k

.

All customers sitting at table k (i.e., Zi = k) share label Yk

.

Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (2)

.

.fish

.1

. .

.

.α

. .

. .
.
.

.

Table → label mapping Y = fish

.

Customer → table mapping Z = 1, 1

.

Output sequence X = fish,fish

.

P(X) = P0(fish) × 1/(1 + α)

.

Base distribution P0(Y ) generates a label Yk for each table k

.

All customers sitting at table k (i.e., Zi = k) share label Yk

.

Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (3)

.

.fish

.2

. .

.apple

.α

.

. .

. .
.
.

.

Table → label mapping Y = fish,apple

.

Customer → table mapping Z = 1, 1, 2

.

Output sequence X = fish,fish,apple

.

P(X) = P0(fish) × 1/(1 + α) × α/(2 + α)P0(apple)

.

Base distribution P0(Y ) generates a label Yk for each table k

.

All customers sitting at table k (i.e., Zi = k) share label Yk

.

Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (4)

.

.fish

.2

. .
.

.apple

.1

.

.

.α

.

. .
.
.

.

Table → label mapping Y = fish,apple

.

Customer → table mapping Z = 1, 1, 2

.

Output sequence X = fish,fish,apple,fish

.

P(X) = P0(fish) × 1/(1 + α) × α/(2 + α)P0(apple) × 2/(3 + α)

.

Base distribution P0(Y ) generates a label Yk for each table k

.

All customers sitting at table k (i.e., Zi = k) share label Yk

.

Customer i sitting at table Zi has label Xi = YZi
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Summary: Chinese Restaurant Processes

.

Chinese Restaurant Processes (CRPs) generalise
Dirichlet-Multinomials to an unbounded number of outcomes

I concentration parameter α controls how likely a new outcome is
I CRPs exhibit a rich get richer power-law behaviour

.

Pitman-Yor Processes (PYPs) generalise CRPs with an
additional concentration parameter

I this parameter specifies the asymptotic power-law behaviour

.

Labeled CRPs use a base distribution to define distributions over
arbitrary objects

I base distribution “labels the tables”
I base distribution can have infinite support
I concentrates mass on a countable subset
I power-law behaviour ⇒ Zipfian distributions
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Nonparametric extensions of PCFGs

.

Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied
tables) depends on the data

.

Two obvious nonparametric extensions of PCFGs:
I let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG
I let the number of rules grow unboundedly

– “new” rules are compositions of several rules from original
grammar

– equivalent to caching tree fragments
⇒ adaptor grammars

.

No reason both can’t be done together
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Adaptor grammars: informal description

.

The trees generated by an adaptor grammar are defined by
CFG rules as in a CFG

.

A subset of the nonterminals are adapted

.

Unadapted nonterminals expand by picking a rule and
recursively expanding its children, as in a PCFG

.

Adapted nonterminals can expand in two ways:
I by picking a rule and recursively expanding its children, or
I by generating a previously generated tree (with probability

proportional to the number of times previously generated)

.

Implemented by having a CRP for each adapted nonterminal

.

The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs
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From PCFGs to Adaptor grammars

.

An adaptor grammar is a PCFG where a subset of the
nonterminals are adapted

.

Adaptor grammar generative process:
I to expand an unadapted nonterminal B: (just as in PCFG)

– select a rule B → β ∈ R with prob. θB→β , and
recursively expand nonterminals in β

I to expand an adapted nonterminal B:
– select a previously generated subtree TB

with prob. ∝ number of times TB was generated, or
– select a rule B → β ∈ R with prob. ∝ αB θB→β , and

recursively expand nonterminals in β
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Adaptor grammar for stem-suffix morphology

Word → Stem Suffix
Stem → Phons
Suffix → Phons
Phons → Phon
Phons → Phon Phons

or in abbreviated form with
non-adapted nonterminals suppressed

.

.

Word

.

Stem

.

Phons

.

Phon

.

t

.

Phons

.

Phon

.

a

.

Phons

.

Phon

.

l

.

Phons

.

Phon

.

k

.

Suϫx

.

Phons

.

Phon

.

i

.

Phons

.

Phon

.

n

.

Phons

.

Phon

.

g

.

Phons

.

Phon

.

#

Word → Stem Suffix
Stem → Phon+

Suffix → Phon+

.

.

Word

.

Stem

.

t

.

a

.

l

.

k

.

Suϫx

.

i

.

n

.

g

.

#
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Adaptor grammar for stem-suffix morphology (0)

.

.Word → Stem Suffix
. . .

. .
.
.

.Stem → Phoneme+
. . .

.Suffix → Phoneme⋆ . . .

. .
.
.

Generated words:
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Adaptor grammar for stem-suffix morphology (1a)

.

.Word → Stem Suffix
.

.

. .

. .
.
.

.Stem → Phoneme+
. . .

.Suffix → Phoneme⋆ . . .

. .
.
.

Generated words:
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Adaptor grammar for stem-suffix morphology (1b)

.

.Word → Stem Suffix
.

.

. .

. .
.
.

.Stem → Phoneme+
.

.

. .

.Suffix → Phoneme⋆ .

.

. .

. .
.
.

Generated words:
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Adaptor grammar for stem-suffix morphology (1c)

.

.Word → Stem Suffix
.

.

. .

. .
.
.

.Stem → Phoneme+

.
Stem

c a t

.

. .

.Suffix → Phoneme⋆

.
Suffix

s

.

. .

. .
.
.

Generated words:
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Adaptor grammar for stem-suffix morphology (1d)

.

.Word → Stem Suffix .

Word

Stem

c a t

Suffix

s

.

. .

. .
.
.

.Stem → Phoneme+

.
Stem

c a t

.

. .

.Suffix → Phoneme⋆

.
Suffix

s

.

. .

. .
.
.

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2a)

.

.Word → Stem Suffix .

Word

Stem

c a t

Suffix

s

.

.

.

.

. .
.
.

.Stem → Phoneme+

.
Stem

c a t

.

. .

.Suffix → Phoneme⋆

.
Suffix

s

.

. .

. .
.
.

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2b)

.

.Word → Stem Suffix .

Word

Stem

c a t

Suffix

s

.

.

.

.

. .
.
.

.Stem → Phoneme+

.
Stem

c a t

.

.

.

.

.Suffix → Phoneme⋆

.
Suffix

s

. .

. .

. .
.
.

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2c)

.

.Word → Stem Suffix .

Word

Stem

c a t

Suffix

s

.

.

.

.

. .
.
.

.Stem → Phoneme+

.
Stem

c a t

.

.
Stem

d o g

.

.

.Suffix → Phoneme⋆

.
Suffix

s

. .

. .

. .
.
.

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2d)

.

.Word → Stem Suffix .

Word

Stem

c a t

Suffix

s

.

.

Word

Stem

d o g

Suffix

s

.

.

. .
.
.

.Stem → Phoneme+

.
Stem

c a t

.

.
Stem

d o g

.

.

.Suffix → Phoneme⋆

.
Suffix

s

. .

. .

. .
.
.

Generated words: cats, dogs
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Adaptor grammar for stem-suffix morphology (3)

.

.Word → Stem Suffix .

Word

Stem

c a t

Suffix

s

. .

.

Word

Stem

d o g

Suffix

s

.

.

. .
.
.

.Stem → Phoneme+

.
Stem

c a t

.

.
Stem

d o g

.

.

.Suffix → Phoneme⋆

.
Suffix

s

. .

. .

. .
.
.

Generated words: cats, dogs, cats
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Adaptor grammars as generative processes

.

The sequence of trees generated by an adaptor grammar are not
independent

I it learns from the trees it generates
I if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

.

but the sequence of trees is exchangable (important for
sampling)

.

An unadapted nonterminal A expands using A → β with
probability θA→β

.

Each adapted nonterminal A is associated with a CRP (or
PYP) that caches previously generated subtrees rooted in A

.

An adapted nonterminal A expands:
I to a subtree τ rooted in A with probability proportional to the

number of times τ was previously generated
I using A → β with probability proportional to αAθA→β
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Properties of adaptor grammars

.

Probability of regenerating an adapted subtree TB

∝ number of times TB was previously generated
I adapted subtrees are not independent

– an adapted subtree can be more probable than the rules
used to construct it

I but they are exchangable ⇒ efficient sampling algorithms
I “rich get richer” ⇒ Zipf power-law distributions

.

Each adapted nonterminal is associated with a
Chinese Restaurant Process or Pitman-Yor Process

I CFG rules define base distribution of CRP or PYP

.

CRP/PYP parameters (e.g., αB) can themselves be estimated
(e.g., slice sampling)
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Bayesian hierarchy inverts grammatical hierarchy

.

Grammatically, a Word is
composed of a Stem and a
Suffix, which are composed
of Chars

.

To generate a new Word
from an Adaptor Grammar:

I reuse an old Word, or
I generate a fresh one

from the base
distribution, i.e.,
generate a Stem and a
Suffix

.

.

Word .

Stem .

Chars .

Char .

t

.

Chars .

Char .

a

.

Chars .

Char .

l

.

Chars .

Char .

k

.

Suϫx .

Chars .

Char .

i

.

Chars .

Char .

n

.

Chars .

Char .

g

.

Chars .

Char .

#

.

Lower in the tree ⇒ higher in Bayesian hierarchy
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Unsupervised word segmentation

.

Input: phoneme sequences with sentence boundaries (Brent)

.

Task: identify word boundaries, and hence words

j M u N w M ɑ M n M t N t M u N s M i N ð M ə N b M ʊ M k
“you want to see the book”

.

Useful cues for word segmentation:
I Phonotactics (Fleck)
I Inter-word dependencies (Goldwater)
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CFG models of word segmentation

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
Phon → a | b | . . .

.

CFG trees can describe
segmentation, but

.

PCFGs can’t distinguish good
segmentations from bad ones

I PCFG rules are too small a unit of generalisation
I need to learn e.g., probability that bʊk is a Word

.

.

Words .

Word .

Phons .

Phon .

ð

.

Phons .

Phon .

ə

.

Words .

Word .

Phons .

Phon .

b

.

Phons .

Phon .

ʊ

.

Phons .

Phon .

k
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Towards non-parametric grammars

Words → Word
Words → Word Words
Word → all possible phoneme sequences

.

Learn probability Word → b ʊ k

.

But infinitely many possible Word expansions

⇒ this grammar is not a PCFG

.

.
Words

.
Word

.
ð

.
ə

.
Words

.
Word

.
b

.
ʊ

.
k

.

Given fixed training data, only finitely many useful rules

⇒ use data to choose Word rules as well as their probabilities

.

An Adaptor Grammar can do precisely this!
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Unigram adaptor grammar (Brent)

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons

.

.

Words

.

Word

.

Phons

.

Phon

.

ð

.

Phons

.

Phon

.

ə

.

Words

.

Word

.

Phons

.

Phon

.

b

.

Phons

.

Phon

.

ʊ

.

Phons

.

Phon

.

k

.

Word nonterminal is adapted

⇒ To generate a Word:
I select a previously generated Word subtree

with prob. ∝ number of times it has been generated
I expand using Word → Phons rule with prob. ∝ αWord

and recursively expand Phons
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Unigram model of word segmentation

.

Unigram “bag of words” model (Brent):
I generate a dictionary, i.e., a set of words, where each word is a

random sequence of phonemes
– Bayesian prior prefers smaller dictionaries

I generate each utterance by choosing each word at random from
dictionary

.

Brent’s unigram model as an Adaptor Grammar

Words → Word+

Word → Phoneme+

.

.

Words

.

Word

.

j

.

u

.

Word

.

w

.

ɑ

.

n

.

t

.

Word

.

t

.

u

.

Word

.

s

.

i

.

Word

.

ð

.

ə

.

Word

.

b

.

ʊ

.

k

.

Accuracy of word segmentation learnt: 56% token f-score
(same as Brent model)

.

But we can construct many more word segmentation models
using AGs
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Adaptor grammar learnt from Brent corpus

.

Initial grammar

1 Words → WordWords 1 Words → Word
1 Word → Phon
1 Phons → PhonPhons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

.

A grammar learnt from Brent corpus

16625 Words → WordWords 9791 Words → Word
1575 Word → Phons
4962 Phons → Phon Phons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))
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Undersegmentation errors with Unigram model

Words → Word+ Word → Phon+

.

Unigram word segmentation model assumes each word is
generated independently

.

But there are strong inter-word dependencies (collocations)

.

Unigram model can only capture such dependencies by
analyzing collocations as words (Goldwater 2006)

.

.

Words

.

Word

.

t

.

ɛi

.

k

.

Word

.

ð

.

ə

.

d

.

ɑ

.

g

.

i

.

Word

.

ɑu

.

t

.

.

Words

.

Word

.

j

.

u

.

w

.

ɑ

.

n

.

t

.

t

.

u

.

Word

.

s

.

i

.

ð

.

ə

.

Word

.

b

.

ʊ

.

k
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Collocations ⇒ Words

Sentence → Colloc+

Colloc → Word+

Word → Phon+

.

.

Sentence

.

Colloc

.

Word

.

j
.

u .

Word

.

w
.

ɑ
.

n
.

t
.

t
.

u

.

Colloc

.

Word

.

s
.

i

.

Colloc

.

Word

.

ð
.

ə.

Word

.

b
.

ʊ
.

k

.

A Colloc(ation) consists of one or more words

.

Both Words and Collocs are adapted (learnt)

.

Significantly improves word segmentation accuracy over
unigram model (74% f-score; ≈ Goldwater’s bigram model)
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Collocations ⇒ Words ⇒ Syllables
Sentence → Colloc+ Colloc → Word+

Word → Syllable{1:3} Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+

.

.

Sentence

.

Colloc

.

Word

.

Onset

.

l
.

Nucleus

.

ʊ
.

Coda

.

k .

Word

.

Nucleus

.

æ
.

Coda

.

t
.

Colloc

.

Word

.

Onset

.

ð
.

Nucleus

.

ɪ
.

Coda

.

s

.

Rudimentary syllable model (an improved model might do
better)

.

With 2 Collocation levels, f-score = 84%
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Distinguishing internal onsets/codas helps
Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF SyllableIF → (OnsetI) RhymeF
OnsetI → Consonant+ RhymeF → Nucleus (CodaF)
Nucleus → Vowel+ CodaF → Consonant+

.

.

Sentence

.

Colloc

.

Word

.

OnsetI

.

h

.

Nucleus

.

æ

.

CodaF

.

v .

Colloc

.

Word

.

Nucleus

.

ə
.

Word

.

OnsetI

.

d

.

r

.

Nucleus

.

ɪ

.

CodaF

.

ŋ

.

k

.

With 2 Collocation levels, not distinguishing initial/final
clusters, f-score = 84%

.

With 3 Collocation levels, distinguishing initial/final clusters,
f-score = 87%
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Collocations2 ⇒ Words ⇒ Syllables

.

.

Sentence

.

Colloc2

.

Colloc

.

Word

.

OnsetI

.

g.

Nucleus

.

ɪ.

CodaF

.

v

.

Word

.

OnsetI

.

h.

Nucleus

.

ɪ.

CodaF

.

m

.

Colloc

.

Word

.

Nucleus

.

ə

.

Word

.

OnsetI

.

k.

Nucleus

.

ɪ.

CodaF

.

s

.

Colloc2

.

Colloc

.

Word

.

Nucleus

.

o

.

Word

.

OnsetI

.

k.

Nucleus

.

e
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Summary of English word segmentation

.

Word segmentation accuracy depends on the kinds of
generalisations learnt.

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 79%
+ syllable structure 87%

.

Word segmentation accuracy improves when you learn other
things as well

I explain away potentially misleading generalizations
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Tone in Mandarin Chinese word segmentation

.

Tone in Mandarin Chinese provides an additional dimension of
information to the language learner

.

It is necessary in order to distinguish lexical items, but how
important is it for word segmentation?

.

Approach:
I construct a pair of otherwise identical corpora, one that

contains tone and one that does not
I run identical learning algorithms on both corpora
I compare the accuracy with which each learns word

segmentation
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Mandarin Chinese corpus

.

Used Tardif (1993) Beijing corpus (in Pinyin format)
I deleted all Child utterances, and utterances with codes

$INTERJ, $UNINT, $VOC and $PRMPT
I corpus contains 50,118 utterances, 187,533 word tokens

zen3me gei3 ta1 bei1 shang4 lai2 (1.) ?
ta1: (.) a1yi2 gei3 de (.) ta1 gei3 de .
hen3 jian3dan1 .

.

Used Pinyin to IPA translation program to produce IPA:
tsən214mɤ kei214 tʰa55 pei55 ʂɑŋ51 lai35

tʰa55 a55i35 kei214 tɤ tʰa55 kei214 tɤ
xən214 tɕiɛn214tan55

.

Moved tones from end of syllable to preceding vowel
ts ə 214 n m ɤ k e i 214 tʰ a 55 p e i 55 ʂ ɑ 51 ŋ l ai 35

tʰ a 55 a 55 i 35 k e i 214 t ɤ tʰ a 55 k e i 214 t ɤ
x ə 214 n tɕ iɛ 214 n t a 55 n

.

(Optionally delete tones)
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Unigram word segmentation adaptor grammar

Words → Words Word
Words → Word
Word → Phons
Phons → Phon
Phons → Phons Phon
Phons → Phons Tone
Phon → ai | t | . . .
Tone → 35 | 55 | 214 | . . .

.

.

Words

.

Words

.

Word

.

Phons

.

Phons

.

Phons

.

Phon

.

p .

Phon

.

u .

Tone

.

35

.

Word

.

Phons

.

Phons

.

Phons

.

Phons

.

Phon

.

kʰ .

Phon

.

a .

Tone

.

51 .

Phon

.

n
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Collocation adaptor grammars

.

Adaptor grammars with one level of collocation:

Collocs → Colloc+ Colloc → Words
Words → Word+

.

Adaptor grammars with two levels of collocation:

Colloc2s → Colloc2+ Colloc2 → Collocs+

Collocs → Colloc+ Colloc → Words
Words → Word+

.

We experiment with up to three collocation levels here

70/102



Syllable structure adaptor grammars

.

No distinction between word-internal and word-peripheral
syllables

Word → Syll Word → Syll Syll
Word → Syll Syll Syll Word → Syll Syll Syll Syll
Syll → (Onset)? Rhy Onset → C+

Rhy → Nucleus (Coda)? Nucleus → V (V | Tone)⋆

Coda → C+ C → | t | . . .
V → ai | o | . . .

.

Distinguishing word-internal and word-peripheral syllables

Word → SyllIF Word → SyllI SyllF
Word → SyllI Syll SyllF Word → SyllI Syll Syll SyllF
SyllIF → (OnsetI)? RhyF SyllI → (OnsetI)? Rhy
SyllF → (OnsetI)? RhyF Syll → (Onset)? Rhy
OnsetI → C+ RhyF → Nucleus (CodaF)?

CodaF → C+
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Mandarin Chinese word segmentation results

.

Word segmentation accuracy when input contains tones
Syllables

None General Specialised
Unigram 0.57 0.50 0.50
Colloc 0.69 0.67 0.67
Colloc2 0.72 0.75 0.75
Colloc3 0.64 0.77 0.77

.

Word segmentation accuracy when tones are removed from
input

Syllables
None General Specialised

Unigram 0.56 0.46 0.46
Colloc 0.70 0.65 0.65
Colloc2 0.74 0.74 0.73
Colloc3 0.75 0.76 0.77
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Comparable English results

.

English word segmentation results

Syllables
None General Specialised

Unigram 0.56 0.46 0.46
Colloc 0.74 0.67 0.66
Colloc2 0.79 0.84 0.84
Colloc3 0.74 0.82 0.87
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Discussion of Mandarin Chinese word

segmentation results

.

Mandarin Chinese word segmentation results broadly consistent
with English results

I unigram segmentation accuracies are similiar
I results for other models are lower than corresponding English

results

.

General improvement in accuracy as number of collocation
levels increases

.

Caveats: the English and Mandarin Chinese corpora are not
directly comparable

I Discourse context for Mandarin Chinese corpus was far more
diverse than for English corpus

I Mandarin Chinese children were older than English children
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Syllable structure and word segmentation

.

Syllable structure and phonotactic constraints are very useful
for English word segmentation, but are much less useful in
Mandarin Chinese

I perhaps surprising, because Mandarin Chinese has a very
regular syllable structure

I but perhaps this very predictability makes it less useful for
identifying words?

I not surprising that distinguishing word-peripheral syllables
does not help, as Mandarin Chinese does not distinguish these
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Tone and word segmentation

.

Tones only have a small impact on segmentation accuracy
I surprising, as they are required for lexical disambiguation
I tones make a small improvement to simpler models (Unigram,

Colloc) but no improvement with the more complex ones
– perhaps tone is redundant given the inter-word context

modelled by the Colloc2−3 grammars?

.

Perhaps there’s a better way to represent tones in the input, or
use tones in the model?

I Neutral tones more common on function words — perhaps this
can improve segmentation accuracy?

I Tone sandhi may give information about phonological word
boundaries
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Two hypotheses about language acquisition

1. Pre-programmed staged acquisition of linguistic components
I Conventional view of lexical acquisition, e.g., Kuhl (2004)

– child first learns the phoneme inventory, which it then uses
to learn

– phonotactic cues for word segmentation, which are used to
learn

– phonological forms of words in the lexicon,

2. Interactive acquisition of all linguistic components together
I corresponds to joint inference for all components of language
I stages in language acquisition might be due to:

– child’s input may contain more information about some
components

– some components of language may be learnable with less
data
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Synergies: an advantage of interactive learning

.

An interactive learner can take advantage of synergies in
acquisition

I partial knowledge of component A provides information about
component B

I partial knowledge of component B provides information about
component A

.

A staged learner can only take advantage of one of these
dependencies

.

An interactive or joint learner can benefit from a positive
feedback cycle between A and B

.

Are there synergies in learning how to segment words and
learning the referents of words?
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Prior work: mapping words to referents

.

Input to learner:
I word sequence: Is that the pig?
I objects in nonlinguistic context: dog, pig

.

Learning objectives:
I identify utterance topic: pig
I identify word-topic mapping: pig 7→ pig
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Frank et al (2009) “topic models” as PCFGs

.

Prefix sentences with possible
topic marker, e.g., pig|dog

.

PCFG rules choose a topic
from topic marker and
propagate it through sentence

.

Each word is either generated
from sentence topic or null
topic ∅

.

.

Sentence .

Topicpig .

Topicpig .

Topicpig .

Topicpig .

Topicpig .

pig|dog

.

Word∅ .

is

.

Word∅ .

that

.

Word∅ .

the

.

Wordpig .

pig

.

Grammar can require at most one topical word per sentence

.

Bayesian inference for PCFG rules and trees corresponds to
Bayesian inference for word and sentence topics using topic
model (Johnson 2010)
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Word segmentation with adaptor grammars

.

Adaptor grammars (AGs) can learn the probability of entire
subtrees (as well as rules)

.

AGs can express several different word segmentation models

.

Learning collocations as well as words significantly improves
segmentation accuracy

Sentence → Colloc+

Colloc → Word+

Word → Phon+

.

.

Sentence

.

Colloc

.

Word

.

ɪ

.

z

.

Word

.

ð

.

æ

.

t

.

Colloc

.

Word

.

ð

.

ə

.

Word

.

p

.

ɪ

.

g
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AGs for joint segmentation and referent-mapping

.

Combine topic-model PCFG with word segmentation AGs

.

Input consists of unsegmented phonemic forms prefixed with
possible topics:

pig|dog ɪ z ð æ t ð ə p ɪ g

.

E.g., combination of Frank “topic model”
and unigram segmentation model

I equivalent to Jones et al (2010)

.

Easy to define other
combinations of topic
models and
segmentation models

.

.

Sentence

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig

.

pig|dog

.

Word∅

.

ɪ

.

z .

Word∅

.

ð

.

æ

.

t .

Word∅

.

ð

.

ə .

Wordpig

.

p

.

ɪ

.

g
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Collocation topic model AG

.

.

Sentence.

Topicpig.

Topicpig.

Topicpig.

pig|dog

.

Colloc∅.

Word∅.

ɪ

.

z

.

Word∅.

ð

.

æ

.

t

.

Collocpig.

Word∅.

ð

.

ə

.

Wordpig.

p

.

ɪ

.

g

.

Collocations are either “topical” or not

.

Easy to modify this grammar so
I at most one topical word per sentence, or
I at most one topical word per topical collocation
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Experimental set-up

.

Input consists of unsegmented phonemic forms prefixed with
possible topics:

pig|dog ɪ z ð æ t ð ə p ɪ g
I Child-directed speech corpus collected by Fernald et al (1993)
I Objects in visual context annotated by Frank et al (2009)

.

Bayesian inference for AGs using MCMC (Johnson et al 2009)
I Uniform prior on PYP a parameter
I “Sparse” Gamma(100, 0.01) on PYP b parameter

.

For each grammar we ran 8 MCMC chains for 5,000 iterations
I collected word segmentation and topic assignments at every

10th iteration during last 2,500 iterations
⇒ 2,000 sample analyses per sentence

I computed and evaluated the modal (i.e., most frequent) sample
analysis of each sentence
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Does non-linguistic context help segmentation?
Model word segmentation

segmentation topics token f-score
unigram not used 0.533
unigram any number 0.537
unigram one per sentence 0.547

collocation not used 0.695
collocation any number 0.726
collocation one per sentence 0.719
collocation one per collocation 0.750

.

Not much improvement with unigram model
I consistent with results from Jones et al (2010)

.

Larger improvement with collocation model
I most gain with one topical word per topical collocation

(this constraint cannot be imposed on unigram model)
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Does better segmentation help topic

identification?

.

Task: identify object (if any) this sentence is about

Model sentence referent
segmentation topics accuracy f-score

unigram not used 0.709 0
unigram any number 0.702 0.355
unigram one per sentence 0.503 0.495

collocation not used 0.709 0
collocation any number 0.728 0.280
collocation one per sentence 0.440 0.493
collocation one per collocation 0.839 0.747

.

The collocation grammar with one topical word per topical
collocation is the only model clearly better than baseline
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Does better segmentation help learning

word-to-referent mappings?

.

Task: identify head nouns of NPs referring to topical objects
(e.g. pɪg 7→ pig in input pig | dog ɪ z ð æ t ð ə p ɪ g)

Model topical word
segmentation topics f-score

unigram not used 0
unigram any number 0.149
unigram one per sentence 0.147

collocation not used 0
collocation any number 0.220
collocation one per sentence 0.321
collocation one per collocation 0.636

.

The collocation grammar with one topical word per topical
collocation is best at identifying head nouns of referring NPs
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Summary of segmentation and word-to-referent

mappings

.

Word to object mapping is learnt more accurately when words
are segmented more accurately

I improving segmentation accuracy improves topic detection and
acquisition of topical words

.

Word segmentation accuracy improves when exploiting
non-linguistic context information

I incorporating word-topic mapping improves segmentation
accuracy (at least with collocation grammars)

⇒ There seem to be synergies a learner could exploit when learning
word segmentation and word-object mappings

I Caveat: results seem to depend on details of model

.

Complexity of models limited by ability to “pass features” in a
PCFG

I future work: extend the AG framework to permit
“feature-passing”
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LDA topic models

.

LDA topic models are admixture models of documents
I topics are assigned to words (not sentences or documents)

.

An LDA topic model learns:
I the topics expressed in a document
I the words characteristic of a topic

.

Each topic i is a distribution over words φi

.

Each document j has a distribution θj over topics

.

To generate document j:
I for each word position in document:

– choose a topic z according to θj , and then
– choose a word belonging to that topic according to φz

.

“Sparse priors” on φ and θ
⇒ most documents have few topics
⇒ most topics have few words
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LDA topic models as Bayes nets

φi ∼ Dir(β) i = 1, . . . , ℓ = number of topics
θj ∼ Dir(α) j = 1, . . . ,m = number of documents

zj,k ∼ θj j = 1, . . . ,m
k = 1, . . . , n = number of words in a document

wj,k ∼ φzj,k
j = 1, . . . ,m

k = 1, . . . , n

WZθα

φβ

n m

ℓ
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LDA topic models as PCFGs (1)

.

Prefix strings from document j with a document identifier “ j”

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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LDA topic models as PCFGs (2)

.

Spine propagates document id up through tree

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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LDA topic models as PCFGs (3)

.

Docj → Topici rules map documents to topics

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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LDA topic models as PCFGs (4)

.

Topici → w rules map topics to words

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ V

Sentence

Doc3'

Doc3'

Doc3'

Doc3'

Doc3'

_3

Doc3

Topic4

shallow

Doc3

Topic4

circuits

Doc3

Topic4

compute

Doc3

Topic7

faster
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Topic model with collocations

.

Combines PCFG topic model and segmentation adaptor
grammar

Sentence → Docj j ∈ 1, . . . ,m
Docj → j j ∈ 1, . . . ,m
Docj → Docj Topici i ∈ 1, . . . , ℓ;

j ∈ 1, . . . ,m
Topici → Words i ∈ 1, . . . , ℓ

Words → Word
Words → Words Word
Word → w w ∈ V

Sentence

Doc3

Doc3

Doc3

_3

Topic5

Words

Words

Word

polynomial

Word

size

Topic15

Words

Words

Word

threshold

Word

circuits
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Finding topical collocations in NIPS abstracts

.

Run topical collocation adaptor grammar on NIPS corpus

.

Run with ℓ = 20 topics (i.e., 20 distinct Topici nonterminals)

.

Corpus is segmented by punctuation
I terminal strings are fairly short
⇒ inference is fairly efficient

.

Used standard AG implementation
I Pitman-Yor adaptors
I sampled Pitman-Yor a and b parameters
I flat and “vague Gamma” priors on Pitman-Yor a and b

parameters
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Sample output on NIPS corpus, 20 topics

.

Multiword subtrees learned by adaptor grammar:
T 0 → gradient descent T 1 → associative memory
T 0 → cost function T 1 → standard deviation
T 0 → fixed point T 1 → randomly chosen
T 0 → learning rates T 1 → hamming distance
T 3 → membrane potential T 10 → ocular dominance
T 3 → action potentials T 10 → visual field
T 3 → visual system T 10 → nervous system
T 3 → primary visual cortex T 10 → action potential

.

Sample skeletal parses:
3 (T 5 polynomial size) (T 15 threshold circuits)
4 (T 11 studied) (T 19 pattern recognition algorithms)
4 (T 2 feedforward neural network) (T 1 implements)
5 (T 11 single) (T 10 ocular dominance stripe) (T 12 low)

(T 3 ocularity) (T 12 drift rate)
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Conclusions and future work

.

Adaptor Grammars can express a variety of useful HDP models
I generic AG inference code makes it easy to explore models

.

AGs have a variety of applications
I unsupervised acquisition of morphology
I unsupervised word segmentation
I learning word to referent mappings
I learning collocations in topic models

.

Future work:
I extend expressive power of AGs (e.g., feature-passing)
I richer data (e.g., more non-linguistic context)
I more realistic data (e.g., phonological variation)
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Interested in statistical models,
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Macquarie University is recruiting
PhD students and post-docs!
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