
Synergies in learning syllables and words

or

Adaptor grammars:

a class of nonparametric Bayesian models

Mark Johnson
Brown University

Joint work with Sharon Goldwater and Tom Griffiths

NECPHON, November, 2008

1 / 26

Research goals

• Most learning methods learn values of fixed set of parameters
Can we learn units of generalization (rules) as well?

◮ non-parametric Bayesian inference
◮ Adaptor grammars

• Word segmentation and lexical acquisition (Brent 1996, 1999)

Example: y u w a n t t u s i D 6 b u k

Things we might want to learn: words, syllables, collocations

• What regularities are useful for learning words and syllables?

◮ Learning words, collocations and syllables simultaneously
is better than learning them separately

⇒ there are powerful synergies in acquisition

2 / 26

Brief survey of related work

• Segmenting words and morphemes at conditional probability
minima (Harris 1955, Saffran et al 1996)

• Bayesian unigram model of word segmentation (Brent 1996,
1999)

• Bigram model of word segmentation (Goldwater et al 2006)

• Syllables as basis for segmentation (Swingley 2005; Yang 2004)

• Using phonotactic cues for word segmentation (Blanchard et al
2008; Fleck 2008)

• Modelling syllable structure with PCFGs (Müller 2002,
Goldwater et al 2005)

3 / 26

Outline

Adaptor grammars and nonparametric Bayesian models of learning

Learning syllables, words and collocations

Learning syllabification with adaptor grammars

Conclusions and future work

4 / 26

Unigram word segmentation adaptor grammar
• Input is unsegmented broad phonemic transcription

Example: y u w a n t t u s i D 6 b u k
• Word is adapted ⇒ reuses previously generated words

Words → Word+

Word → Phoneme+

Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

“You want to see the book”

Words

Word

h & v

Word

6

Word

d

Word

r I N k

“Have a drink”

• Unigram word segmentation on Brent corpus: 55% token f-score
5 / 26

Adaptor grammars: informal description

• Adaptor grammars learn the units of generalization

• An adaptor grammar has a set of CFG rules

• These determine the possible tree structures, as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and
recursively expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:

◮ by picking a rule and recursively expanding its children, or
◮ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Potential generalizations are all possible subtrees of adapted
nonterminals, but only those actually used are learned

6 / 26

Adaptor grammars as generative processes

• An unadapted nonterminal A expands using A → β with
probability θA→β

• An adapted nonterminal A expands:

◮ to a subtree τ rooted in A with probability proportional to
the number of times τ was previously generated

◮ using A → β with probability proportional to αAθA→β

• Zipfian “rich-get-richer” power law dynamics

• Full disclosure:

◮ also learn base grammar PCFG rule probabilities θA→β

◮ use Pitman-Yor adaptors (which discount frequency of
adapted structures)

◮ learn the parameters (e.g., αA) associated with adaptors

7 / 26

The basic learning algorithm is simple

• Integrated parsing/learning algorithm:

◮ Certain structures (words, syllables) are adapted or
memorized

◮ Algorithm counts how often each adapted structure
appears in previous parses

◮ Chooses parse for next sentence with probability
proportional to parse’s probability

◮ Probability of an adapted structure is proportional to:

– number of times structure was generated before
– plus α times probability of generating structure from

base distribution (PCFG rules)

• Why does this work?

(cool math about Bayesian inference)

8 / 26

Adaptor grammar learnt from Brent corpus
• Initial grammar

1 Sentence → Word Sentence 1 Sentence → Word
100 Word → Phons

1 Phons → Phon Phons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

• A grammar learnt from Brent corpus

16625 Sentence → Word Sentence 9791 Sentence → Word
100 Word → Phons

4962 Phons → Phon Phons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))

9 / 26

Non-parametric Bayesian inference

Words → Word+ Word → Phoneme+

• Parametric model ⇒ finite, prespecified parameter vector

• Non-parametric model ⇒ parameters chosen based on data

• Bayesian inference relies on Bayes rule:

P(Grammar | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Grammar)
︸ ︷︷ ︸

Likelihood

P(Grammar)
︸ ︷︷ ︸

Prior

• Likelihood measures how well grammar describes data

• Prior expresses knowledge of grammar before data is seen
◮ base PCFG specifies prior in adaptor grammars

• Posterior is distribution over grammars
◮ expresses uncertainty about which grammar is correct
◮ sampling is a natural way to characterize posterior

10 / 26

Algorithms for learning adaptor grammars
• Naive integrated parsing/learning algorithm:

◮ sample a parse for next sentence
◮ count how often each adapted structure appears in parse

• Sampling parses addresses exploration/exploitation dilemma

• First few sentences receive random segmentations
⇒ this algorithm does not optimally learn from data

• Gibbs sampler batch learning algorithm
◮ assign every sentence a (random) parse
◮ repeatedly cycle through training sentences:

– withdraw parse (decrement counts) for sentence
– sample parse for current sentence and update counts

• Particle filter online learning algorithm
◮ Learn different versions (“particles”) of grammar at once
◮ For each particle sample a parse of next sentence
◮ Keep/replicate particles with high probability parses

11 / 26

Outline

Adaptor grammars and nonparametric Bayesian models of learning

Learning syllables, words and collocations

Learning syllabification with adaptor grammars

Conclusions and future work

12 / 26

Unigram model often finds collocations

Sentence → Word+ Word → Phoneme+

• Unigram word segmentation model assumes each word is
generated independently

• But there are strong inter-word dependencies (collocations)
• Unigram model can only capture such dependencies by

analyzing collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k
13 / 26

Modelling collocations reduces undersegmentation

Sentence → Colloc+ Colloc → Word+ Word → Phoneme+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words
◮ poor approximation to syntactic/semantic dependencies

• Both Words and Collocs are adapted (learnt)
◮ learns collocations without being told what the words are

• Significantly improves word segmentation accuracy over
unigram model (75% f-score; ≈ Goldwater’s bigram model)

• Two levels of Collocations improves slightly (76%)
14 / 26

Syllables + Collocations + Word segmentation

Sentence → Colloc+ Colloc → Word+

Word → Syllable Word → Syllable Syllable
Word → Syllable Syllable Syllable Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+

Sentence

Colloc

Word

Onset

l

Nucleus

U

Coda

k

Word

Nucleus

&

Coda

t

Colloc

Word

Onset

D

Nucleus

I

Coda

s

• With no supra-word generalizations, f-score = 68%
• With 2 Collocation levels, f-score = 82%

15 / 26

Distinguishing internal onsets/codas helps

Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF SyllableIF → (OnsetI) RhymeF
OnsetI → Consonant+ RhymeF → Nucleus (CodaF)
Nucleus → Vowel+ CodaF → Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• Without distinguishing initial/final clusters, f-score = 82%
• Distinguishing initial/final clusters, f-score = 84%

16 / 26

Syllables + 2-level Collocations + Word

segmentation

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

17 / 26

Outline

Adaptor grammars and nonparametric Bayesian models of learning

Learning syllables, words and collocations

Learning syllabification with adaptor grammars

Conclusions and future work

18 / 26

Syllabification learnt by adaptor grammars

• Grammar has no reason to prefer to parse word-internal
intervocalic consonants as onsets

1 Syllable → Onset Rhyme 1 Syllable → Rhyme

• The learned grammars consistently analyse them as either
Onsets or Codas ⇒ learns wrong grammar half the time

Word

OnsetI

b

Nucleus

6

Coda

l

Nucleus

u

CodaF

n

• Syllabification accuracy is relatively poor
Syllabification given true word boundaries: f-score = 83%
Syllabification learning word boundaries: f-score = 74%

19 / 26

Preferring Onsets improves syllabification

2 Syllable → Onset Rhyme 1 Syllable → Rhyme

• Changing the prior to prefer word-internal Syllables with
Onsets dramatically improves segmentation accuracy

• “Rich get richer” property ⇒ all ambiguous word-internal
consonants analysed as Onsets

Word

OnsetI

b

Nucleus

6

Onset

l

Nucleus

u

CodaF

n

• Syllabification accuracy is much higher than without bias
Syllabification given true word boundaries: f-score = 97%
Syllabification learning word boundaries: f-score = 90%

20 / 26

Modelling sonority classes improves syllabification

Onset → OnsetStop Onset → OnsetFricative

OnsetStop → Stop OnsetStop → StopOnsetFricative

Stop → p Stop → t

• Five consonant sonority classes

• OnsetStop generates a consonant cluster with a Stop at left edge

• Prior prefers transitions compatible with sonority hierarchy
(e.g., OnsetStop → Stop OnsetFricative) to transitions that aren’t
(e.g., OnsetFricative → Fricative OnsetStop)

• Same transitional probabilities used for initial and non-initial
Onsets (maybe not a good idea for English?)

• Word-internal Onset bias still necessary

• Syllabification given true boundaries: f-score = 97.5%
Syllabification learning word boundaries: f-score = 91%

21 / 26

Outline

Adaptor grammars and nonparametric Bayesian models of learning

Learning syllables, words and collocations

Learning syllabification with adaptor grammars

Conclusions and future work

22 / 26

Conclusions

• Adaptor grammars learn an unbounded number of reusable
structures

• The learning algorithms are fairly simple
◮ even if their mathematical justification is really cool . . .

• Different adaptor grammars can have different priors
◮ preferring Onsets dramatically improves syllabification

• Different adaptor grammars learn different generalizations
useful for studying synergies in learning

◮ Learning interword dependencies improves word
segmentation

◮ Learning syllabification improves word segmentation
◮ Learning word segmentation improves syllabification

⇒ Learning is easier if these are acquired together

• Data and software available from http://cog.brown.edu/˜mj

23 / 26

Summary of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of a subtree τ is proportional to:

◮ the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

◮ plus αA times prob. of generating it via PCFG expansion

⇒ Frequent structures can be more probable than their parts

• Reusing cached structure doesn’t increment base counts
⇒ adaptor grammars learn from types, not tokens

• Trees generated by adaptor grammars are not independent

◮ an adaptor grammar learns from its previous output

but they are exchangable

24 / 26

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed
of a Stem and a Suffix, which are
composed of Chars

• To generate a new Word from an
adaptor grammar

◮ reuse an old Word, or
◮ generate a fresh one from the

base distribution, i.e., generate
a Stem and a Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

25 / 26

Chinese restaurant and Pitman-Yor processes

• Pitman-Yor processes (PYPs) are a generalization of Chinese
Restaurant Processes (CRPs)

◮ An adaptor grammar has one CRP or PYP for each
adapted nonterminal

• CRPs and PYPs both map a base distribution B to a
distribution over distributions with same support as B

◮ In adaptor grammars, B is given by the PCFG rules

• Suppose we have generated h = (x1, . . . , xn) so far:

CRP: P(Xn+1 = x|h, α, B) ∝ n(x) + αB(x), where n(x) is
number of times x appears in h

PYP: P(Xn+1 = x|h, a, b, B) ∝ n(x) − a m(x) + (b + a m)B(x),
where m(x) is number of times x has been generated from
B in h (i.e., number of “tables” labelled x) and
m =

∑

x m(x).

26 / 26

	Adaptor grammars and nonparametric Bayesian models of learning
	Learning syllables, words and collocations
	Learning syllabification with adaptor grammars
	Conclusions and future work

