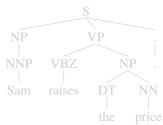
Beyond rationalism versus empiricism

Mark Johnson

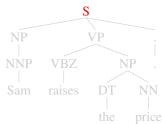
Macquarie University Sydney, Australia

COLING 2010



Be clear about your goals

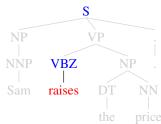
- Engineering is different to science
 - science is about *insight* and *understanding*
 - engineering is about *making things work*
- Be clear about what you're trying to achieve
 - this determines what counts as success
- The importance of a scientific insight is *not proportional to how useful it is*
 - you can bake a tasty cake without knowing chemistry!
- Which knowledge is most useful depends on what your goals are!



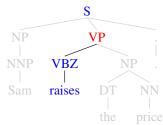
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



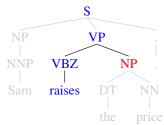
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



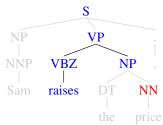
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



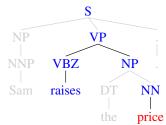
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact

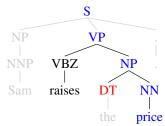


- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact

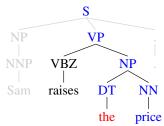


- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact

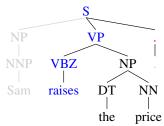

- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires linguistic insight
 - basic linguistic insights have greatest impact



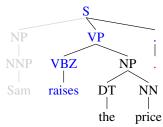
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires linguistic insight
 - basic linguistic insights have greatest impact



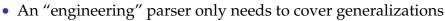
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



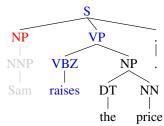
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



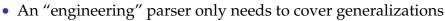
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires linguistic insight
 - basic linguistic insights have greatest impact



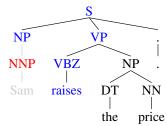
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires linguistic insight
 - basic linguistic insights have greatest impact



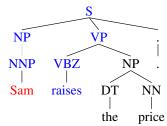
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies



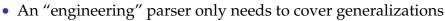
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



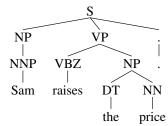
- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies



- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- But feature design requires *linguistic insight*
 - basic linguistic insights have greatest impact



- *Capturing a generalization*: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps indirectly.
 E.g., head-to-head POS dependencies

- But feature design requires linguistic insight
 - basic linguistic insights have greatest impact

After all the low-hanging fruit is gone ...

- Early statistical NLP focused on surface generalisations
 - but many of the simple ideas have been tried already
- Linguistic structure can help generalise better
 - e.g., Chelba and Jelinek "Structured language model" (aka *shift-reduce parser*)
 - ► theoretically most interesting ideas ≠ most useful ideas ⇒ try the simple stuff first!
- Look beyond theoretical linguistics to:
 - language acquisition, psycholinguistics
 - language typology, historical linguistics
 - neuroscience, genetics
- Our field still lacks many central insights
 - nobody knows where they'll come from
 - \Rightarrow it's foolish for the field to put all our "theoretical eggs" in one basket!

Theoretical and computational linguistics have different goals

• A "parasitic gap" is a syntactic construction with one "filler" and multiple "gaps"

Which book did you buy _ before reading _ ?

- Linguists have published many articles on parasitic gaps
- There are very few parasitic gaps in the PTB WSJ corpus
 ⇒ covering parasitic gaps won't change your PTB f-score
- Rare phenomena can be scientifically very important
 - Chomskyians argue that parasitic gaps must be innate because they are too rare to be learned

and if you're parsing a genre where parasitic gaps are common, you probably should pay attention to them!

Research is a gamble about the unknown

Half the money I spend on advertising is wasted. The problem is: I don't know which half.

— John Wanamaker

- Nobody knows what knowledge will turn out to be most important
 - that's why it's research!
- In an ideal world we'd all know everying ...
 - but time spent learning something is time not spent learning something else
 - you are gambling that the knowledge you acquire today will be useful in tomorrow's research
- It's easy to identify grand goals ...
 - but it takes genius to *identify a set of achievable steps that* will reach a grand goal from where we are today

Look forward, not backward!

- There are still deep scientific mysteries in our field; e.g., *compositionality*
 - how are trees be represented in the brain's neural circuitry?
 - our statistical models reduce tree structures to finite-dimensional feature vectors of sufficient statistics
 - this is a lossy many-to-one mapping
 - \Rightarrow the tree cannot be recovered from the feature vector
 - are there more insightful mathematical models of compositional structures?
- Understanding language and thought will probably require *synthesising and extending empiricist and rationalist insights* (and much more as well)
- Learn from the past, but look to the future!

