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Random variables and “distributed
according to” notation
• A probability distribution F is a non-negative function from

some set X whose values sum (integrate) to 1
• A random variable X is distributed according to a distribution

F, or more simply, X has distribution F, written X ∼ F, iff:

P(X = x) = F(x) for all x

(This is for discrete RVs).
• You’ll sometimes see the notion

X |Y ∼ F

which means “X is generated conditional on Y with
distribution F” (where F usually depends on Y), i.e.,

P(X | Y) = F(X | Y)
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Bayes’ rule

P(Hypothesis | Data) =
P(Data | Hypothesis) P(Hypothesis)

P(Data)

• Bayesian’s use Bayes’ Rule to update beliefs in hypotheses in
response to data

• P(Hypothesis | Data) is the posterior distribution,
• P(Hypothesis) is the prior distribution,
• P(Data | Hypothesis) is the likelihood, and
• P(Data) is a normalising constant sometimes called the

evidence
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Computing the normalising constant

P(Data) = ∑
Hypothesis′∈H

P(Data, Hypothesis′)

= ∑
Hypothesis′∈H

P(Data | Hypothesis′)P(Hypothesis′)

• If set of hypothesesH is small, can calculate P(Data) by
enumeration

• But often these sums are intractable
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Bayesian belief updating

• Idea: treat posterior from last observation as the prior for next
• Consistency follows because likelihood factors

I Suppose d = (d1, d2). Then the posterior of a hypothesis
h is:

P(h | d1, d2) ∝ P(h) P(d1, d2 | h)
= P(h) P(d1 | h) P(d2 | h, d1)

∝ P(h | d1)︸ ︷︷ ︸
updated prior

P(d2 | h, d1)︸ ︷︷ ︸
likelihood
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Discrete distributions

• A discrete distribution has a finite set of outcomes 1, . . . , m
• A discrete distribution is parameterized by a vector

θ = (θ1, . . . , θm), where P(X = j|θ) = θj (so ∑m
j=1 θj = 1)

I Example: An m-sided die, where θj = prob. of face j
• Suppose X = (X1, . . . , Xn) and each Xi|θ ∼ DISCRETE(θ).

Then:

P(X|θ) =
n

∏
i=1

DISCRETE(Xi; θ) =
m

∏
j=1

θ
Nj
j

where Nj is the number of times j occurs in X.
• Goal of next few slides: compute P(θ|X)
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Multinomial distributions

• Suppose Xi ∼ DISCRETE(θ) for i = 1, . . . , n, and
Nj is the number of times j occurs in X

• Then N|n, θ ∼ MULTI(θ, n), and

P(N|n, θ) =
n!

∏m
j=1 Nj!

m

∏
j=1

θ
Nj
j

where n!/ ∏m
j=1 Nj! is the number of sequences of values with

occurence counts N
• The vector N is known as a sufficient statistic for θ because it

supplies as much information about θ as the original
sequence X does.
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Dirichlet distributions
• Dirichlet distributions are probability distributions over

multinomial parameter vectors
I called Beta distributions when m = 2

• Parameterized by a vector α = (α1, . . . , αm) where αj > 0 that
determines the shape of the distribution

DIR(θ | α) =
1

C(α)

m

∏
j=1

θ
αj−1
j

C(α) =
∫

∆

m

∏
j=1

θ
αj−1
j dθ =

∏m
j=1 Γ(αj)

Γ(∑m
j=1 αj)

• Γ is a generalization of the factorial function
• Γ(k) = (k− 1)! for positive integer k
• Γ(x) = (x− 1)Γ(x− 1) for all x
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Plots of the Dirichlet distribution

P(θ | α) =
Γ(∑m

j=1 αj)

∏m
j=1 Γ(αj)

m

∏
k=1

θ
αk−1
k

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

P(
θ 1

|α
)

θ1 (probability of outcome 1)

α = (1,1)
α = (5,2)

α = (0.1,0.1)
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Dirichlet distributions as priors for θ

• Generative model:

θ | α ∼ DIR(α)
Xi | θ ∼ DISCRETE(θ), i = 1, . . . , n

• We can depict this as a Bayes net using plates, which indicate
replication

α

n
Xi

θ
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Inference for θ with Dirichlet priors
• Data X = (X1, . . . , Xn) generated i.i.d. from DISCRETE(θ)

• Prior is DIR(α). By Bayes Rule, posterior is:

P(θ|X) ∝ P(X|θ) P(θ)

∝

(
m

∏
j=1

θ
Nj
j

) (
m

∏
j=1

θ
αj−1
j

)

=
m

∏
j=1

θ
Nj+αj−1
j , so

P(θ|X) = DIR(N + α)

• So if prior is Dirichlet with parameters α,
posterior is Dirichlet with parameters N + α

⇒ can regard Dirichlet parameters α as “pseudo-counts” from
“pseudo-data”
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Conjugate priors
• If prior is DIR(α) and likelihood is i.i.d. DISCRETE(θ),

then posterior is DIR(N + α)
⇒ prior parameters α specify “pseudo-observations”

• A class C of prior distributions P(H) is conjugate to a class of
likelihood functions P(D|H) iff the posterior P(H|D) is also a
member of C

• In general, conjugate priors encode “pseudo-observations”
I the difference between prior P(H) and posterior P(H|D)

are the observations in D
I but P(H|D) belongs to same family as P(H), and can

serve as prior for inferences about more data D′

⇒ must be possible to encode observations D using
parameters of prior

• In general, the likelihood functions that have conjugate priors
belong to the exponential family
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Point estimates from Bayesian posteriors

• A “true” Bayesian prefers to use the full P(H|D), but
sometimes we have to choose a “best” hypothesis

• The Maximum a posteriori (MAP) or posterior mode is

Ĥ = argmax
H

P(H|D) = argmax
H

P(D|H)P(H)

• The expected value EP[X] of X under distribution P is:

EP[X] =
∫

x P(X = x) dx

The expected value is a kind of average, weighted by P(X).
The expected value E[θ] of θ is an estimate of θ.
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The posterior mode of a Dirichlet
• The Maximum a posteriori (MAP) or posterior mode is

Ĥ = argmax
H

P(H|D) = argmax
H

P(D|H)P(H)

• For Dirichlets with parameters α, the MAP estimate is:

θ̂j =
αj − 1

∑m
j′=1(αj′ − 1)

so if the posterior is DIR(N + α), the MAP estimate for θ is:

θ̂j =
Nj + αj − 1

n + ∑m
j′=1(αj′ − 1)

• If α = 1 then θ̂j = Nj/n, which is also the maximum likelihood
estimate (MLE) for θ
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The expected value of θ for a Dirichlet
• The expected value EP[X] of X under distribution P is:

EP[X] =
∫

x P(X = x) dx

• For Dirichlets with parameters α, the expected value of θj is:

EDIR(α)[θj] =
αj

∑m
j′=1 αj′

• Thus if the posterior is DIR(N + α), the expected value of θj is:

EDIR(N+α)[θj] =
Nj + αj

n + ∑m
j′=1 αj′

• E[θ] smooths or regularizes the MLE by
adding pseudo-counts α to N
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Sampling from a Dirichlet

θ | α ∼ DIR(α) iff P(θ|α) =
1

C(α)

m

∏
j=1

θ
αj−1
j , where:

C(α) =
∏m

j=1 Γ(αj)

Γ(∑m
j=1 αj)

• There are several algorithms for producing samples from
DIR(α). A simple one relies on the following result:

• If Vk ∼ GAMMA(αk) and θk = Vk/(∑m
k′=1 Vk′), then θ ∼ DIR(α)

• This leads to the following algorithm for producing a sample
θ from DIR(α)

I Sample vk from GAMMA(αk) for k = 1, . . . , m
I Set θk = vk/(∑m

k′=1 vk′)
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Posterior with Dirichlet priors

θ | α ∼ DIR(α)
Xi | θ ∼ DISCRETE(θ), i = 1, . . . , n

• Integrate out θ to calculate posterior probability of X

P(X|α) =
∫

P(X, θ|α) dθ =
∫

∆
P(X|θ)P(θ|α) dθ

=
∫

∆

(
m

∏
j=1

θ
Nj
j

)(
1

C(α)

m

∏
j=1

θ
αj−1
j

)
dθ

=
1

C(α)

∫
∆

m

∏
j=1

θ
Nj+αj−1
j dθ

=
C(N + α)

C(α)
, where C(α) =

∏m
j=1 Γ(αj)

Γ(∑m
j=1 αj)

• Collapsed Gibbs samplers and the Chinese Restaurant Process rely
on this result
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Predictive distribution for
Dirichlet-Multinomial

• The predictive distribution is the distribution of observation
Xn+1 given observations X = (X1, . . . , Xn) and prior DIR(α)

P(Xn+1 = k | X, α) =
∫

∆
P(Xn+1 = k | θ)P(θ | X, α) dθ

=
∫

∆
θk DIR(θ | N + α) dθ

=
Nk + αk

∑m
j=1 Nj + αj
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Example: rolling a die
• Data d = (2, 5, 4, 2, 6)

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

P(
θ 2

|α
)

θ2 (probability of side 2)

α = (1,1,1,1,1,1)
α = (1,2,1,1,1,1)
α = (1,2,1,1,2,1)
α = (1,2,1,2,2,1)
α = (1,3,1,2,2,1)
α = (1,3,1,2,2,2)
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Inference in complex models

• If the model is simple enough we can calculate the posterior
exactly (conjugate priors)

• When the model is more complicated, we can only
approximate the posterior

• Variational Bayes calculate the function closest to the posterior
within a class of functions

• Sampling algorithms produce samples from the posterior
distribution

I Markov chain Monte Carlo algorithms (MCMC) use a
Markov chain to produce samples

I A Gibbs sampler is a particular MCMC algorithm
• Particle filters are a kind of on-line sampling algorithm

(on-line algorithms only make one pass through the data)
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Mixture models

• Observations Xi are a mixture of ` source distributions
F(θk), k = 1, . . . , `

• The value of Zi specifies which source distribution is used to
generate Xi (Z is like a switch)

• If Zi = k, then Xi ∼ F(θk)

• Here we assume the Zi are not observed, i.e., hidden

Xi | Zi, θ ∼ F(θZi) i = 1, . . . , n
X

θ

Z
n

`
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Applications of mixture models

• Blind source separation: data Xi come from ` different sources
I Which Xi come from which source?

(Zi specifies the source of Xi)
I What are the sources?

(θk specifies properties of source k)
• Xi could be a document and Zi the topic of Xi

• Xi could be an image and Zi the object(s) in Xi

• Xi could be a person’s actions and Zi the “cause” of Xi

• These are unsupervised learning problems, which are kinds of
clustering problems

• In a Bayesian setting, compute posterior P(Z, θ|X)
But how can we compute this?
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Dirichlet Multinomial mixtures

φ | β ∼ DIR(β)
Zi | φ ∼ DISCRETE(φ) i = 1, . . . , n
θk | α ∼ DIR(α) k = 1, . . . , `

Xi,j | Zi, θ ∼ DISCRETE(θZi) i = 1, . . . , n; j = 1, . . . , di

X

n

θ

α

φ

β

Z
d

`

• Zi is generated from a multinomial φ

• Dirichlet priors on φ and θk

• Easy to modify this framework for other
applications

• Why does each observation X i consist of di
elements?

• What effect do the priors α and β have?
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Why sample?
• Setup: Bayes net has variables X, whose value x we observe,

and variables Y , whose value we don’t know
I Y includes any parameters we want to estimate, such as θ

• Goal: compute the expected value of some function f :

E[ f |X = x] = ∑
y

f (x, y)P(Y = y|X = x)

I E.g., f (x, y) = 1 if x1 and x2 are both generated from
same hidden state, and 0 otherwise

• In what follows, everything is conditioned on X = x,
so take P(Y) to mean P(Y |X = x)

• Suppose we can produce n samples y(t), where Y (t) ∼ P(Y).
Then we can estimate:

E[ f |X = x] =
1
n

n

∑
t=1

f (x, y(t))
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Markov chains
• A (first-order) Markov chain is a distribution over random

variables S(0), . . . , S(n) all ranging over the same state space S ,
where:

P(S(0), . . . , S(n)) = P(S(0))
n−1

∏
t=0

P(S(t+1)|S(t))

S(t+1) is conditionally independent of S(0), . . . , S(t−1) given S(t)

• A Markov chain in homogeneous or time-invariant iff:

P(S(t+1) = s′|S(t) = s) = Ps′,s for all t, s, s′

The matrix P is called the transition probability matrix of the
Markov chain

• If P(S(t) = s) = π
(t)
s (i.e., π(t) is a vector of state probabilities

at time t) then:
I π(t+1) = P π(t)

I π(t) = Pt π(0)
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Ergodicity
• A Markov chain with tpm P is ergodic iff there is a positive

integer m s.t. all elements of Pm are positive (i.e., there is an
m-step path between any two states)

• Informally, an ergodic Markov chain “forgets” its past states
• Theorem: For each homogeneous ergodic Markov chain with

tpm P there is a unique limiting distribution DP, i.e., as n
approaches infinity, the distribution of Sn converges on DP

• DP is called the stationary distribution of the Markov chain
• Let π be the vector representation of DP, i.e., DP(y) = πy.

Then:

π = P π, and
π = lim

n→∞
Pnπ(0) for every initial distribution π(0)
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Using a Markov chain for inference of P(Y)

• Set the state space S of the Markov chain to the range of Y
(S may be astronomically large)

• Find a tpm P such that P(Y) ∼ DP

• “Run” the Markov chain, i.e.,
I Pick y(0) somehow
I For t = 0, . . . , n− 1:

– sample y(t+1) from P(Y (t+1)|Y (t) = y(t)),
i.e., from P·,y(t)

I After discarding the first burn-in samples, use remaining
samples to calculate statistics

• WARNING: in general the samples y(t) are not independent
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The Gibbs sampler

• The Gibbs sampler is useful when:
I Y is multivariate, i.e., Y = (Y1, . . . , Ym), and
I easy to sample from P(Yj|Y−j)

• The Gibbs sampler for P(Y) is the tpm P = ∏m
j=1 P(j), where:

P(j)
y′,y =

{
0 if y′−j 6= y−j
P(Yj = y′j|Y−j = y−j) if y′−j = y−j

• Informally, the Gibbs sampler cycles through each of the
variables Yj, replacing the current value yj with a sample from
P(Yj|Y−j = y−j)

• There are sequential scan and random scan variants of Gibbs
sampling
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A simple example of Gibbs sampling

P(Y1, Y2) =

{
c if |Y1| < 5, |Y2| < 5 and |Y1 −Y2| < 1
0 otherwise

• The Gibbs sampler for P(Y1, Y2) samples repeatedly from:

P(Y2|Y1) = UNIFORM(max(−5, Y1 − 1), min(5, Y1 + 1))
P(Y1|Y2) = UNIFORM(max(−5, Y2 − 1), min(5, Y2 + 1))

-5

 0

 5

-5  0  5

Y
2

Y
1

Sample run
Y1 Y2
0 0
0 -0.119

0.363 -0.119
0.363 0.146
-0.681 0.146
-0.681 -1.551
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A non-ergodic Gibbs sampler
P(Y1, Y2) =

{
c if 1 < Y1, Y2 < 5 or −5 < Y1, Y2 < −1
0 otherwise

• The Gibbs sampler for P(Y1, Y2), initialized at (2,2), samples
repeatedly from:

P(Y2|Y1) = UNIFORM(1, 5)
P(Y1|Y2) = UNIFORM(1, 5)

I.e., never visits the negative values of Y1, Y2

-5

 0

 5

-5  0  5

Y
2

Y
1

Sample run
Y1 Y2
2 2
2 2.72

2.84 2.72
2.84 4.71
2.63 4.71
2.63 4.52
1.11 4.52
1.11 2.46
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Why does the Gibbs sampler work?

• The Gibbs sampler tpm is P = ∏m
j=1 P(j), where P(j) replaces

yj with a sample from P(Yj|Y−j = y−j) to produce y′

• But if y is a sample from P(Y), then so is y′,
since y′ differs from y only by replacing yj with a sample from
P(Yj|Y−j = y−j)

• Since P(j) maps samples from P(Y) to samples from P(Y), so
does P

⇒ P(Y) is a stationary distribution for P
• If P is ergodic, then P(Y) is the unique stationary distribution

for P, i.e., the sampler converges to P(Y)
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Gibbs sampling with Bayes nets

• Gibbs sampler: update yj with sample from
P(Yj|Y−j) ∝ P(Yj, Y−j)

• Only need to evaluate terms that depend on
Yj in Bayes net factorization

I Yj appears once in a term P(Yj|YPaj)
I Yj can appear multiple times in terms

P(Yk| . . . , Yj, . . .)
• In graphical terms, need to know value of:

I Yjs parents
I Yjs children, and their other parents

Yj
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Dirichlet-Multinomial mixtures

φ | β ∼ DIR(β)
Zi | φ ∼ DISCRETE(φ) i = 1, . . . , n
θk | α ∼ DIR(α) k = 1, . . . , `

Xi,j | Zi, θ ∼ DISCRETE(θZi) i = 1, . . . , n; j = 1, . . . , di

X

n

θ

α

φ

β

Z
d

`

P(φ, Z, θ, X|α, β)

=
1

C(β)

`

∏
k=1

(
φ

βk−1+Nk(Z)
k

1
C(α)

m

∏
j=1

θ
αj−1+∑i:Zi=k Nj(X i)

k,j

)

where C(α) =
∏m

j=1 Γ(αj)

Γ(∑m
j=1 αj)
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Gibbs sampling for D-M mixtures

φ | β ∼ DIR(β)
Zi | φ ∼ DISCRETE(φ) i = 1, . . . , n
θk | α ∼ DIR(α) k = 1, . . . , `

Xi,j | Zi, θ ∼ DISCRETE(θZi) i = 1, . . . , n; j = 1, . . . , di

X

n

θ

α

φ

β

Z
d

`

P(φ|Z, β) = DIR(φ; β + N(Z))

P(Zi = k|φ, θ, X i) ∝ φk

m

∏
j=1

θ
Nj(X i)

k,j

P(θk|α, X, Z) = DIR(θk; α + ∑i:Zi=k N(X i))
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Collapsed Dirichlet Multinomial mixtures

X

n

Z
d

β α
P(Z|β) =

C(N(Z) + β)

C(β)

P(X|α, Z) =
`

∏
k=1

C(α + ∑i:Zi=k N(X i))

C(α)
, so

P(Zi = k|Z−i, α, β) ∝
Nk(Z−i) + βk

n− 1 + β•
C(α + ∑i′ 6=i:Zi′=k N(X i′) + N(X i))

C(α + ∑i′ 6=i:Zi′=k N(X i′))

• P(Zi = k|Z−i, α, β) is proportional to the prob. of generating:
I Zi = k, given the other Z−i, and
I X i in cluster k, given X−i and Z−i
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Gibbs sampling for Dirichlet multinomial
mixtures

• Each X i could be generated from one of several Dirichlet
multinomials

• The variable Zi indicates the source for X i

• The uncollapsed sampler samples Z, θ and φ

• The collapsed sampler integrates out θ and φ and just samples
Z

• Collapsed samplers often (but not always) converge faster
than uncollapsed samplers

• Collapsed samplers are usually‘ easier to implement
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Topic modeling of child-directed speech

• Data: Adam, Eve and Sarah’s mothers’ child-directed
utterances

I like it .
why don’t you read Shadow yourself ?
that’s a terribly small horse for you to ride .
why don’t you look at some of the toys in the basket .
want to ?
do you want to see what I have ?
what is that ?
not in your mouth .

• 59,959 utterances, composed of 337,751 words
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Uncollapsed Gibbs sampler for topic model

X

n

θ

α

φ

β

Z
d

`

• Data consists of “documents” X i

• Each X i is a sequence of “words” Xi,j

• Initialize by randomly assign each document
X i to a topic Zi

• Repeat the following:
I Replace φ with a sample from a

Dirichlet with parameters β + N(Z)
I For each topic k, replace θk with a

sample from a Dirichlet with
parameters α + ∑i:Zi=k N(X i))

I For each document i, replace Zi with a
sample from

P(Zi = k|φ, θ, X i) ∝ φk ∏m
j=1 θ

Nj(X i)

k,j

44 / 73



Collapsed Gibbs sampler for topic model

X

n

Z
d

β α • Initialize by randomly assign each document
X i to a topic Zi

• Repeat the following:
I For each document i in 1, . . . , n (in

random order):
– Replace Zi with a random sample

from P(Zi|Z−i, α, β)

P(Zi = k|Z−i, α, β)

∝
Nk(Z−i) + βk

n− 1 + β•

C(α + ∑i′ 6=i:Zi′=k N(X i′) + N(X i))

C(α + ∑i′ 6=i:Zi′=k N(X i′))
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Topics assigned after 100 iterations
1 big drum ?
3 horse .
8 who is that ?
9 those are checkers .
3 two checkers # yes .
1 play checkers ?
1 big horn ?
2 get over # Mommy .
1 shadow ?
9 I like it .
1 why don’t you read Shadow yourself ?
9 that’s a terribly small horse for you to ride .
2 why don’t you look at some of the toys in the basket .
1 want to ?
1 do you want to see what I have ?
8 what is that ?
2 not in your mouth .
2 let me put them together .
2 no # put floor .
3 no # that’s his pencil .
3 that’s not Daddy # that’s Colin .
9 I think perhaps he’s going back to school .
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Most probable words in each cluster
P(Z=4) = 0.4334 P(Z=9) = 0.3111 P(Z=7) = 0.2555 P(Z=3) = 5.003e-05

X P(X|Z) X P(X|Z) X P(X|Z) X P(X|Z)
. 0.12526 ? 0.19147 . 0.2258 quack 0.85
# 0.045402 you 0.062577 # 0.0695 . 0.15
you 0.040475 what 0.061256 that’s 0.034538
the 0.030259 that 0.022295 a 0.034066
it 0.024154 the 0.022126 no 0.02649
I 0.021848 # 0.021809 oh 0.023558
to 0.018473 is 0.021683 yeah 0.020332
don’t 0.015473 do 0.016127 the 0.014907
a 0.013662 it 0.015927 xxx 0.014288
? 0.013459 a 0.015092 not 0.013864
in 0.011708 to 0.013783 it’s 0.013343
on 0.011064 did 0.012631 ? 0.013033
your 0.010145 are 0.011427 yes 0.011795
and 0.009578 what’s 0.011195 right 0.0094166
that 0.0093303 your 0.0098961 alright 0.0088953
have 0.0088019 huh 0.0082591 is 0.0087975
no 0.0082514 want 0.0076782 you’re 0.0076571
put 0.0067486 where 0.0072346 one 0.006647
know 0.0064239 why 0.0070656 ! 0.0057673
there 0.0058789 hmm 0.0066537 it 0.0055555
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Remarks on cluster results
• The samplers cluster words by clustering the documents they

appear in, and cluster documents by clustering the words that
appear in them

• Even though there were ` = 10 clusters and α = 1, β = 1,
typically only 4 clusters were occupied after convergence

• Words x with high marginal probability P(X = x) are
typically so frequent that they occur in all clusters

⇒ Listing the most probable words in each cluster may not be a
good way of characterizing the clusters

• Instead, we can Bayes invert and find the words that are most
strongly associated with each class

P(Z = k |X = x) =
Nk,x(Z, X) + ε

Nx(X) + ε`
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Purest words of each cluster
P(Z=4) = 0.4334 P(Z=9) = 0.3111 P(Z=7) = 0.2555 P(Z=3) = 5.003e-05

X P(Z|X) X P(Z|X) X P(Z|X) X P(Z|X)
I’ll 0.97168 d(o) 0.97138 0 0.94715 quack 0.64286
we’ll 0.96486 what’s 0.95242 mmhm 0.944 . 0.00010802
c(o)me 0.95319 what’re 0.94348 www 0.90244
you’ll 0.95238 happened 0.93722 m:hm 0.83019
may 0.94845 hmm 0.93343 uhhuh 0.81667
let’s 0.947 whose 0.92437 uh(uh) 0.78571
thought 0.94382 what 0.9227 uhuh 0.77551
won’t 0.93645 where’s 0.92241 that’s 0.7755
come 0.93588 doing 0.90196 yep 0.76531
let 0.93255 where’d 0.9009 um 0.76282
I 0.93192 don’t] 0.89157 oh+boy 0.73529
(h)ere 0.93082 whyn’t 0.89157 d@l 0.72603
stay 0.92073 who 0.88527 goodness 0.7234
later 0.91964 how’s 0.875 s@l 0.72
thank 0.91667 who’s 0.85068 sorry 0.70588
them 0.9124 [: 0.85047 thank+you 0.6875
can’t 0.90762 ? 0.84783 o:h 0.68
never 0.9058 matter 0.82963 nope 0.67857
em 0.89922 what’d 0.8125 hi 0.67213
back 0.89319 else 0.80712 alright 0.6687
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Summary

• Complex models often don’t have analytic solutions
• Approximate inference can be used on many such models
• Monte Carlo Markov chain methods produce samples from

(an approximation to) the posterior distribution
• Gibbs sampling is an MCMC procedure that resamples each

variable conditioned on the values of the other variables
• If you can sample from the conditional distribution of each

hidden variable in a Bayes net, you can use Gibbs sampling to
sample from the joint posterior distribution

• We applied Gibbs sampling to Dirichlet-multinomial mixtures
to cluster sentences
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Bayesian inference for Dirichlet-multinomials

• Probability of next event with uniform Dirichlet prior with mass
α over m outcomes and observed data Z1:n = (Z1, . . . , Zn)

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

where nk(Z1:n) is number of times k appears in Z1:n

• Example: Coin (m = 2), α = 1, Z1:2 = (heads, heads)
I P(Z3 = heads | Z1:2, α) ∝ 2.5
I P(Z3 = tails | Z1:2, α) ∝ 0.5
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Dirichlet-multinomials with many outcomes

• Predictive probability:

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

• Suppose the number of outcomes m� n. Then:

P(Zn+1 = k | Z1:n, α) ∝


nk(Z1:n) if nk(Z1:n) > 0

α/m if nk(Z1:n) = 0

• But most outcomes will be unobserved, so:

P(Zn+1 6∈ Z1:n | Z1:n, α) ∝ α
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From Dirichlet-multinomials to Chinese
Restaurant Processes

. . .

• Suppose number of outcomes is unbounded
but we pick the event labels

• If we number event types in order of occurrence
⇒ Chinese Restaurant Process

Z1 = 1

P(Zn+1 = k | Z1:n, α) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (0)

• Customer→ table mapping Z =

• P(z) = 1

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (1)

α

• Customer→ table mapping Z = 1
• P(z) = α/α

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (2)

1 α

• Customer→ table mapping Z = 1, 1
• P(z) = α/α× 1/(1 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (3)

2 α

• Customer→ table mapping Z = 1, 1, 2
• P(z) = α/α× 1/(1 + α)× α/(2 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (4)

2 1 α

• Customer→ table mapping Z = 1, 1, 2, 1
• P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Pitman-Yor Process (0)

• Customer→ table mapping z =
• P(z) = 1

• In CRPs, probability of choosing a table ∝ number of
customers⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table
and give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1
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Pitman-Yor Process (1)

b

• Customer→ table mapping z = 1
• P(z) = b/b

• In CRPs, probability of choosing a table ∝ number of
customers⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table
and give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

61 / 73



Pitman-Yor Process (2)

1− a a + b

• Customer→ table mapping z = 1, 1
• P(z) = b/b× (1− a)/(1 + b)

• In CRPs, probability of choosing a table ∝ number of
customers⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table
and give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

62 / 73



Pitman-Yor Process (3)

2− a a + b

• Customer→ table mapping z = 1, 1, 2
• P(z) = b/b× (1− a)/(1 + b)× (a + b)/(2 + b)

• In CRPs, probability of choosing a table ∝ number of
customers⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table
and give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1
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Pitman-Yor Process (4)

2− a 1− a 2a + b

• Customer→ table mapping z = 1, 1, 2, 1
• P(z) =

b/b× (1− a)/(1 + b)× (a + b)/(2 + b)× (2− a)/(3 + b)

• In CRPs, probability of choosing a table ∝ number of
customers⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table
and give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1
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Labeled Chinese Restaurant Process (0)

• Table→ label mapping Y =

• Customer→ table mapping Z =

• Output sequence X =

• P(X) = 1

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (1)

fish

α

• Table→ label mapping Y = fish
• Customer→ table mapping Z = 1
• Output sequence X = fish
• P(X) = α/α× P0(fish)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (2)

fish

1 α

• Table→ label mapping Y = fish
• Customer→ table mapping Z = 1, 1
• Output sequence X = fish,fish
• P(X) = P0(fish)× 1/(1 + α)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi

67 / 73



Labeled Chinese Restaurant Process (3)

fish

2

apple

α

• Table→ label mapping Y = fish,apple
• Customer→ table mapping Z = 1, 1, 2
• Output sequence X = fish,fish,apple
• P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (4)

fish

2

apple

1 α

• Table→ label mapping Y = fish,apple
• Customer→ table mapping Z = 1, 1, 2
• Output sequence X = fish,fish,apple,fish
• P(X) =

P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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From Chinese restaurants to Dirichlet
processes
• Labeled Chinese restaurant processes take a distribution P0

and return a stream of samples from a different distribution
with the same support

• The Chinese restaurant process is a sequential process,
generating the next item conditioned on the previous ones

• We can get a different distribution each time we run a CRP
(allocation of customers to tables and labeling of tables are
randomized)

• Abstracting away from the sequential generation of the CRP,
we can view it as a mapping from a base distribution P0 to a
distribution over distributions DP(α, P0)

• DP(α, P0) is called a Dirichlet process with concentration
parameter α and base distribution P0

• Distributions in DP(α, P0) are discrete (w.p. 1) even if the base
distribution P0 is continuous
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Gibbs sampling with Chinese restaurants
• Idea: resample zi as if z−i were “real” data
• The CRP is exchangable: all ways of generating an assignment

of customers to labeled tables have the same probability
• This means P(zi|z−i) is the same as if zi were generated after

s−i
I Exchangability means “treat every customer as if they were

your last”
• Tables are generated and garbage-collected during sampling
• The probability of generating a new table includes the

probability of generating its label
• When retracting zi reduces the number of customers at a table

to 0, garbage-collect the table
• CRPs not only estimate model parameters, they also estimate

the number of components (tables)
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A DP clustering model

• Idea: replace multinomials with Chinese restaurants
• P(z) is a distribution over integers (clusters), generated by a

CRP
• For each cluster z, run separate Chinese restaurants for P(x|c)
• P(x|c) are distributions over words, so they need generator

distributions
I generators could be uniform over the named

entities/contexts in training data, or
I (n-gram) language models generating possible named

entities/contexts (unbounded vocabulary)
• In a hierarchical Dirichlet process, these generators could

themselves be Dirichlet processes that possibly share a
common vocabulary
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Summary: Chinese Restaurant Processes

• Chinese Restaurant Processes (CRPs) generalize
Dirichlet-Multinomials to an unbounded number of outcomes

I concentration parameter α controls how likely a new
outcome is

I CRPs exhibit a rich get richer power-law behaviour
• Labeled CRPs use a base distribution to label each table

I base distribution can have infinite support
I concentrates mass on a countable subset
I power-law behaviour⇒ Zipfian distributions
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