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The big ideas

• Probabilistic generative models

• The noisy channel model, and recovering hidden structure

• The Expectation Maximisation (EM) algorithm

• Hidden Markov Models (HMMs)

• Probabilistic Context-Free Grammars (PCFGs)

• Maximum Entropy (MaxEnt) models

• Non-parametric Bayesian inference (Chinese restaurant processes)
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Brief Introduction to Discrete Probability

• Sample space Ω: set of possible events

• Probability P(x) of event x ∈ Ω
I 0 ≤ P(x) ≤ 1 for all x ∈ Ω
I
∑

x∈Ω P(x) = 1

• A random variable is a function on Ω
I If A is a random variable and a is one of its values,

P(A = a) =
∑
x∈Ω

A(x)=a

P(x)

i.e., P(A = a) is sum of probability of all events x where A(x) = a.

• Example: Ω = {Sam,Sandy, likes}
P(Sam) = 0.5,P(Sandy) = 0.1,P(likes) = 0.4
PoS(Sam) = n,PoS(Sandy) = n,PoS(likes) = v
P(PoS = n) = 0.6,P(PoS = v) = 0.4
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Joint and conditional probabilities
• Joint probability of two random variables A and B is:

P(A = a,B = b) =
∑
x∈Ω

A(x)=a
B(x)=b

P(x)

is sum of probability of all events x where A(x) = a and B(x) = b
• Conditional probability of A given B is:

P(A = a | B = b) =
P(A = a,B = b)

P(B = b)

• Example: Ω = {Sam,Sandy, likes}
P(Sam) = 0.5,P(Sandy) = 0.1,P(likes) = 0.4
Len(x) = number of chars in x ,
Pos(Sam) = PoS(Sandy) = n,PoS(likes) = v

P(PoS = n | Len = 5) =
P(PoS = n,Len = 5)

P(Len = 5)
= 0.2
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Bayes rule

• For any random variables A, B:

P(A,B) = P(A | B) P(B) = P(B | A) P(A)

so:

P(A | B) =
P(B | A) P(A)

P(B)

• Bayes rule is useful for inverting conditional probability distributions
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The Noisy Channel model and Bayes rule

• The Noisy Channel model uses Bayes rule to invert probability
distributions

• Example: Speech recognition maps acoustic inputs A to texts T

• Probabilistic formulation:

T ?(A) = argmax
T

P(T | A)

= argmax
T

P(A | T ) P(T )

P(A)

= argmax
T

P(A | T ) P(T )

• P(T ) is called the source model

• P(A | T ) is called the channel model
• Other applications of noisy channel models:

I machine translation
I language reconstruction in historical linguistics
I detecting and correcting disfluencies in speech recognition
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The Noisy Channel model as a generative process

• The source model generates text strings T

P(T=“. . . recognise speech . . . ”)

> P(T = “. . . wreck a nice beach . . . ”)

• The channel model maps text T to an
acoustic waveform A

• Computing with the noisy channel model
uses Bayes rule to compute

P(T | A) =
P(A | T ) P(T )

P(A)

... recognise speech ...
text source

P(T )

source model

P(A | T )

channel model

acoustic waveform
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Language modelling overview

• Goal of language modelling: distinguish more likely text or speech from
less likely text or speech

• A key component of many NLP systems
I Speech recognition: e.g., “recognise speech” vs “wreck a nice beach”
I Machine translation

• n-gram models model text in terms of overlapping n-word sequences
I easy to train from billions of words of text
I produce quite good results

• They also introduce key notions of probability and statistics
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What is a language model?

• A sentence or a document is a sequence of words w = (w1, . . . ,wn),
where each wi ∈ W (i.e., W is the vocabulary)

• Goal: find an accurate probability distribution P(w) over word sequences

• Method: estimate P(w) using statistics collected from a corpus of
sentences

I a statistic is a function of the data

• Questions:
I which statistics should we collect?
I how do we use them to estimate P(w)?

• Why is this hard?
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“Bag of words” (unigram) models

• “Bag of words” assumption: for all positions i , j in a sentence

P(Wi = w) = P(Wj = w)

• To generate a sentence w = (w1, . . . ,wn):

1. generate a sentence length n from P(N)
2. generate word i from a word distribution P(Wi )

P(W = (w1, . . . ,wn)) = P(N = n)
n∏

i=1

P(Wi = wi )

• A unigram model lets us define a distribution over sentences in terms of
distributions over sentence lengths and distributions over words
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Estimating P(W ) from a corpus

• Informal idea:
I Given a corpus D, count how often each word w appears
I Set P(W = w) to the fraction of times w appears in D

• Formalise as a parameter estimation problem
I Introduce parameters

P(Wi = w) = ϕw for all w ∈ W and i = 1, 2, . . .

so ϕ is a vector indexed by word types in W
I Provide an estimator ϕ̂(D) for the parameters from data D

ϕ̂w =
nw (D)

n(D)
, where:

nw (D) = number of times w appears in D, and

n·(D) =
∑

w∈W
nw (D) = number of words in D
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Maximum likelihood estimation

• Maximum likelihood principle:
Choose model parameters to make data as likely as possible

• Likelihood function: probability of data as function of model parameters

• If D = (w1, . . . ,wn) (i.e., one long sentence)

LD(ϕ) = Pϕ(D) = P(N = n)
n∏

i=1

ϕwi

• Maximum Likelihood Estimate (MLE):

ϕ̂ = argmax
ϕ

LD(ϕ)

• Fact: MLE is relative frequency, i.e.,

ϕ̂w =
nw (D)

n·(D)
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Smoothing the MLE ϕ̂

• Suppose w contains an unknown word w , i.e., nw (D) = 0

⇒ ϕ̂w = 0
⇒ Pϕ(w) = 0

⇒ Use a different estimator, e.g., Bayesian MAP estimator

ϕ̃w =
nw (D) + 1

n·(D) + m
, where:

m = |W| = size of vocabulary

• The Bayesian MAP estimator smooths the MLE
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More on unknown words

• In many applications you’ll often encounter unknown words, no matter
how big training data D is

• One approach: replace all words not seen (say) 5 times in D with a
special symbol, say ?UNK?

• Problem: for many infrequent words w , usually ϕ?UNK? > ϕw

• More sophisticated models of unknown words make a big difference

• “Lazy statistical modeller’s morphology”
I Multiple kinds of “unknown words”
I classify unknown words by

– capitalisation, or
– last three letters

e.g., Melbourne 7→ ?UNKCAP?, walking 7→ ?UNKing?
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Bigram language model

• A bigram language model captures dependencies between adjacent
words

• Conditional decomposition: (exact)

P(w1, . . . ,wn) = P(w1, . . . ,wn−1) P(wn | w1, . . . ,wn−1)

= P(w1) P(w2 | w1) P(w3 | w1,w2) . . .

P(wn | w1, . . . ,wn−1)

• Markov: only last word matters (approximation)

P(wi | w1, . . . ,wi−1) = P(wi | wi−1), so:

P(w1, . . . ,wn) = P(w1) P(w2 | w1) P(w3 | w2) . . . P(wn | wn−1)

• Stationarity: position doesn’t matter (approximation)

P(wi | wi−1) = P(wj | wj−1) for all i , j
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Sentence boundary markers
• Instead of generating w1, . . . ,wn, generate the infinite sequence

.,w1, . . . ,wn, /, /, . . .

where w0 = . is the beginning of sentence marker
and wn+1 = / is the end of sentence marker

⇒ Everything is a bigram dependency, e.g., P(w1) = P(w1 | .);
P(/ | /) = 1

• Bigram language model:

P(w1, . . . ,wn) =
n+1∏
i=1

P(wi | wi−1)

=
n+1∏
i=1

θwi ,wi−1

where θw ,w ′ = P(Wi = w |Wi−1 = w ′) (stationarity)
• θ is a matrix of transition probabilities indexed by W.
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Bigram example

• Bigram parameters:

θ =

wi\wi−1 . likes Sam Sandy
likes 0.1 0.1 0.2 0.4
Sam 0.5 0.2 0.1 0.1

Sandy 0.4 0.6 0.1 0.1
/ 0 0.1 0.6 0.4

• Bigram model estimates:

P(.,Sam, /) = θSam,. θ/,Sam

= 0.5 × 0.6

P(.,Sandy, likes,Sam, /) = θSandy,. θlikes,Sandy θSam,likes θ/,Sam

= 0.4 × 0.4 × 0.2 × 0.6
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Estimating bigram model parameters θ

• Maximum Likelihood Estimate from corpus D:

θ̂w ,w ′ =
nw ,w ′(D)

n·,w ′(D)
, where:

nw ,w ′(D) = number of times w follows w ′ in D, and

n·,w ′(D) = number of times w ′ follows anything in D

• Data sparsity is even more problematic for bigram models

• Many methods for smoothing using a unigram model ϕ̂, e.g.:

θ̃w ,w ′ = λϕ̂w + (1− λ)θ̂w ,w ′

• Choose interpolation parameter λ to maximize likelihood of a heldout
corpus
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Further work in language modelling

• Standard to work with 3-gram to 5-gram models estimated from billions
of words of text

• Smoothing is essential, and the method used makes a big difference

• Wide variety of language models have been investigated
I Trigger language models try to track the change in vocabulary within a

document
I Syntactic (i.e., parsing-based) language models typically outperform

n-grams when trained on same sized corpora
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Machine translation overview

• A machine translation system automatically translates text or speech
from one language to another

• Uses the noisy channel to decompose the problem into language model
and translation model

• Introduces the Expectation Maximisation (EM) algorithm for learning
from hidden data

I translation model maps words to words or phrases to phrases
I most naturally learnt from word-aligned parallel translations
I but virtually all training data is sentence-aligned
⇒ word alignments are hidden

• EM learns word alignments and word translation probabilities from
sentence-aligned data
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Noisy channel model for translation

• Goal: translate a sentence f (e.g.,
“foreign”, “French”) into a sentence e
(“English”)

E ?(f) = argmax
e

P(e | f)

• Noisy channel model (i.e., Bayes inversion)

argmax
e

P(e | f) = argmax
e

P(e) P(f | e)

• P(e) is a language model, typically trained
on billions of words of monolingual text

• P(f | e) is a channel model, typically
trained on millions of words of parallel text

... provincial officials ...
English text e

P(e)

source model

P(f | e)

channel model

French text f

... fonctionnaires provinciaux ...
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Sentence-aligned parallel corpus (Canadian Hansards)

• English:
provincial officials are consulted through conference calls and negotiated
debriefings .
they have full access to working documents .
consultations have also taken place with groups representing specific
sectors of the Canadian economy , including culture , energy , mining ,
telecommunications and agrifood .

• French:
les fonctionnaires provinciaux sont consultés par appels conférence et
comptes rendus .
ils ont accès à tous les documents de travail .
les consultations ont aussi eu lieu avec de les groupes représentant de
les secteurs précis de le économie canadienne , y compris la culture , le
énergie , les mines , les télécommunications et le agro - alimentaire .
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Channel models for machine translation

• Overview of machine translation channel model:
I Analyse the English input e into a sequence of words or phrases
I Replace each English word or phrase with its French translation
I Reorder the translated words or phrases to produce French output f

• Translation units and reorderings can be identified in many ways
I here the translation units are words
I initially we will assume every reordering is equally likely
I but it’s easy to use our methods to learn string position based reordering

26/286



The IBM 1 translation model P(f | e)

• A word alignment a pairs each French
word fk to a single English word eak

.

• One English word may be aligned with
several French words

• We add a special “null word” ♦ to e to
pair French words with no English
counterpart

• To generate f from e:
I Pick an alignment a
I For each k , generate fk from eak

according to P(fk | eak
)

Ils

ont

accès

à

tous

le

de

travail

They

have

♦0

1

2

3

4

5

6

7

full

access

to

working

documents documents

faePosition

a = (1, 2, 4, 5, 3, 0, 7, 06)
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An alternative representation of alignments

They have full access to working documents

Ils

ont

accès

à

tous

le

documents

de

travail

28/286



Mathematical formulation of IBM model 1
• Simple generative model:

P(a,f | e) = P(a | e) P(f | a, e)

= P(a | e)

|a|∏
k=1

P(fk | eak
), so:

P(f | e) =
∑
a

P(a | e)

|a|∏
k=1

P(fk | eak
)

• In our simple generative model, P(a | e) is a uniform distribution over
alignments given the French sentence length |f |

• Even so, P(a | e,f) is not uniform!

P(a | e,f) =
P(a,f | e)

P(f | e)

∝
|a|∏
k=1

P(fk | eak
)
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Learning translation probabilities from a word-aligned
corpus

• Goal: learn word translation probabilities P(f | e)

• Easy with a word-aligned parallel corpus D = (e,f ,a)

• Let P(f | e) = τf ,e . Then e.g., the MLE is:

τ̂f ,e =
nf ,e(a)

n·,e(a)
, where:

nf ,e(a) = the number of times f is aligned to e in D, and

n·,e(a) =
∑

f

nf ,e(a)

= the number of times e is aligned to anything in D

• But word-aligned corpora are very expensive
can we learn translation probabilities from sentence-aligned corpora
instead?
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The Expectation Maximisation Algorithm

• EM is useful for problems
I with hidden variables (variables whose values are unknown, e.g.,

alignments a), and
I where estimation would be easy if those variables’ values were known

• EM is an iterative hill-climbing algorithm
I every iteration is guaranteed not to decrease the likelihood of data
I but EM can “get stuck” in local maxima

• Informal description of EM algorithm:
I initialise parameters τ (0) somehow (e.g., randomly)
I repeat for t = 0, 1, . . . , until convergence:

– E-step: Use current parameter estimate τ (t) to “fill in” hidden
variable a in training data, producing “expected data” (a, e,f) with
“expected count” Pτ (t) (a | e,f)

– M-step: Estimate parameters τ (t+1) from expected data constructed
in E-step
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The Expectation Maximisation Algorithm for Model 1

• Too many possible alignments a to enumerate expected data
P(a | e,f)

I but all we need to estimate τ (t+1) are the sufficient statistics nf ,e

• High-level description of EM algorithm:

Initialise model parameters τ (0) somehow (e.g., randomly)
Repeat for t = 0, 1, . . . until convergence:

– E-step: Compute expected value of sufficient statistics

Eτ (t) [nf ,e ] =
∑
a

nf ,e(a) Pτ (t) (a | e,f)

– M-step: Compute τ (t+1) from E[nf ,e ]

τ
(t+1)
f ,e =

Eτ (t) [nf ,e(a)]

Eτ (t) [n·,e(a)]
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Expected values of translation counts

• If g is a real-valued random variable, its expected value E[g ] is:

E[g ] =
∑
x∈Ω

g(x) P(x)

i.e., an expected value is a kind of weighted average

• If we’re given an alignment a, we can calculate translation counts
nf ,e(a) directly

• If we’re given a probability distribution P(a) over alignments, we can
calculate the expected translation counts:

E[nf ,e ] =
∑
a

nf ,e(a) P(a | e,f)
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A single iteration of the EM algorithm

• At the beginning of iteration t, the current estimate of the word
translation probabilities is τ (t):

1. E-step:

a. For each possible alignment a, calculate Pτ (t) (a | e,f)
b. Summing over all possible alignments a, calculate expected

translation counts

Eτ (t) [nf ,e ] =
∑
a

nf ,e(a) Pτ (t) (a | e,f)

2. M-step: Use the expected counts to update τ :

τ
(t+1)
f ,e =

Eτ (t) [nf ,e ]∑
f Eτ (t) [nf ,e ]

• Unfortunately, the algorithm as described is infeasible . . .
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Dynamic programming for expected counts

• By definition, every French word fk in the corpus is aligned with some
English word eak

, but which one?

• Because we assume Pτ (a | e) is uniform, alignment probability only
depends on τ . With some algebra, can show:

Pτ (ak = j | e, fk) =
τfk ,ej∑|e|

j ′=0 τfk ,ej′

• Expected translation counts:

Eτ [nf ′,e′ ] =
∑

k:fk=f ′

j :ej =e′

Pτ (ak = j | e, fk)

• Informally, to compute transition counts iterate through each French
word fk in parallel corpus

I compute probability Pτ (ak = j | e, fk) that it is aligned to ej

I add Pτ (ak = j | e, fk) to expected counts Eτ [nfk ,ej ]
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EM algorithm for learning alignments and translation
probabilities

Initialise translation probabilities τ somehow (e.g., randomly)

Repeat for t = 0, 1, . . . until convergence:

Initialise expected counts E[nf ,e ] = 0 for all e, f
For each French word position k ∈ 1, . . . , |f |:

For each English word position j ∈ 1, . . . , |e|:

E[nfk ,ej ] + = Pτ (ak = j | e, fk) =
τfk ,ej∑|e|

j′=0 τfk ,ej′

Recalulate translation probabilities τ :

τf ,e =
E[nf ,e ]

E[n·,e ]
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EM algorithm in pictures: P(f | e)
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à

tous

le

documents

de

travail

They have full access to working documents♦

0.01 0.2

0.0010.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.2

0.1

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.2

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.2

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001 0.1

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.2

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

37/286



EM algorithm in pictures: P(a | e,f)
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Alignments learnt from Canadian Hansards
count English French count English French

306043 , , 289093 the le
246182 . . 243395 ♦ .
213067 of de 192687 and et
157561 the de 106313 the la
100649 to à 99661.1 ♦ le

96360.3 to de 87601.5 . de
84200.4 that que 84127 we nous
83155.8 is est 81717.6 ♦ de
75641.3 the les 73189.4 : :
65337.2 a un 63712.4 not pas
62694.6 not ne 57248.2 I je
56526.6 government gouvernement 54257.5 i je
51031.5 - - 47926.5 a une
47682.4 the à 46082.2 in dans
45835.1 Mr. . 44350.8 of le
44127.6 . le 42532.5 Speaker Président
41468.1 in de 38837.2 to le
36390.9 , de 34435.7 ? ?
34134.2 , le 33032.2 for de
32500.9 of les 32385.8 * *
32305.9 ♦ les 32169.9 it il
32082.3 Canada Canada
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From IBM model 1 to a machine translation system

• IBM model 1 produces surprisingly accurate alignments and word
translation probabilities

• For translation you need a nontrivial alignment model P(a | e)
I IBM model 2 learns a probabilistic mapping of French word positions to

English word positions
I More sophisticated models are based on phrasal reorderings

• Increasing interest in using syntactic parsing to define phrasal
translation units and reordering models

• The problem of finding the optimal translation is usually NP-hard
I beam search for optimal translation
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Identifying phrases from word alignments

They have full access to working documents
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Sequence tagging overview

• Sequence tagging:
given a sequence (x1, . . . , xn) of observations (where each xi ∈ X ),
return a sequence (y1, . . . , yn) of states or labels (where each yi ∈ Y)

• Hidden Markov Models, and their three different representations:
I stochastic automata
I Bayes nets
I Trellis

• Even though there are exponentially many label sequences, there are
linear time dynamic programming algorithms

I Viterbi algorithm for finding most likely label sequence
I Forward-backward algorithm for finding expected counts

• Expectation Maximisation algorithm for learning HMMs from strings
alone
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Applications of sequence tagging

• Part of speech (POS) tagging: x are the words of a sentence, y are their parts
of speech.

y :
x :

DT
the

JJ
big

NN
cat

VBD
bit

NNP
Sam

.

.

• Noun-phrase chunking: x are the words of a sentence, y indicates whether
they are in the beginning, middle or end of a noun phrase (NP) chunk.

y :
x :

[NP
the

NP
big

NP]
cat bit

[NP]
Sam

.

.

• Named entity detection: The x are the words of a sentence, y indicates
whether they are in the beginning, middle or end of a noun phrase (NP) chunk
that is the name of a person, company or location.

y :
x :

[CO
XYZ

CO]
Corp. of

[LOC]
Boston announced

[PER]
Spade’s resignation

• Speech recognition: x are 100 msec. time slices of acoustic input, and y are the
corresponding phonemes (i.e., yi is the phoneme being uttered in time slice xi )
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Hidden Markov Models (HMMs)

• A Markov model generates sequence y = (y0 = ., y1, . . . , yn, yn+1 = /)
by generating each yi from yi−1

P(y) =
n+1∏
i=1

P(yi | yi−1) =
n+1∏
i=1

σyi ,yi−1

• In a Hidden Markov Model:
I the state sequence y = (y1, . . . , yn) is generated by a Markov model
I each xi in the observation sequence x = (x1, . . . , xn) is generated from its

corresponding state yi

P(x | y) =
n∏

i=1

P(xi | yi ) =
n∏

i=1

τxi ,yi

I so the joint distribution over (x,y) is:

P(x,y) =

(
n∏

i=1

P(yi | yi−1) P(xi | yi )

)
P(/ | yn) =

(
n∏

i=1

σyi ,yi−1τxi ,yi

)
σ/,yn
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HMMs as stochastic automata (Moore machines)
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0.1

0.4

0.8

0.1

0.2

• Automaton depicts all possible (x,y) sequences
• States are nodes in graph (identified with a label)
• State-to-state transition probabilities σ are arc labels
• State-to-observation emission probabilities τ are nodel labels
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HMMs as Bayes nets

Y0

.

Y1

VERB

Y2

DET

Y3

NOUN

Y4

/

X1

book

X2

the

X3

ticket

• Each random variable (e.g., observation xi and label yi ) is represented
by a node

• Shows factorisation of joint distribution P(x,y) into product of
conditional distributions

• Each node is associated with a conditional distribution from each of its
parents
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Important problems for HMMs

1. What’s the probability of a sequence of states and observations P(x,y)?

2. What’s the probability of a sequence of observations
P(x) =

∑
y∈Yn P(x,y)?

3. Given a sequence of observations x, what is the most likely sequence of
states argmaxy∈Yn P(y | x)?

4. Given visible training data (x,y), estimate the HMM parameters σ and
τ

5. Given hidden training data x, estimate the HMM parameters σ and τ

• Problems 2, 3 and 5 involve summing over all y ∈ Yn,

• but this can be done in linear time using dynamic programming over a
trellis
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HMM computation using a trellis

book the ticket

DET

NOUN

VERB

DET

NOUN

VERB

DET

NOUN

VERB

. /

• The trellis represents all possible state sequences y ∈ Yn for a fixed
observation sequence x = (x1, . . . , xn)

• One node for each (y , i) combination for y ∈ Y, i ∈ 1, . . . , n
• The weight of an edge from (y ′, i − 1) to (y , i) is σy ,y ′τxi ,y , i.e.,

probability of moving from y ′ to y and emitting xi

• The weight of a path is the product of the weights of the edges in it
• Each state sequence y identifies a path from . to / in trellis
• P(x,y) = weight of path y
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Calculating the probability of an observation sequence x

· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•
. /

Time (position in sequence)

S
ta

te
s

• Goal: compute probability Pσ,τ (x) of observed sequence x

Pσ,τ (x) =
∑
y∈Yn

Pσ,τ (x,y)

=
∑
y∈Yn

(
n∏

i=1

σyi ,yi−1τxi ,yi

)
σ/,yn

• Pσ,τ (x) is the sum of the probability of all paths in trellis
• The number of sequences in Yn grows exponentially with n

⇒ calculating Pσ,τ (x) by direct summation is infeasible
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Forward probabilities α

(i , y ′)

· · ·
•

•
. /

Time (position in sequence)

S
ta

te
s

· · ·
•

· · ·
•

· · ·
•

•
· · ·
•

•

••

• Forward probability αi ,y ′ is the probability of generating (x1, . . . , xi )
ending in a state y ′

αi ,y ′ =
∑

y∈Y i−1

Pσ,τ (Y1:i−1 = y,Yi = y ′,Vx1:i )

• αi ,y ′ is sum of weights of all paths from / to (i , y ′)

• α is an array indexed by a position i and a state y ′ ∈ Y
• Probability of observations Pσ,τ (x) = αn+1,/
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Dynamic programming for forward probabilities α

(i , y ′)
•

· · ·
•

•
. /

Time (position in sequence)

S
ta

te
s

· · ·
•

· · ·
•

· · ·
•

•
· · ·
•

•

•

(i − 1, y ′′)

• With simple algebra it’s possible to show that:

αi ,y ′ =
∑

y ′′∈Y
αi−1,y ′′ (σy ′,y ′′ τxi ,y ′)

⇒ Dynamic programming algorithm for calculating α
Set α0,/ = 1 and α0,y = 0 for all other y ∈ Y
For i = 1, . . . , n:

For y ′ ∈ Y:

αi,y ′ =
∑

y ′′∈Y
αi−1,y ′′ (σy ′,y ′′ τxi ,y ′)
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Finding the most likely state sequence

· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•
. /

Time (position in sequence)

S
ta

te
s

• Goal: find the most likely state sequence Y ?(x) wrt HMM (σ, τ )

Y ?(x) = argmax
y∈Yn

P(y | x) = argmax
y

P(y,x)

I This is how you use an HMM to tag an observation sequence x

• Key observation: best path from . to (i , y ′) must begin with the best
path to (i − 1, y ′′) for some y ′′ ∈ Y

53/286



The Viterbi algorithm for most likely state sequence

(i , y ′)
•

· · ·
•

•
. /

Time (position in sequence)

S
ta

te
s

· · ·
•

· · ·
•

· · ·
•

•
· · ·
•

•

•

(i − 1, y ′′)

• Compute best path to every node (i , y ′) as well as its weight

• Algorithm overview:

For i = 1, . . . , n + 1:
for each y ′ ∈ Y:

calculate best path to (i , y ′) and its probability
using best paths to (i − 1, y ′′) and their probabilities
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The Viterbi algorithm for HMMs and shortest path
algorithms

· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•
. /

Time (position in sequence)

S
ta

te
s

• If we define the weight of an edge from (y ′, i − 1) to (y , i) as its
negative log probability

w(y ′,i−1),(y ,i) = − log σy ,y ′τxi ,y

• Then the negative log probability of path is the sum of its weights

⇒ The highest probability state sequence is the shortest path from . to /

55/286



Estimating HMMs from visible training data

. /

Time (position in sequence)

S
ta

te
s

· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•
· · ·
•

•

• Training data D = (x,y) = ((x1, . . . , xn), (y1, . . . , yn)), i.e.,
observations and their states

I E.g., They/PRP liked/VBD the/DT Old/NNP Man/NNP
I Identifies a unique path in the trellis

• Because HMMs are products of multinomials, the MLEs are relative
frequencies

σ̂y ,y ′ =
ny ,y ′(D)

n·,y ′(D)

τ̂x ,y =
nx ,y (D)

n·,y (D)
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Estimating HMMs from observations alone

• Training data D = x = (x1, . . . , xn), i.e., observations but not the states

I E.g., They liked the Old Man
I State sequence could be any path in the trellis

• Expectation Maximization algorithm for estimating HMMs from
observations alone:

Initialise σ(0), τ (0) somehow (e.g., randomly)
For iteration t = 0, 1, 2, . . . until converged:

E-step: Calculate Eσ(t),τ (t) [ny ,y ′ ] and Eσ(t),τ (t) [nx,y ]

M-step: Calculate σ(t+1) and τ (t+1)

σ
(t+1)
y ,y ′ =

Eσ(t),τ (t) [ny ,y ′ ]

Eσ(t),τ (t) [n·,y ′ ]

τ (t+1)
x,y =

Eσ(t),τ (t) [nx,y ]

Eσ(t),τ (t) [n·,y ]
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Calculating expected counts by enumeration

• Training data D = x = (x1, . . . , xn) (no state information)

• Given model σ, τ , the expected values are as follows:

E[ny ′,y ′′ ] =
∑
y∈Yn

ny ′,y ′′(x,y) Pσ,τ (y | x)

E[nx ′,y ′ ] =
∑
y∈Yn

nx ′,y ′(x,y) Pσ,τ (y | x), where:

Pσ,τ (y | x) =
Pσ,τ (x,y)∑
y′∈Yn P(x,y)

Pσ,τ (x,y) =

(
n∏

i=1

σyi ,yi−1τxi ,yi

)
σ/,yn

• The number of state sequences y grows exponentially with n

⇒ Enumerating all state sequences is infeasible except when x is very short.
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Dynamic programming for computing expected counts

•
(i , y ′)

· · ·
•

•
. /· · ·

•
· · ·
•

· · ·
•

•
· · ·
•

•

•

αi−1,y ′′ βi ,y ′
(i − 1, y ′′)

• High level description:
I compute expected number of times each edge in trellis is traversed

E[N(i,y ′),(i−1,y ′′)]
I sum these over positions i ∈ 1, . . . , n + 1 to compute E[Ny ′,y ′′ ]

• E[N(i ,y ′),(i−1,y ′′)] is computed using forward probability αi−1,y ′′ and
backward probability βi ,y ′

• Backward probability βi ,y ′ is sum of weights of all paths from (i , y ′) to /
I there is a dynamic programming algorithm for βi,y ′
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Learning a 17-state HMM with EM from Penn WSJ corpus
count words generated by state
123911 of in , and for to from on at with as by ’s or ; than that – rose after
116885 the a an its this his new their one last that any chief another her no our some each next
116262 company year market share quarter week group time u.s. month board shares government rate exchange bank unit firm plan price
102328 sales trading prices president companies one it more stocks bonds investors earnings rates income them revenue profit chairman much funds
76547.5 to n’t be been not have more up “ out expected and it also so going do back being still
76250 ’s new stock first “ york u.s. federal big and market major national last financial most third own executive next
66005.4 is to are was will has would were have had could and can may ’s do did does should ’re
65616.9 in to by for on with at that as from about than up into be have make under sell buy
65097.6 it mr. he they which we i there who you that she this analysts what however john investors people also
58808.6 other their its some u.s. these “ many more and as such all net those new vice foreign interest two
57329.6 , that and – ” who because : also ; “ by as such but -lrb- when ago out yesterday
53400.4 . ” ? : -rrb- ago ... earlier outstanding – ! ’ yesterday “ in here today of ends friday
46854.1 “ ” but and said that as says if when which in while even some including so because by after
43697.8 , ’s said and is says was say has had inc earlier added think co reported are : corp expects
40517.8 $ to or about 10 two 8 1 up oct. three 50 20 15 2 five at nov. down 30
33486.3 corp. inc. & co. also -rrb- officials , bush group ’s -lrb- ltd. d. international has lynch securities says industries
30768 % million billion years cents months -rrb- days shares yen points 1 30 ago weeks 12 31 34 14 15
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Another EM run on same corpus
count words generated by state
118833 the a $ an its this his their one last that any chief another her no each our some next
116130 million year company market share billion quarter shares president week time u.s. month group government rate plan price unit issue
105943 of in and for to on from at with ’s as by or ; after over ’ is under about
100047 % years cents sales trading prices it companies stocks bonds them days earnings rates income shares investors one months profit
84530.4 , that and – also : because -lrb- ; “ who as said ” than when but -rrb- out of
69977.6 $ million a % new first “ billion u.s. stock big major last next own most two third past few
69784.6 to be n’t been not have more “ out expected it up also so do going well still being likely
67787.4 in to by for at on with as from about than that up into make sell buy through have only
62922.6 it he they ” which we i there who that you she analysts however this and but also investors people
62719.6 other their its two some these u.s. new three net many 8 such all more 10 several those interest recent
55219.1 is are was will has would were have had ’s could to can may do did does should as ’re
52359.5 . ” ? : -rrb- – ... ! ’ “ in ends of , activity -rcb- shares daffynition off million
52252.1 ’s and corp. inc. & co. york stock exchange group officials street bank securities trading inc capital francisco . estate
47304.5 “ mr. but ” and that if when as some which while many even president because what so most all
40179.2 to and ” more up or ago according earlier such yesterday compared based down -rrb- – back by outstanding rather
36356.3 said says and is ’s or say was has including ” had added reported are -rrb- rose think told took
31420.7 new american company federal san wall national u.s. dow general first west south british real united friday los east state
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Further topics on HMMs and sequence modelling

• Wide range of applications for sequence modelling in computational
linguistics

• Higher-order HMMs
I The HMMs we investigated here are first-order, i.e., the next state yi is

generated from yi−1

I In a k-th order HMM, yi is generated from yi−1, . . . , yi−k

• This theory generalises to stochastic finite-state transducers (useful for
modelling morphology)

• It is possible to train HMMs discriminatively to maximise P(y | x); such
models are called Conditional Random Fields
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Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models
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Why grammars?

Grammars specify a wide range of sets of structured objects

• especially useful for describing human languages

• applications in vision, computational biology, etc

There is a hierarchy of kinds of grammars

• if a language can be specified by a grammar low in the hierarchy, then it
can be specified by a grammar higher in the hierarchy

• the location of a grammar in this hierarchy determines its computational
properties

There are generic algorithms for computing with and estimating (learning)
each kind of grammar

• no need to devise new models and corresponding algorithms for each
new set of structures
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Preview of (P)CFG material

• Why are context-free grammars called “context-free”?

• Context-free grammars (CFG) derivations and parse trees

• Probabilistic CFGs (PCFGs) define probability distributions over
derivations/trees

• The number of derivations often grows exponentially with sentence
length

• Even so, we can compute the sum/max of probabilities of all trees in
cubic time

• It’s easy to estimate PCFGs from a treebank (a sequence of trees)

• The EM algorithm can estimate PCFGs from a corpus of strings
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Formal languages

W is a finite set of terminal symbols, the vocabulary of the language

• E.g., W = {likes, Sam,Sasha, thinks}
A string is a finite sequence of elements of W
• E.g., Sam thinks Sam likes Sasha

W? is the set of all strings (including the empty string ε)
W+ is the set of all non-empty strings
A (formal) language is a set of strings (a subset of W?)

• E.g., L = {Sam,Sam thinks,Sasha thinks, . . .}
A probabilistic language is a probability distribution over a language

66/286



Rewrite grammars

A rewrite grammar G = (W,N ,S ,R) consists of

W, a finite set of terminal symbols

N , a finite set of nonterminal symbols disjoint from W
S ∈ N is the start symbol, and

R is a finite subset of N+ × (N ∪W)?

The members of R are called rules or productions, and usually written
α→ β, where α ∈ N+ and β ∈ (N ∪W)?

A rewrite grammar defines the rewrites relation ⇒, where γαδ ⇒ γβδ iff
α→ β ∈ R and γ, δ ∈ (N ∪W)?.
A derivation of a string w ∈ W? is a finite sequence of rewritings
S ⇒ . . .⇒ w.
⇒? is the reflexive transitive closure of ⇒
The language generated by G is {w : S ⇒? w,where w ∈ W?}
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Example of a rewriting grammar

G1 = (W1,N1, S,R1), where

W1 = {Al,George, snores},
N1 = {S,NP,VP},
R1 = {S→ NP VP,NP→ Al,NP→ George,VP→ snores}.

Sample derivations:

S⇒ NP VP⇒ Al VP⇒ Al snores
S⇒ NP VP⇒ George VP⇒ George snores
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The Chomsky Hierarchy

Grammars classified by the shape of their productions α→ β.

Context-sensitive: |α| ≤ |β|
Context-free: |α| = 1

Right-linear: |α| = 1 and β ∈ W? (N ∪ ε).

The classes of languages generated by these classes of grammars form a
strict hierarchy (ignoring ε).

Language class Recognition complexity
Unrestricted undecidable

Context-sensitive exponential time
Context-free polynomial time

Linear linear time

Right linear grammars define finite state languages, and probabilistic right
linear grammars define the same distributions as Hidden Markov Models.

69/286



Context-sensitivity in human languages

Some human languages are not context-free (Shieber 1984, Culy 1984).
Context-sensitive grammars don’t seem useful for describing human
languages.
Trees are intuitive descriptions of linguistic structure and are normal forms
for context-free grammar derivations.
There is an infinite hierarchy of language families (and grammars) between
context-free and context-sensitive.
Mildly context-sensitive grammars, such as Tree Adjoining Grammars (Joshi)
and Combinatory Categorial Grammar (Steedman) seem useful for natural
languages.
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Parse trees for context-free grammars
A parse tree generated by CFG G = (W,N ,S ,R) is a finite ordered tree
labeled with labels from N ∪W, where:

• the root node is labeled S

• for each node n labeled with a nonterminal A ∈ N there is a rule
A→ β ∈ R and n’s children are labeled β

• each node labeled with a terminal has no children

TG is the set of all parse trees generated by G .
TG (w) is the subset of TG with yield w ∈ W?.

R = {S→ NP VP,NP→ Al,NP→ George,VP→ snores}

S

NP

Al

VP

snores

S

NP

George

VP

snores

71/286



Example of a CF derivation and parse tree

R =

{
S→ NP VP NP→ D N VP→ V

D→ the N→ dog V→ barks

}

S

(((hhh
NP VP

��XX
D N

the dog

V

barks

S

⇒ NP VP
⇒ D N VP
⇒ the N VP
⇒ the dog VP
⇒ the dog V
⇒ the dog barks
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Example of a CF derivation and parse tree
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Example of a CF derivation and parse tree
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Trees can depict constituency

VP

NP

N

the man

PP

NP

N

the

VP

DD

telescopewithsawI

Pro V

NP

S

P Preterminals

Nonterminals

Terminals or terminal yield
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CFGs can describe structural ambiguity

S

NP

Pro

I

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

the

N

telescope

S

NP

Pro

I

VP

V

saw

NP

D

the

N

N

man

PP

P

with

NP

D

the

N

telescope

R = {VP→ V NP,VP→ VP PP,NP→ D N,N→ N PP, . . .}
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CFG account of subcategorization
Nouns and verbs differ in the number of complements they appear with.
We can use a CFG to describe this by splitting or subcategorizing the basic
categories.

R =


VP→ V

[ ] VP→ V
[ NP] NP

V
[ ] → sleeps V

[ NP] → likes
. . . . . .


S

NP VP

Al V
[ ]

sleeps

likes

S

NP VP

Al V NP

N

pizzas

[ NP]
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Nonlocal “movement” constructions

“Movement” constructions involve a phrase appearing far from its normal
location.
Linguists believed CFGs could not generate them, and posited “movement
transformations” to produce them (Chomsky 1957)
But CFGs can generate them via “feature passing” using a conspiracy of
rules (Gazdar 1984)

S

NP VP

Aux VP

V NP

Al

eat

will

pizza

D N

the

C’/NP

Aux S/NP

NP VP/NP

Aux VP/NP

V NP/NP

will

Al

eat

NP

pizza

D N

which

CP
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Probabilistic grammars

A probabilistic grammar G defines a probability distribution PG (t) over the
parse trees T generated by G , and hence over strings generated by G .

PG (w) =
∑

t∈TG (w)

PG (t)

Standard (non-stochastic) grammars distinguish grammatical from
ungrammatical strings (only the grammatical strings receive parses).
Probabilistic grammars can assign non-zero probability to every string, and
rely on the probability distribution to distinguish likely from unlikely strings.
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Probabilistic context-free grammars

A Probabilistic Context Free Grammar (PCFG) consists of (W,N , S ,R, p)
where:

• (W,N ,S ,R) is a CFG with no useless productions or nonterminals, and

• p is a vector of production probabilities, i.e., a function R → [0, 1] that
satisfies for each A ∈ N : ∑

A→β ∈ R(A)

p(A→ β) = 1

where R(A) = {A→ α : A→ α ∈ R}.
A production A→ α is useless iff there are no derivations of the form
S ⇒? γAδ ⇒ γαδ ⇒∗ w for any γ, δ ∈ (N ∪W)? and w ∈ W?.
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Probability distribution defined by a PCFG

Intuitive interpretation:

• the probability of rewriting nonterminal A to α is p(A→ α)

• the probability of a derivation is the product of probabilities of rules
used in the derivation

For each production A→ α ∈ R, let fA→α(t) be the number of times A→ α
is used in t.
A PCFG G defines a probability distribution PG on T that is non-zero on
T (G ):

PG (t) =
∏
r∈R

p(r)fr (t)

This distribution is properly normalized if p satisfies suitable constraints.
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Example PCFG

1.0 S→ NP VP 1.0 VP→ V
0.75 NP→ George 0.25 NP→ Al
0.6 VP→ barks 0.4 VP→ snores

P


S

NP VP

George V

barks

 = 0.45 P


S

NP VP

Al V

snores

 = 0.1
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Things we want to compute with PCFGs
Given a PCFG G and a string w ∈ W?,

• (parsing): the most likely tree for w,

argmax
t∈TG (w)

PG (t)

• (language modeling): the probability of w,

PG (w) =
∑

t∈TG (w)

PG (t)

Learning rule probabilities from data:

• (maximum likelihood estimation from visible data): given a corpus of
trees D = (t1, . . . , tn), which rule probabilities p makes D as likely as
possible?

• (maximum likelihood estimation from hidden data): given a corpus of
strings D = (w1, . . . ,wn), which rule probabilities p makes D as likely
as possible?
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Parsing and language modeling

The probability PG (t) of a tree t ∈ TG (w) is:

PG (t) =
∏
r∈R

p(r)fr (t)

Suppose the set of parse trees TG (w) is finite, and we can enumerate it.
Naive parsing/language modeling algorithms for PCFG G and string w ∈ W?:

1. Enumerate the set of parse trees TG (w)

2. Compute the probability of each t ∈ TG (w)

3. Argmax/sum as appropriate
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Chomsky normal form

A CFG is in Chomsky Normal Form (CNF) iff all productions are of the form
A→ B C or A→ x , where A,B,C ∈ N and x ∈ W.
PCFGs without epsilon productions A→ ε can always be put into CNF.
Key step: binarize productions with more than two children by introducing
new nonterminals

A

B1 B2 BnB3

⇒

B1 B2

B1B2 B3

A

B4B1B2B3
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Substrings and string positions

Let w = w1w2 . . .wn be a string of length n
A string position for w is an integer i ∈ 0, . . . , n (informally, it identifies the
position between words wi−1 and wi )

• the • dog • chases • cats •
0 1 2 3 4

A substring of w can be specified by beginning and ending string positions
wi :j is the substring starting at word i + 1 and ending at word j .

w0:4 = the dog chases cats
w1:2 = dog
w2:4 = chases cats
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Language modeling using dynamic programming

• Goal: To compute PG (w) =
∑

t∈TG (w)

PG (t) = PG (S ⇒∗ w)

• Data structure: A table called a chart recording PG (A⇒∗ wi :k) for all
A ∈ N and 0 ≤ i < k ≤ |w|

• Base case: For all i = 1, . . . , n and A→ wi , compute:

PG (A⇒∗ wi−1:i ) = p(A→ wi )

• Recursion: For all k − i = 2, . . . , n and A ∈ N , compute:

PG (A⇒∗ wi :k)

=
k−1∑

j=i+1

∑
A→B C∈R(A)

p(A→ B C )PG (B ⇒∗ wi :j)PG (C ⇒∗ wj :k)
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Dynamic programming recursion

PG (A⇒∗ wi :k) =
k−1∑

j=i+1

∑
A→B C∈R(A)

p(A→ B C )PG (B ⇒∗ wi :j)PG (C ⇒∗ wj :k)

B C

A

wi :j wj :k

S

PG (A⇒∗ wi :k) is called the inside probability of A spanning wi :k .
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Example PCFG string probability calculation

w = George hates John

R =


1.0 S→ NP VP 1.0 VP→ V NP
0.7 NP→ George 0.3 NP→ John
0.5 V→ likes 0.5 V→ hates



George hates John

NP 0.7 V 0.5 NP 0.3

S 0.105

1 2 30

VP 0.15

0 NP 0.7

2

1

S 0.105

VP 0.15

1 2 3

V 0.5

NP 0.3L
ef

t
st

ri
n

g
p

os
it

io
n

Right string position
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Computational complexity of PCFG parsing

PG (A⇒∗ wi :k) =
k−1∑

j=i+1

∑
A→B C∈R(A)

p(A→ B C )PG (B ⇒∗ wi :j)PG (C ⇒∗ wj :k)

B C

A

wi :j wj :k

S

For each production r ∈ R and each i , k , we must sum over all intermediate
positions j ⇒O(n3|R|) time
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Estimating (learning) PCFGs from data

Estimating productions and production probabilities from visible data (corpus
of parse trees) is straight-forward:

• the productions are identified by the local trees in the data

• Maximum likelihood principle: select production probabilities in order to
make corpus as likely as possible

Estimating production probabilities from hidden data (corpus of terminal
strings) is much more difficult:

• The Expectation-Maximization (EM) algorithm finds probabilities that
locally maximize likelihood of corpus

• The Inside-Outside algorithm runs in cubic time in length of corpus
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Estimating PCFGs from visible data
Data: A treebank of parse trees D = (t1, . . . , tn).

LD(p) =
n∏

i=1

PG (ti ) =
∏

A→α∈R
p(A→ α)fA→α(D)

where fA→α(D) =
∑n

i=1 fA→α(ti ) is the number of times A→ α is used in D.
Introduce |N| Lagrange multipliers cB for each B ∈ N for the constraints∑

B→β∈R(B) p(B → β) = 1:

∂

LD(p)−
∑
B∈N

cB

 ∑
B→β∈R(B)

p(B → β)− 1


∂p(A→ α)

=
LD(p)fr (D)

p(A→ α)
− cA

Setting this to 0, p(A→ α) =
fA→α(D)∑

A→α′∈R(A) fA→α′(D)
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Visible PCFG estimation example

D =

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq
S→ NP VP 3 1
NP→ rice 2 2/3
NP→ corn 1 1/3
VP→ grows 3 1

P


S

NP VP

rice grows

 = 2/3

P


S

NP VP

corn grows

 = 1/3
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Estimating production probabilities from hidden data

Data: A corpus of sentences D = (w1, . . . ,wn).

LD(p) =
n∏

i=1

PG (wi ). PG (w) =
∑

t∈TG (w)

PG (t).

∂LD(p)

∂p(A→ α)
=

LD(p)
∑n

i=1 EG [fA→α|wi ]

p(A→ α)

After introducing a Lagrange multiplier for the constraint∑
B→β∈R(B) p(B → β) = 1:

p(A→ α) =

∑n
i=1 EG [fA→α | wi ]∑

A→α′∈R(A)

∑n
i=1 EG [fA→α′ | wi ]

This is an iteration of the Expectation Maximization algorithm!
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The EM algorithm for PCFGs

Input: a corpus of strings D = (w1, . . . ,wn)
Guess initial production probabilities p(0)

For u = 1, 2, . . . do:

1. Calculate expected frequency
∑n

i=1 Ep(u−1) [fA→α|wi ] of each production:

Ep[fA→α | w] =
∑

t∈TG (w)

fA→α(t)Pp(t)

2. Set p(u) to the relative expected frequency of each production

p(u)(A→ α) =

∑n
i=1 Ep(u−1) [fA→α|wi ]∑

A→α′
∑n

i=1 Ep(u−1) [fA→α′ |wi ]

It is as if p(u) were estimated from a visible corpus TG in which each tree t
occurs

∑n
i=1 Pp(u−1)(t|wi ) times.
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Dynamic programming for Ep[fA→B C | w]
Ep[fA→B C | w] =∑

0≤i<j<k≤n

P(S ⇒∗ w1:i Awk:n)p(A→ B C )P(B ⇒∗ wi :j)P(C ⇒∗ wj :k)

PG (w)

B C

A

wi :j wj :k

S

w0:i wk:n

94/286



Calculating “outside probabilities”

Construct a table of “outside probabilities” PG (S ⇒∗ w0:i Awk:n) for all
0 ≤ i < k ≤ n and A ∈ N
Recursion from larger to smaller substrings in w.
Base case: P(S ⇒∗ w0:0 S wn:n) = 1
Recursion: P(S ⇒∗ w0:j C wk:n) =

j−1∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0:i Awk:n)p(A→ B C )P(B ⇒∗ wi :j)

+
n∑

l=k+1

∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0:j Awl :n)p(A→ C D)P(D ⇒∗ wk:l)
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Recursion in PG (S ⇒∗ w0:i Awk :n)
P(S ⇒∗ w0:j C wk:n) =

j−1∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0:i Awk:n)p(A→ B C )P(B ⇒∗ wi :j)

+
n∑

l=k+1

∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0:j Awl :n)p(A→ C D)P(D ⇒∗ wk:l)

B C

A

wi :j wj :k

S

w0:i wk:n

C D

A

wj :k wk:l

S

w0:j wl :n
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Expectation Maximization with a toy grammar

Initial rule probs
rule prob
· · · · · ·
VP→ V 0.2
VP→ V NP 0.2
VP→ NP V 0.2
VP→ V NP NP 0.2
VP→ NP NP V 0.2
· · · · · ·
Det→ the 0.1
N→ the 0.1
V→ the 0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·
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Probability of “English”
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Rule probabilities from “English”
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Probability of “Japanese”
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Rule probabilities from “Japanese”
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Expectation Maximisation on real text

• ATIS treebank consists of 1,300 hand-constructed parse trees

• input consists of POS tags rather than words

• about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.

102/286



Probability of training strings
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Accuracy of parses of training strings
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Summary of PCFG parsing

• PCFGs define probability distributions over trees
I Context free ⇒ local dependencies ⇒ efficient dynamic programming

• Expectation Maximisation on its own can’t learn grammars from scratch
I it is able to learn specialised grammars
I most work on unsupervised grammar induction focuses on dependency

grammars
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Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models
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What is parsing?

• Syntactic structure depicts:
I the way words combine to form phrases and sentences, and
I the dependencies between these words and phrases

• A grammar is a finite specification of the syntactic structures of a
language

I a probabilistic grammar defines a probability distribution over syntactic
structures

• Parsing is the process of recovering syntactic structures from text or
speech
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Parsing lies on the path from form to meaning

• “Classical AI”: map text/speech to
“meaning representations”

• Might be able to do this
if only we knew what “meaning” is

• Problem is figuring out
I what information should be in a

“meaning representation”, and
I what to do with a meaning

representation once you have it

Text or speech
⇓

Syntactic parse
⇓

Meaning representation

108/286



Two kinds of uses for probabilistic parsing

“If you build it, they will come . . . ”

• Parses as (proxy) meaning representations
I machine translation

English text → English parse → French parse → French text
I text summarization
I information retrieval / question answering

parsing may become more useful with higher bandwidth inputs and lower
bandwidth outputs

(should optimize information parses contain for each application)

• Improved language models for “noisy channel” applications
(use parsing model to compute string probability; throw away parse
trees)

I speech recognition
I machine translation
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Linguistic grammar-based approaches to parsing

• Division of labour:
I Computational linguists

– design a formalism for stating grammars
(e.g., Lexical-functional grammar (LFG),
Head-driven phrase-structure grammar (HPSG),
Combinatory Categorial Grammar (CCG))

– design algorithms that find parses generated by any grammar written
in formalism

I Linguists write grammar fragments in formalism that describe interesting
constructions

• Central questions:
I how complicated does the formalism for stating grammars need to be?
I how much computational work is required to parse, i.e., find the analysis

of a sentence
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The ambiguity vs. coverage vs. detail trilemma

• Ambiguity grows exponentially with length of sentence

Put the rice in a box on the table in the kitchen . . .
I world-knowledge and pragmatics might resolve some ambiguities
I many syntactic ambiguities don’t correspond to differences in meaning

• Coverage: no complete grammars of English or any other language
I as you increase coverage, ambiguity usually increases as well

• Detail: calling in the linguists often makes matters worse
I E.g., systematically distinguishing count and mass nouns adds more

ambiguity than it resolves
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Statistical approaches to parsing

• Goal: find most probable analysis of a string of words

• Approach:
I define a probability distribution P(Tree) over all possible analyses of all

possible strings
I from this, we can compute:

– probability of a tree given words P(Tree |Words)
– probability that a sequence of words is a sentence P(Words)

(language model)
– probability that a sequence of words is a prefix of a sentence

• Doesn’t decide whether an analysis Tree or a string Words is
grammatical

I usually assign every possible Tree a positive probability
⇒ guarantees every string gets an analysis

I but these probabilities can vary enormously
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A new division of labour

• Why has the statistical approach been so successful?

• Factor the parsing task into two steps:
I linguists design (and annotate) the corpora
I computer scientists design machine-learning algorithms that generalise

from the corpora

• Each group needs only minimal understanding of the other’s task
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Conventional grammars are closed-world

• The closed world assumption for grammars
I Rules and lexical entries define set of grammatical structures
I Everything not grammatical is ungrammatical

• “Parsing as deduction”: parsing is the process of proving the
grammaticality of a sentence

• But: goal is understanding what the speaker’s trying to say;
not determining whether the sentence is grammatical

• Ideal parser should be open-world
I even ungrammatical sentences are interpretable

E.g., man bites dog 6= dog bites man
I words and constructions we recognize provide information about

sentence’s meaning
I unknown words or phrases do not cause interpretation to fail

– parsing and acquisition are two aspects of same process

• Statistical treebank parsers are open-world
I every possible tree receives positive probability
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

S

.NP

NN

pricethe

DTraises

VBZ

VPNP

NNP

Sam

.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

.NP
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pricethe

DTraises
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VPNP

NNP
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.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

.NP

NN

pricethe
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VPNP

NNP

Sam

VBZ

S

.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection
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.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

.

NN
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DT
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NNP

Sam

S
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VP .
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

.

the

DT

NP

NNP

Sam

S

VBZ
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VP

NP

price

NN

.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

VBZ .

the

NP

NNP

Sam

S

VP

NP

NN

price

DT

.

raises
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

raises

.

NP

NNP

Sam

S

VP

NP

NN

pricethe

DT

.

VBZ
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

.

NP

NNP

Sam

S

VBZ
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VP

NP

DT

the

NN

price

.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

NP

NNP

Sam

S

VBZ

raises

VP

NP

DT

the

NN

price

.

.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

NNP

Sam

S

VBZ

raises

VP

NP

DT

the

NN

price

.

NP .
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

Sam

S

VBZ
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DT

the
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.NNP

NP .
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

S
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NNP

Sam

.
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A “history-based” generative parsing model

• Generates nodes of tree in (roughly)
top-down order

• Predict each node from nodes already
generated:

I governor and its maximal projection
I governor’s governor and its maximal

projection

NP

DT

the

NN

price

.

raises

VBZ

VP

S

NP

NNP

Sam

.

130/286



Estimating grammar probabilities from treebanks

• The statistical parser needs to know the
conditional probability of generating node
type at each location in the tree

• A treebank is a corpus in which each
sentence is labelled with its analysis tree

.

the

DT

NP

NNP

Sam

S

VBZ

raises

VP

NP

price

NN

.

• The Penn WSJ treebank contains parses for ∼ 40,000 sentences (1.2
million words)

• The conditional probabilities can be estimated from a treebank by
counting how often each node type appears in each context

• There are methods for learning these probabilities from strings alone,
but the resulting grammars are not very good
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Capturing vs. covering linguistic generalizations

• Capturing a generalization: grammar
accurately describes phenomenon at
appropriate level, e.g., subject-verb
agreement via PERSON and NUMBER

features

• Covering a generalization: model covers
common cases of a generalization, perhaps
indirectly. E.g., head-to-head POS
dependencies

Sam

S

VBZ

raises

VP

NP

DT

the

NN

price

.NNP

NP .

• An “engineering” parser only needs to cover generalizations

• Even so, feature design requires linguistic insight
I basic linguistic insights are often most useful
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Parsing in the late 1990s

• Parsers for hand-written grammars (LFG, HPSG, etc)
I linguistically rich, detailed representations
I uneven / poor coverage of English
I even simple sentences are highly ambiguous
I only ad hoc treatment of preferences
I could not be learnt from data

• Generative probabilistic parsers
I systematic treatment of preferences
I learnt from treebank corpora
I simple constituent structure representations
I wide (if superficial) coverage of English

• Could the two approaches be combined?
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Generative statistical parsers

• “History-based” generative statistical parsers (Bikel, Charniak, Collins)
generate each new node in parse conditioned on the structure already
generated:

.

the

DT

NP

NNP

Sam

S

VBZ

raises

VP

NP

price

NN

.

P(price|NN,NP, raises,VBZ,VP, S)

• Assume each node is independent of all existing structure except for
nodes explicitly conditioned on

⇒ P(t) is product of node probabilities

⇒ simple “relative frequency” estimators (smoothing is essential ♦♦)
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Reentrant dependencies cause problems

• Linguistic structures exhibit cyclic
dependencies

I Linguistically-motivated grammars
typically include many kinds of these

• Cannot generate such parses as sequence
of independent steps
(naive approach “double counts”)

⇒ Estimating parameters of such grammars is
computationally much harder

buy

Sandy wine

likes

Sam

subj

obj

subj

mod

obj

“Sandy bought the wine
Sam likes”
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Generalising beyond generative models

• Mathematically straight-forward to define models in which parse is is
not generated as a sequence of independent decisions

I Maximum Entropy, log-linear, exponential, Gibbs, . . .

P(t) =
1

Z
exp

m∑
j=1

wj fj(t)

• Once we no longer require factors to be independent
I parses t need not be trees
I features fj can be any computable function of parses

e.g., one feature for each possible kind of dependency

• But simple “relative frequency” estimators for feature weights w no
longer work; maximum likelihood estimation is very hard

Abney (1997)
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Log-linear models are more expressive

.

the

DT

NP

NNP

Sam

S

VBZ

raises

VP

NP

price

NN

.

• Define features fx ,c for all node labels x and contexts c
f(price,NN,NP,raises,VBZ,VP,S)(t) is the number of times
(price,NN,NP, raises,VBZ,VP,S) appears in parse t

• Let weight wx ,c = log P(x |c)
w(price,NN,NP,raises,VBZ,VP,S) = log P(price|NN,NP, raises,VBZ,VP,S)

• Generative and log-linear models define same prob. distribution

• Easy to add additional features to log-linear model, but
difficult to add additional features to the generative model
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Why is maximum likelihood estimation hard?

• Given treebank training corpus D = (t?1 , . . . , t
?
n),

maximum likelihood estimator adjusts feature weights w to maximize
P(D) =

∏
i P(t?i )

P(t) =
1

Z
exp

m∑
j=1

wj fj(t)

Z =
∑
t′∈T

exp
m∑

j=1

wj fj(t ′)

where T is set of all possible trees for all possible strings

• ML estimator adjusts w to make trees in D more likely than any other
trees

• Features form a tree of independent generative steps ⇒ Z = 1
⇒ estimation easy

• Features have complex dependencies ⇒ Z 6= 1 ⇒ estimation hard
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Conditional maximum likelihood estimation

• Most likely parse t̂(s) for string s only depends on P(t|s)

⇒ only need to estimate P(t|s)

t̂(s) = argmax
t∈T (s)

P(t|s),where T (s) = set of possible trees for s

P(t|s) =
1

Z (s)
exp

∑
j

wj fj(t); Z (s) =
∑

t∈T (s)

exp
∑

j

wj fj(t)

• Partition functions Z (si ) “only” require summing over T (si ),
i.e., all parses for each string si in training data D

• Conditional maximum likelihood selects w to optimize conditional
probability of training data D = ((s1, t

?
1 ), . . . , (sn, t

?
n))

ŵ = argmax
w

n∏
i=1

P(t?i |si )

Johnson, Geman, Canon, Chi and Riezler (1999)
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Conditional estimation

si f (t?i ) feature vectors of other parses for si

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)
sentence 2 (7, 2, 1) (2, 5, 5)
sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

. . . . . . . . .

• Treebank training data D provides correct parse t?i for sentence si

• Parser produces all possible parse trees for each sentence s

• Feature extractor extracts feature vectors (f1(t), . . . , fm(t)) for each
parse tree t

• Estimator selects feature weights w = (w1, . . . ,wm) to make each t?i
score as high as possible relative to other parses for si
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Conditional vs joint estimation

P(t, s) = P(t|s)P(s)

• MLE maximizes probability of training trees t? and strings s
I Can be used for language modeling P(s) =

∑
t∈T (s) P(t, s)

I Extends to unsupervised estimation via EM

• Conditional MLE maximizes probability of t? given strings s
I estimates exactly what we need for parsing
I uses less information from the data (ignores P(s))
I ignores unambiguous sentences (i.e., |T (s)| = 1)

• Joint estimation should be better (lower variance) if model correctly
relates P(t|s) and P(s)

• Conditional estimation should be better if model incorrectly relates
P(t|s) and P(s)
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Details of syntactic representation don’t matter

• Log-linear models make decisions based only on feature vectors f (t)

⇒ Representation t doesn’t matter as long as t is “rich enough” to define
fj(t)

buy

Sandy wine

likes

Sam

subj

obj

subj

mod

obj
S

NP

Sandy

VP

VBD

bought DT

the

NP

Sam

wine

NN SBAR

S

VP

VBD

likes

NP

*T*

NP
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Conditional estimation for parse rescoring

• Easy to over-fit training data with large number of features

⇒ Regularize by adding a penalty term to log likelihood
I L1 penalty term ⇒ sparse feature weight vector
I L2 penalty term (Gaussian prior) seems best

• 50-best parses T (s) may not include true parse t?(s)

⇒ Train rescorer to prefer parse in Tc(s) closest to t?(s)

• Often several parses from 50-best list are equally close to true parse

⇒ EM-inspired (non-convex) loss function

• Direct numerical optimization with L-BFGS (modified for L1 regularizer)
produces best results

Riezler, King, Kaplan, Crouch, Maxwell and Johnson (2002),
Goodman (2004), Andrew and Gao (2007)
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Features for rescoring parses

• Parse rescorer’s features can be any computable function of parse

• Choice of features is the most important and least understood aspect of
the parser

I feature design has a much greater impact on performance than the
learning algorithm

• Features can be based on a linguistic theory (or more than one)

• . . . but need not be
I “shot-gun” or “hail Mary” features very useful

• Feature selection: a feature’s values on t?(s) and T (s) \ {t?(s)} must
differ on at least 5 sentences s ∈ D

• The Charniak parser’s log probability combines all of the generative
parser’s conditional distributions into a single rescorer feature
⇒ rescoring should never hurt
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Lexicalized and parent-annotated rules
• Lexicalization associates each constituent with its head
• Ancestor annotation provides a little “vertical context”
• Context annotation indicates constructions that only occur in main clause

(c.f., Emonds)

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP
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for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

Heads

Ancestor

Context

Rule
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n-gram rule features generalize rules
• Collects adjacent constituents in a local tree
• Also includes relationship to head (e.g., adjacent? left or right?)
• Parameterized by ancestor-annotation, lexicalization and head-type
• There are 5,143 unlexicalized rule bigram features and 43,480 lexicalized rule

bigram features

ROOT

S

NP

DT

The

NN

clash

VP

AUX

is

NP

NP

DT

a

NN

sign

PP

IN

of

NP

NP

DT

a

JJ

new

NN

toughness

CC

and

NN
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PP

IN

in

NP

NP

NNP

Japan

POS

’s

JJ

once-cozy

JJ

financial

NNS

circles

.

.

Left of head, non-adjacent to head
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Bihead dependency features

DT

A

NN

record

VBZ

has

RB

n’t

VP

VBN

been

VP

.

.NN

date

VBN

set

NP VP

S

(S (NP (NN date)) (VP (VBN set)))

• Bihead dependency features approximate linguistic function-argument
dependencies

• Computed for lexical (≈ semantic) and functional (≈ syntactic) heads

• One feature for each head-to-head dependency found in training corpus
(70,000 features in all)
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Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and
(optionally) all of the siblings of these nodes

• correspond roughly to TAG elementary trees

• parameterized by head type, number of sister nodes and lexicalization

ROOT
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NP

PRP

They

VP

VBD

were

VP
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consulted
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advance

.

.
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Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the right-most
branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English

• Only 2 different features, but very useful in final model!
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size and
(binned) closeness to the end of the sentence
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VP
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.

> 5 words =1 punctuation
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Coordination parallelism (1)

• A CoPar feature indicates the depth to which adjacent conjuncts are
parallel

ROOT

S

NP

PRP
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VP
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DT
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taken

.

.

Isomorphic trees to depth 4
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Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in adjacent
conjuncts and whether this pair contains the last conjunct.

ROOT

S

NP

PRP

They

VP

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

CC

and

VP

VDB

were

VP

VBN

surprised

PP

IN

at

NP

NP

DT

the

NN

action

VP

VBN

taken

.

.

4 words

6 wordsCoLenPar feature: (2,true)
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Word

• A Word feature is a word plus n of its parents (c.f., Klein and Manning’s
non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal projection) parents,
up to its governor’s maximal projection
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Constituent “edge neighbour” features

S
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NN
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.

DT
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over

IN NP

(IN over) (NP (DT the . . . ))

• Edge features are a kind of bigram context for constituents

• Would be difficult to incorporate into a generative parser
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Tree n-gram

• A tree n-gram feature is a tree fragment that connect sequences of
adjacent n words, for n = 2, 3, 4 (c.f. Bod’s DOP models)

• lexicalized and non-lexicalized variants

• There are 62,487 tree n-gram features
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Experimental setup

• Feature tuning experiments done using Collins’ split:
sections 2-19 as train, 20-21 as dev and 24 as test

• Tc(s) computed using Charniak 50-best parser

• Features which vary on less than 5 sentences pruned

• Optimization performed using LMVM optimizer from Petsc/TAO
optimization package or Averaged Perceptron

• Regularizer constant c adjusted to maximize f-score on dev
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Evaluating features

• The feature weights are not that indicative of how important a feature is

• The MaxEnt ranker with regularizer tuning takes approx 1 day to train

• The averaged perceptron algorithm takes approximately 2 minutes
I used in experiments comparing different sets of features
I Used to compare models with the following features:

NLogP Rule NGram Word WProj RightBranch Heavy NGramTree
HeadTree Heads Neighbours CoPar CoLenPar
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Adding one feature class

• Averaged perceptron baseline with only base parser log prob feature
I section 20–21 f-score = 0.894913
I section 24 f-score = 0.889901
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Subtracting one feature class

• Averaged perceptron baseline with all features
I section 20–21 f-score = 0.906806
I section 24 f-score = 0.902782
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Comparing estimators

• Training on sections 2–19, regularizer tuned on 20–21, evaluate on 24

Estimator # features sec 20-21 sec 24
MaxEnt model, p = 2 670,688 0.9085 0.9037
MaxEnt model, p = 1 14,549 0.9078 0.9024
averaged perceptron 523,374 0.9068 0.9028
expected f-score 670,688 0.9084 0.9029

• None of the differences are significant

• Because the exponential model with p = 2 was the first model I tested new
features on, they may be biased to work well with it.
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Sample parser output (1)
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Sample parser output (2 parser)
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Sample parser output (2 gold)
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Sample parser output (3 parser)
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Sample parser output (3 gold)
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Sample parser output (4 parser)
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Sample parser output (4 gold)
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Sample parser output (5 parser)
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Sample parser output (5 gold)
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Sample parser output (6 parser)
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Sample parser output (6 gold)
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Variation in parser accuracy on different test sets

 0.892
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 0.904
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 0.908
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f-
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e 
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ec
tio

n 
24

f-score on sections 20-21

• Each point shows the accuracy of a reranker trained using the averaged
perceptron algorithm
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Further directions in syntactic parsing

• Self-training: semi-supervised learning using the parser’s trees as input
for training

• Automatic domain adaptation: selecting an optimal combination of
treebanks for parser training based on properties of the corpus

• Parsing speech recognizer output: detecting and partially correcting
disfluencies; using prosody in place of punctuation

173/286



Conclusion

• It’s possible to define probability distributions over essentially any kind
of linguistic objects

⇒ No conflict between statistics and linguistics

• If the model is generative (i.e., products of conditional distributions)
I partition function Z = 1
⇒ ML estimation is easy (no need to sum over all possible structures)
⇒ EM algorithm for learning from hidden data

• If the model includes arbitrary “context-sensitive” dependencies
I partition function Z 6= 1
⇒ ML estimation is intractible (need to sum over all possible structures)

I Conditional ML estimation is possible, but computationally demanding
⇒ EM algorithm for learning from hidden data is intractible
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Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models
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Ideas behind talk

• Statistical methods have revolutionized computational linguistics and
cognitive science

• But most successful learning methods are parametric
I learn values of a fixed number of parameters

• Non-parametric Bayesian methods learn the parameters

• Adaptor Grammars learn probability of each adapted subtree
I c.f., data-oriented parsing

• “Rich get richer” learning rule ⇒ Zipf distributions

• Applications of Adaptor Grammars:
I acquisition of concatenative morphology
I word segmentation and lexical acquisition
I learning the structure of named-entity NPs

• Sampling (instead of EM) is a natural approach to Adaptor Grammar
inference
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Language acquisition as Bayesian inference

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

• Likelihood measures how well grammar describes data

• Prior expresses knowledge of grammar before data is seen
I can be very specific (e.g., Universal Grammar)
I can be very general (e.g., prefer shorter grammars)

• Posterior is a distribution over grammars
I captures learner’s uncertainty about which grammar is correct

• Language learning is non-parametric inference
I no (obvious) bound on number of words, grammatical morphemes, etc
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Outline

Review of Probabilistic Context-Free Grammars
Chinese Restaurant Processes
Adaptor grammars
Adaptor grammars for unsupervised word segmentation
Bayesian inference for adaptor grammars
Biased priors for learning syllabification
Adaptor grammars for Sesotho morphology
LDA Topic models as PCFGs
Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion
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Probabilistic context-free grammars

• Rules in Context-Free Grammars (CFGs) expand nonterminals into
sequences of terminals and nonterminals

• A Probabilistic CFG (PCFG) associates each nonterminal with a
multinomial distribution over the rules that expand it

• Probability of a tree is the product of the probabilities of the rules used
to construct it

Rule r θr Rule r θr
S→ NP VP 1.0
NP→ Sam 0.75 NP→ Sandy 0.25
VP→ barks 0.6 VP→ snores 0.4

P


Sam

NP

S

VP

barks

 = 0.45 P


Sandy

NP

S

VP

snores

 = 0.1

179/286



Learning syntactic structure is hard

• Bayesian PCFG estimation works well on toy data

• Results are disappointing on “real” data
I wrong data?
I wrong rules?

(rules in PCFG are given a priori; can we learn them too?)

• Strategy: study simpler cases
I Morphological segmentation (e.g., walking = walk+ing)
I Word segmentation of unsegmented utterances
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A CFG for stem-suffix morphology

Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent any
segmentation of words into stems and
suffixes

⇒ Can represent true segmentation

• But grammar’s units of generalization
(PCFG rules) are “too small” to learn
morphemes
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A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
I not a practical problem, as only a finite set of rules could possibly be used

in any particular data set
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Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence between
model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

# t a l k i n g

Suffix

#
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Forcing generalization via sparse Dirichlet priors
• Idea: use Bayesian prior that prefers fewer rules
• Set of rules is fixed in standard PCFG estimation,

but can “turn rule off” by setting θA→β ≈ 0
• Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)
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Morphological segmentation experiment

• Trained on orthographic verbs from U Penn. Wall Street Journal
treebank

• Uniform Dirichlet prior prefers sparse solutions as α→ 0

• Gibbs sampler samples from posterior distribution of parses
I reanalyses each word based on parses of the other words
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Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed

including including including including
add add add add

adds adds adds add s
added added add ed added

adding adding add ing add ing
continue continue continue continue

continues continues continue s continue s
continued continued continu ed continu ed

continuing continuing continu ing continu ing
report report report report

reports report s report s report s
reported reported reported reported

reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsiz e downsiz e

downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted
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Log posterior for models on token data
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• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!
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Relative frequencies of inflected verb forms
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Types and tokens

• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens eliminates (most)
frequency variation

I 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology from word
types

• Adaptor grammar mimics Goldwater et al “Interpolating between Types
and Tokens” morphology-learning model
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Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted
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Log posterior of models on type data
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• Correct solution is close to optimal at α = 10−3
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Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

I context-free rules generate types
I another process replicates types to produce tokens

• Adaptor grammars:
I learn probability of entire subtrees (how a nonterminal expands to

terminals)
I use grammatical hierarchy to define a Bayesian hierarchy, from which

type-based inference naturally emerges
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Bayesian inference for Dirichlet-multinomials

• Probability of next event with uniform Dirichlet prior with mass α over
m outcomes and observed data Z1:n = (Z1, . . . ,Zn)

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

where nk(Z1:n) is number of times k appears in Z1:n

• Example: Coin (m = 2), α = 1, Z1:2 = (heads,heads)
I P(Z3 = heads | Z1:2, α) ∝ 2.5
I P(Z3 = tails | Z1:2, α) ∝ 0.5
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Dirichlet-multinomials with many outcomes

• Predictive probability:

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

• Suppose the number of outcomes m� n. Then:

P(Zn+1 = k | Z1:n, α) ∝


nk(Z1:n) if nk(Z1:n) > 0

α/m if nk(Z1:n) = 0

• But most outcomes will be unobserved, so:

P(Zn+1 6∈ Z1:n | Z1:n, α) ∝ α
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From Dirichlet-multinomials to Chinese Restaurant
Processes

. . .

• Suppose number of outcomes is unbounded
but we pick the event labels

• If we number event types in order of occurrence
⇒ Chinese Restaurant Process

Z1 = 1

P(Zn+1 = k | Z1:n, α) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (0)

• Customer→ table mapping Z =

• P(z) = 1

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (1)

α

• Customer→ table mapping Z = 1

• P(z) = α/α

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (2)

1 α

• Customer→ table mapping Z = 1, 1

• P(z) = α/α× 1/(1 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (3)

2 α

• Customer→ table mapping Z = 1, 1, 2

• P(z) = α/α× 1/(1 + α)× α/(2 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Chinese Restaurant Process (4)

2 1 α

• Customer→ table mapping Z = 1, 1, 2, 1

• P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m + 1
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Labeled Chinese Restaurant Process (0)

• Table→ label mapping Y =

• Customer→ table mapping Z =

• Output sequence X =

• P(X) = 1

• Base distribution P0(Y ) generates a label Yk for each table k

• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (1)

fish

α

• Table→ label mapping Y = fish

• Customer→ table mapping Z = 1

• Output sequence X = fish

• P(X) = α/α× P0(fish)

• Base distribution P0(Y ) generates a label Yk for each table k

• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (2)

fish

1 α

• Table→ label mapping Y = fish

• Customer→ table mapping Z = 1, 1

• Output sequence X = fish,fish

• P(X) = P0(fish)× 1/(1 + α)

• Base distribution P0(Y ) generates a label Yk for each table k

• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (3)

fish

2

apple

α

• Table→ label mapping Y = fish,apple

• Customer→ table mapping Z = 1, 1, 2

• Output sequence X = fish,fish,apple

• P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

• Base distribution P0(Y ) generates a label Yk for each table k

• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (4)

fish

2

apple

1 α

• Table→ label mapping Y = fish,apple

• Customer→ table mapping Z = 1, 1, 2

• Output sequence X = fish,fish,apple,fish

• P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

• Base distribution P0(Y ) generates a label Yk for each table k

• All customers sitting at table k (i.e., Zi = k) share label Yk

• Customer i sitting at table Zi has label Xi = YZi
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Summary: Chinese Restaurant Processes

• Chinese Restaurant Processes (CRPs) generalize Dirichlet-Multinomials
to an unbounded number of outcomes

I concentration parameter α controls how likely a new outcome is
I CRPs exhibit a rich get richer power-law behaviour

• Labeled CRPs use a base distribution to label each table
I base distribution can have infinite support
I concentrates mass on a countable subset
I power-law behaviour ⇒ Zipfian distributions
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Nonparametric extensions of PCFGs

• Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied tables)
depends on the data

• Two obvious nonparametric extensions of PCFGs:
I let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG
I let the number of rules grow unboundedly

– “new” rules are compositions of several rules from original grammar
– equivalent to caching tree fragments
⇒ adaptor grammars

• No reason both can’t be done together . . .
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Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG rules as
in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
I by picking a rule and recursively expanding its children, or
I by generating a previously generated tree (with probability proportional to

the number of times previously generated)

• Implemented by having a CRP for each adapted nonterminal

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs
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Adaptor grammar for stem-suffix morphology (0)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
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Adaptor grammar for stem-suffix morphology (1a)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
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Adaptor grammar for stem-suffix morphology (1b)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
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Adaptor grammar for stem-suffix morphology (1c)

Word→ Stem Suffix

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words:
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Adaptor grammar for stem-suffix morphology (1d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2a)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats

216/286



Adaptor grammar for stem-suffix morphology (2b)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats

217/286



Adaptor grammar for stem-suffix morphology (2c)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs
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Adaptor grammar for stem-suffix morphology (3)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs, cats
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Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

I it learns from the trees it generates
I if an adapted subtree has been used frequently in the past, it’s more likely

to be used again

• but the sequence of trees is exchangable (important for sampling)

• An unadapted nonterminal A expands using A→ β with probability
θA→β

• Each adapted nonterminal A is associated with a CRP (or PYP) that
caches previously generated subtrees rooted in A

• An adapted nonterminal A expands:
I to a subtree t rooted in A with probability proportional to the number of

times t was previously generated
I using A → β with probability proportional to αAθA→β
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Properties of adaptor grammars

• Possible trees are generated by CFG rules
but the probability of each adapted tree is learned separately

• Probability of adapted subtree t is proportional to:
I the number of times t was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

I plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can be more probable than their parts

• PCFG rule probabilities estimated from table labels
⇒ effectively learns from types, not tokens
⇒ makes learner less sensitive to frequency variation in input
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Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed of a
Stem and a Suffix, which are composed of
Chars

• To generate a new Word from an adaptor
grammar

I reuse an old Word, or
I generate a fresh one from the base

distribution, i.e., generate a Stem and a
Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#
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Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU Mk

• Useful cues for word segmentation:
I Phonotactics (Fleck)
I Inter-word dependencies (Goldwater)
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Word segmentation with PCFGs (1)

Sentence→Word+

Word→ Phoneme+

which abbreviates

Sentence→Words
Words→Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k
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Word segmentation with PCFGs (1)

Sentence→Word+

Word→ all possible phoneme strings

• But now there are an infinite number of PCFG
rules!

I once we see our (finite) training data, only
finitely many are useful

⇒ the set of parameters (rules) should be chosen
based on training data

Words

Word

D 6

Words

Word

b U k
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Unigram word segmentation adaptor grammar

Sentence→Word+

Word→ Phoneme+

• Adapted nonterminals
depicted in blue

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• Adapting Words means that the grammar learns the probability of each
Word subtree independently

• Unigram word segmentation on Brent corpus: 56% token f-score
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Adaptor grammar learnt from Brent corpus

• Initial grammar

1 Sentence→Word Sentence 1 Sentence→Word
1 Word→ Phons
1 Phons→ PhonPhons 1 Phons→ Phon
1 Phon→ D 1 Phon→ G
1 Phon→ A 1 Phon→ E

• A grammar learnt from Brent corpus

16625 Sentence→Word Sentence 9791 Sentence→Word
1 Word→ Phons

4962 Phons→ PhonPhons 1575 Phons→ Phon
134 Phon→ D 41 Phon→ G
180 Phon→ A 152 Phon→ E
460 Word→ (Phons (Phon y) (Phons (Phon u)))
446 Word→ (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word→ (Phons (Phon D) (Phons (Phon 6)))
372 Word→ (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))
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Words (unigram model)

Sentence→Word+ Word→ Phoneme+

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

• Note: unadapted nodes suppressed in this and later trees
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Collocations ⇒ Words

Sentence→ Colloc+

Colloc→Word+

Word→ Phon+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words

• Both Words and Collocs are adapted (learnt)

• Significantly improves word segmentation accuracy over unigram model
(76% f-score; ≈ Goldwater’s bigram model)
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Collocations ⇒ Words ⇒ Syllables

Sentence→ Colloc+ Colloc→Word+

Word→ Syllable Word→ Syllable Syllable
Word→ Syllable Syllable Syllable Syllable→ (Onset) Rhyme
Onset→ Consonant+ Rhyme→ Nucleus (Coda)
Nucleus→ Vowel+ Coda→ Consonant+

Sentence

Colloc

Word

Onset

l

Nucleus

U

Coda

k

Word

Nucleus

&

Coda

t

Colloc

Word

Onset

D

Nucleus

I

Coda

s

• With no supra-word generalizations, f-score = 68%
• With 2 Collocation levels, f-score = 82%
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Distinguishing internal onsets/codas helps

Sentence→ Colloc+ Colloc→Word+

Word→ SyllableIF Word→ SyllableI SyllableF
Word→ SyllableI Syllable SyllableF SyllableIF→ (OnsetI) RhymeF
OnsetI→ Consonant+ RhymeF→ Nucleus (CodaF)
Nucleus→ Vowel+ CodaF→ Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• Without distinguishing initial/final clusters, f-score = 82%
• Distinguishing initial/final clusters, f-score = 84%
• With 2 Collocation levels, f-score = 87%
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Collocations2 ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e
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Summary: Adaptor grammars for word segmentation

• Word segmentation accuracy depends on the kinds of generalisations
learnt.

Generalization Accuracy

words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 87%

• Accuracy improves when you learn more
I explain away potentially misleading generalizations
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What do we have to learn?

• To learn an adaptor grammar, we need:
I probabilities of grammar rules
I adapted subtrees and their probabilities for adapted non-terminals

• If we knew the true parse trees for a training corpus, we could:
I read off the adapted subtrees from the corpus
I count rules and adapted subtrees in corpus
I compute the rule and subtree probabilities from these counts

• If we aren’t given the parse trees:
I there can be infinitely many possible adapted subtrees
⇒ can’t track the probability of all of them (as in EM)

I but sample parses of a finite corpus only include finitely many

• Sampling-based methods learn the relevant subtrees as well as their
weights
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Monte Carlo sampling approaches to inference

• Suppose we’d like to know P(y), but it’s too hard to compute

• Idea: produce samples y (1), y (2), . . . from P(y)
I there are generic methods for producing samples

• Given samples y (1), . . . , y (n) from P(y), we can approximate the
expected value of any function f of y by:

E[f ] =
∑
y∈Y

f (y) P(y) u
1

n

n∑
j=1

f (y)

• For word segmentation adaptor grammars
I produce sample parses of each sentence
I compute expected value of a word boundary at each possible boundary

point

238/286



Gibbs sampling

• Gibbs sampling is a generic procedure for producing samples from
multi-dimensional variables

• Goal: sample from P(y1, . . . , yn)

• generic Gibbs sampler algorithm:
I initialise y = (y1, . . . , yn) somehow
I repeat forever:

– pick an index j ∈ 1, . . . , n at random
– replace yj with a sample from P(yj | y−j),

where y−j = (y1, . . . , yj−1, yj+1, . . . , yn)

• For a wide range of distributions, these samples converge on P(y)
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A Gibbs sampler for adaptor grammars
• We’d like to sample P(t | w), where:

I w = (w1, . . . ,wn), where each wj is a sequence of terminals
I t = (t1, . . . , tn), where tj is a parse for wj

• Output: a sequence of sample parse trees t(1), t(2), . . .

where each t(u) = (t
(u)
1 , . . . , t

(u)
n ) contains a parse t

(u)
j for wj

• Intuition: same as simple incremental algorithm, but re-use sentences in
training data

I Assign (random) parse trees to each sentence, and compute rule and
subtree counts

I Repeat forever:

– pick a sentence (and corresponding parse) at random
– deduct the counts for the sentence’s parse from current rule and

subtree counts
– sample a parse for sentence according to updated grammar
– add sampled parse’s counts to rule and subtree counts

• Sampled parse trees and grammar converges to Bayesian posterior
distribution
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Sampling parses from an adaptor grammar

• Sampling a parse tree for a sentence is computationally most demanding
part of learning algorithm

• Component-wise Metropolis-within-Gibbs sampler for parse trees:
I adaptor grammar rules and probabilities change on the fly
I construct PCFG proposal grammar from adaptor grammar for previous

sentences
I sample a parse from PCFG proposal grammar
I use accept/reject to convert samples from proposal PCFG to samples

from adaptor grammar

• For particular adaptor grammars, there are often more efficient
algorithms
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Details about sampling parses

• Adaptor grammars are not context-free

• The probability of a rule (and a subtree) can
change within a single sentence

I breaks standard dynamic programming

Sentence

Colloc

Word

D 6

Word

d O g i

Colloc

Word

D 6

Word

d O g i

• But with moderate or large corpora, the probabilities don’t change by
much

I use Metropolis-Hastings accept/reject with a PCFG proposal distribution

• Rules of PCFG proposal grammar G ′(t−j) consist of:
I rules A→ β from base PCFG: θ′A→β ∝ αAθA→β
I A rule A→ Yield(t) for each table t in A’s restaurant:
θ′
A→Yield(t)

∝ nt , the number of customers at table t

• Map parses using G ′(t−j) back to adaptor grammar parses
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Summary: learning adaptor grammars

• Naive integrated parsing/learning algorithm:
I sample a parse for next sentence
I count how often each adapted structure appears in parse

• Sampling parses addresses exploration/exploitation dilemma

• First few sentences receive random segmentations
⇒ this algorithm does not optimally learn from data

• Gibbs sampler batch learning algorithm
I assign every sentence a (random) parse
I repeatedly cycle through training sentences:

– withdraw parse (decrement counts) for sentence
– sample parse for current sentence and update counts

• Particle filter online learning algorithm
I Learn different versions (“particles”) of grammar at once
I For each particle sample a parse of next sentence
I Keep/replicate particles with high probability parses
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Syllabification learnt by adaptor grammars

• Grammar has no reason to prefer to parse word-internal intervocalic
consonants as onsets

1 Syllable→ Onset Rhyme 1 Syllable→ Rhyme

• The learned grammars consistently analyse them as either Onsets or
Codas ⇒ learns wrong grammar half the time

Word

OnsetI

b

Nucleus

6

Coda

l

Nucleus

u

CodaF

n

• Syllabification accuracy is relatively poor
Syllabification given true word boundaries: f-score = 83%
Syllabification learning word boundaries: f-score = 74%

245/286



Preferring Onsets improves syllabification

2 Syllable→ Onset Rhyme 1 Syllable→ Rhyme

• Changing the prior to prefer word-internal Syllables with Onsets
dramatically improves segmentation accuracy

• “Rich get richer” property of Chinese Restaurant Processes
⇒ all ambiguous word-internal consonants analysed as Onsets

Word

OnsetI

b

Nucleus

6

Onset

l

Nucleus

u

CodaF

n

• Syllabification accuracy is much higher than without bias
Syllabification given true word boundaries: f-score = 97%
Syllabification learning word boundaries: f-score = 90%
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Modelling sonority classes improves syllabification

Onset→ OnsetStop Onset→ OnsetFricative

OnsetStop → Stop OnsetStop → Stop OnsetFricative

Stop→ p Stop→ t

• Five consonant sonority classes

• OnsetStop generates a consonant cluster with a Stop at left edge

• Prior prefers transitions compatible with sonority hierarchy (e.g.,
OnsetStop → Stop OnsetFricative) to transitions that aren’t (e.g.,
OnsetFricative → Fricative OnsetStop)

• Same transitional probabilities used for initial and non-initial Onsets
(maybe not a good idea for English?)

• Word-internal Onset bias still necessary

• Syllabification given true boundaries: f-score = 97.5%
Syllabification learning word boundaries: f-score = 91%
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The Sesotho corpus

• Sesotho is a Bantu language spoken in southern Africa

• Orthography is (roughly) phonemic
⇒ use orthographic forms as broad phonemic representations

• Rich agglutinative morphology (especially in verbs)

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

• The Demuth Sesotho corpus (1992) contains transcripts of child and
child-directed speech

• Here used a subset of size roughly comparable to Brent corpus of
infant-directed speech

Brent Demuth

utterances 9,790 8,503
word tokens 33,399 30,200
phonemes 95,809 100,113
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Sesotho verbs are morphologically complex

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

• Input:
u Me Mn Mk Mi Ml Me Mk Ma Me

• What I’d like to be able to learn someday:

Sentence

Verb

SubjMarker

u

ObjMarker

e

Stem

Root

nk

Perf

il

TenseAspect

e

WHNP

kae
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Unigram segmentation grammar – word

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence→Word+

Word→ Phoneme+

Sentence

Word

u e n k i l e

Word

k a e

• The word grammar has a word segmentation f-score of 43%

• Lower than 56% f-score on the Brent corpus.

• Sesotho words are longer and more complex.
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Collocation grammar – colloc

Sentence→ Colloc+

Colloc→Word+

Word→ Phoneme+

Sentence

Colloc

Word

u e

Word

n

Word

k i l e

Colloc

Word

k a

Colloc

Word

e

• Goldwater et al (2006) found that modelling bigram dependencies
greatly improved English segmentation accuracy

• Johnson (2008) showed similar improvements by learning English
collocations

• If we treat lower-level units as Words, f-score = 27%

• If we treat upper-level units as Words, f-score = 48%

• English improves by learning dependencies above words, but Sesotho
improves by learning generalizations below words
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Adding more levels – colloc2

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence→ Colloc+

Colloc→Word+

Word→ Morph+

Morph→ Phoneme+

Sentence

Colloc

Word

Morph

u

Morph

e

Word

Morph

n k i

Morph

l e

Word

Morph

k a

Morph

e

• If two levels are good, maybe three would be better?

• Word segmentation f-score drops to 47%

• Doesn’t seem to be much value in adding dependencies above Word
level in Sesotho
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Using syllable structure – word− syll

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence→Word+

Word→ Syll+

Syll→ (Onset) Nuc (Coda)

Syll→ SC
Onset→ C+

Nuc→ V+

Coda→ C+

Sentence

Word

Syll

u

Syll

e

Syll

n k i

Syll

l e

Word

Syll

k a e

• SC (syllablic consonants) are ‘l ’, ‘m’ ‘n’ and ‘r’
• Word segmentation f-score = 50%
• Assuming that words are composed of syllables does improve Sesotho

word segmentation
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Using syllable structure – colloc− syll

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence→ Colloc+

Colloc→Word+

Syll→ (Onset) Nuc (Coda)

Syll→ SC
Onset→ C+

Nuc→ V+

Coda→ C+

Sentence

Colloc

Word

Syll

u

Word

Syll

e

Word

Syll

n k i

Syll

l e

Colloc

Word

Syll

k a e

• Word segmentation f-score = 48%

• Additional collocation level doesn’t help
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Morpheme positions – word−morph

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence→Word+

Word→ T1 (T2 (T3 (T4 (T5))))
T1→ Phoneme+

T2→ Phoneme+

T3→ Phoneme+

T4→ Phoneme+

T5→ Phoneme+

Sentence

Word

T1

u e

T2

n k i l e

T3

k a e

• Each word consists of 1–5 morphemes

• Learn separate morphemes for each position

• Improves word segmentation f-score to 53%
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Building in language-specific information – word− smorph

u-
sm-

e-
om-

nk-
take-

il-
perf-

e
in

kae
where

“You took it from where?”

Sentence→Word+

Word→ (P1 (P2 (P3))) T (S)
P1→ Phoneme+

P2→ Phoneme+

P3→ Phoneme+

T→ Phoneme+

S→ Phoneme+

Sentence

Word

P1

u

P2

e

T

n k

S

i l e

Word

T

k a

S

e

• In Sesotho many words consist of a stem T, an optional suffix S and up
to 3 prefixes P1,P2 and P3

• Achieves highest f-score = 56%
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LDA topic models as PCFGs

• Each document i generates a
distribution over m topics

• Each topic j generates a (unigram)
distribution over vocabulary X .

• Preprocess input by prepending a
document id to every sentence

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m; x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster
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Left spine identifies document

• Left spine passes document id throughout sentence

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m; x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

260/286



Document → topic rules

• Document → topic rules specify probability of topic within document

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m; x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster
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Topic → word rules

• Topic → word rules specify probability of word within topic

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m; x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster
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Bayesian inference for LDA PCFGs

• Dirichlet priors on Document → Topic and Topic → Word distributions

• General-purpose PCFG parsing/estimation algorithms require time cubic
in length of sentence

I not a good idea for long documents!

• More efficient algorithms for these kinds of grammars
I (standard LDA inference algorithms)
I predictive (e.g., Earley) parsing algorithms
I identify compositions finite state automata/transducers that these

grammars encode
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Learning words and their referents

PIG|DOG I Mz ND M& Mt ND M6 N p MI Mg︸ ︷︷ ︸
PIG• Input to learner:

I unsegmented phoneme sequence, and
I objects in nonlinguistic context

• Learning objectives:
I segment utterances into words, and
I learn word-object relationship
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AG for (unigram) segmentation and reference

• Each sentence is associated with a single referent from the non-linguistic
context or a “null referent”

• Each word is either generated by the sentence’s referent-specific
distribution or the null referent distribution

• Given possible referents R, the grammar contains rules:

Sentence→ Referentr for each r ∈ R
Referentr → s for each r ∈ R, r ∈ s ∈ 2R

Referentr → Referentr Wordr for each r ∈ R
Referentr → Referentr Word∅ for each r ∈ R
Wordr → Phonemesr for each r ∈ R ∪ {∅}
Phonemesr → Phoneme+ for each r ∈ R ∪ {∅}

• Sample parses:
T dog|pig (Word I z D & t) (Word dog D 6 d O g i)
T dog|pig (Word D E r z) (Word dog D 6 d O g i)
T dog|pig (Word D & t s 6) (Word pig p I g)
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Joint segmentation and reference results

• Referents have much stronger effect on collocation model than on
unigram model

• Best results with collocation grammar requiring zero or one referential
word per sentence

I requiring that referential words are surrounded by non-referential words
may be as good

• Simultaneously learning word segmentation and reference does not
improve average word segmentation
(Tcolloc1 72% with real labels, 70% with permuted labels)

I non-linguistic context is very impoverished
I relatively few words are referential

• Referential words are segmented better when referents are provided
(Tcolloc1 74% with real labels, 52% with permuted labels)
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Adaptor grammars for learning structure in names

• Many different kinds of names
I Person names, e.g., Mr. Sam Spade Jr.
I Company names, e.g., United Motor Manufacturing Corp.
I Other names, e.g., United States of America

• At least some of these are structured; e.g., Mr is an honorific, Sam is
first name, Spade is a surname, etc.

• Penn treebanks assign flat structures to base NPs (including names)

• Data set: 10,787 unique lowercased sequences of base NP proper nouns,
containing 23,392 words

• Can we automatically learn the structure of these names?
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Adaptor grammar for names
NP→ Unordered+ Unordered→Word+

NP→ (A0) (A1) . . . (A6) NP→ (B0) (B1) . . . (B6)
A0→Word+ B0→Word+

. . . . . .
A6→Word+ B6→Word+

• Sample output:

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)
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What do we have to learn?

• To learn an adaptor grammar, we need:
I probabilities of grammar rules
I adapted subtrees and their probabilities for adapted non-terminals

• If we knew the true parse trees for a training corpus, we could:
I read off the adapted subtrees from the corpus
I count rules and adapted subtrees in corpus
I compute the rule and subtree probabilities from these counts

– simple computation (smoothed relative frequencies)

• If we aren’t given the parse trees:
I there can be infinitely many possible adapted subtrees
⇒ can’t track the probability of all of them (as in EM)

I but sample parses of a finite corpus only include finitely many

• Sampling-based methods learn the relevant subtrees as well as their
weights
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If we had infinite data . . .

• A simple incremental learning algorithm:
I Repeat forever:

– get next sentence
– sample a parse tree for sentence according to current grammar
– increment rule and adapted subtree counts with counts from

sampled parse tree
– update grammar according to these counts

• Particle filter learners update multiple versions of the grammar at each
sentence
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A Gibbs sampler for learning adaptor grammars

• Intuition: same as simple incremental algorithm, but re-use sentences in
training data

I Assign (random) parse trees to each sentence, and compute rule and
subtree counts

I Repeat forever:

– pick a sentence (and corresponding parse) at random
– deduct the counts for the sentence’s parse from current rule and

subtree counts
– sample a parse for sentence according to updated grammar
– add sampled parse’s counts to rule and subtree counts

• Sampled parse trees and grammar converges to Bayesian posterior
distribution
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Sampling parses from an adaptor grammar

• Sampling a parse tree for a sentence is computationally most demanding
part of learning algorithm

• Component-wise Metropolis-within-Gibbs sampler for parse trees:
I adaptor grammar rules and probabilities change on the fly
I construct PCFG proposal grammar from adaptor grammar for previous

sentences
I sample a parse from PCFG proposal grammar
I use accept/reject to convert samples from proposal PCFG to samples

from adaptor grammar

• For particular adaptor grammars, there are often more efficient
algorithms
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Details about sampling parses

• Adaptor grammars are not context-free

• The probability of a rule (and a subtree) can
change within a single sentence

I breaks standard dynamic programming

Sentence

Colloc

Word

D 6

Word

d O g i

Colloc

Word

D 6

Word

d O g i

• But with moderate or large corpora, the probabilities don’t change by
much

I use Metropolis-Hastings accept/reject with a PCFG proposal distribution

• Rules of PCFG proposal grammar G ′(t−j) consist of:
I rules A→ β from base PCFG: θ′A→β ∝ αAθA→β
I A rule A→ Yield(t) for each table t in A’s restaurant:
θ′
A→Yield(t)

∝ nt , the number of customers at table t

• Map parses using G ′(t−j) back to adaptor grammar parses
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Summary: learning adaptor grammars

• Naive integrated parsing/learning algorithm:
I sample a parse for next sentence
I count how often each adapted structure appears in parse

• Sampling parses addresses exploration/exploitation dilemma

• First few sentences receive random segmentations
⇒ this algorithm does not optimally learn from data

• Gibbs sampler batch learning algorithm
I assign every sentence a (random) parse
I repeatedly cycle through training sentences:

– withdraw parse (decrement counts) for sentence
– sample parse for current sentence and update counts

• Particle filter online learning algorithm
I Learn different versions (“particles”) of grammar at once
I For each particle sample a parse of next sentence
I Keep/replicate particles with high probability parses

277/286



Outline

Review of Probabilistic Context-Free Grammars
Chinese Restaurant Processes
Adaptor grammars
Adaptor grammars for unsupervised word segmentation
Bayesian inference for adaptor grammars
Biased priors for learning syllabification
Adaptor grammars for Sesotho morphology
LDA Topic models as PCFGs
Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion

278/286



Conclusion

• Adaptor Grammars (AG) “adapt” to the strings they generate

• The “rules” AGs generalise over are subtrees of base grammar
I cached subtrees depend on data ⇒ non-parametric

• AGs inherit “rich get richer” property from
Chinese Restaurant Processes

⇒ learning generalises over types rather than tokens
⇒ generate Zipfian distributions

• AGs can describe a variety of linguistic inference problems
I Accuracy often improves as models become more realistic

• Sampling methods are a natural approach to AG inference
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Interested in applying Bayesian inference to language?

• We’re looking for:
I graduate students and
I post-doctoral reseachers

with good mathematical/computational skills

• Cotutelle (joint PhD) support also available

• Please contact me if you’re interested:

Prof. Mark Johnson
Department of Computing

Macquarie University
Sydney

Australia

mjohnson@science.mq.edu.au
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Issues with adaptor grammars

• Recursion through adapted nonterminals seems problematic
I New tables are created as each node is encountered top-down
I But the tree labeling the table is only known after the whole subtree has

been completely generated
I If adapted nonterminals are recursive, might pick a table whose label we

are currently constructing. What then?

• Extend adaptor grammars so adapted fragments can end at
nonterminals a la DOP (currently always go to terminals)

I Adding “exit probabilities” to each adapted nonterminal
I In some approaches, fragments can grow “above” existing fragments, but

can’t grow “below” (O’Donnell)

• Adaptor grammars conflate grammatical and Bayesian hierarchies
I Might be useful to disentangle them with meta-grammars
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Context-free grammars
A context-free grammar (CFG) consists of:
• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N,
• a finite set R of rules A→ β, where A ∈ N and β ∈ (N ∪W )?

• a start symbol S ∈ N.

Each A ∈ N ∪W generates a set TA of trees.
These are the smallest sets satisfying:
• If A ∈W then TA = {A}.
• If A ∈ N then:

TA =
⋃

A→B1...Bn∈RA

TreeA(TB1 , . . . , TBn)

where RA = {A→ β : A→ β ∈ R}, and

TreeA(TB1 , . . . , TBn) =

 �� PPA

t1 tn. . .
:

ti ∈ TBi
,

i = 1, . . . , n


The set of trees generated by a CFG is TS .
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Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector θ,
where:

• θA→β is the probability of expanding the nonterminal A using the
production A→ β.

It defines distributions GA over trees TA for A ∈ N ∪W :

GA =


δA if A ∈W∑
A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . ,Gn)

 �� PPA

t1 tn. . .

 =
n∏

i=1

Gi (ti ).

TDA(G1, . . . ,Gn) is a distribution over TA where each subtree ti is generated
independently from Gi .

283/286



DP adaptor grammars

An adaptor grammar (G ,θ,α) is a PCFG (G ,θ) together with a parameter
vector α where for each A ∈ N, αA is the parameter of the Dirichlet process
associated with A.

GA ∼ DP(αA,HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)

The grammar generates the distribution GS .
One Dirichlet Process for each adapted non-terminal A (i.e., αA > 0).
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Recursion in adaptor grammars

• The probability of joint distributions (G,H) is defined by:

GA ∼ DP(αA,HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)

• This holds even if adaptor grammar is recursive

• Question: when does this define a distribution over (G,H)?
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Interested in statistical models for computational linguistics?

We’re recruiting PhD students and post-docs.

Contact Mark.Johnson@mq.edu.au for more information.
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