Probabilistic Models for Computational Linguistics

Mark Johnson

Macquarie University
Machine Learning summer school 2011

Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models

MACQUARIE

The big ideas

- Probabilistic generative models
- The noisy channel model, and recovering hidden structure
- The Expectation Maximisation (EM) algorithm
- Hidden Markov Models (HMMs)
- Probabilistic Context-Free Grammars (PCFGs)
- Maximum Entropy (MaxEnt) models
- Non-parametric Bayesian inference (Chinese restaurant processes)

Brief Introduction to Discrete Probability

- Sample space Ω : set of possible events
- Probability $\mathrm{P}(x)$ of event $x \in \Omega$
- $0 \leq \mathrm{P}(x) \leq 1$ for all $x \in \Omega$
- $\sum_{x \in \Omega} P(x)=1$
- A random variable is a function on Ω
- If A is a random variable and a is one of its values,

$$
\mathrm{P}(A=a)=\sum_{\substack{x \in \Omega \\ A(x)=a}} \mathrm{P}(x)
$$

i.e., $\mathrm{P}(A=a)$ is sum of probability of all events x where $A(x)=a$.

- Example: $\Omega=\{$ Sam, Sandy, likes $\}$

$$
\begin{aligned}
& \mathrm{P}(\text { Sam })=0.5, \mathrm{P}(\text { Sandy })=0.1, \mathrm{P}(\text { likes })=0.4 \\
& \operatorname{PoS}(\text { Sam })=\mathrm{n}, \operatorname{PoS}(\text { Sandy })=\mathrm{n}, \operatorname{PoS}(\text { likes })=\mathrm{v} \\
& \mathrm{P}(\operatorname{PoS}=\mathrm{n})=0.6, \mathrm{P}(\operatorname{PoS}=\mathrm{v})=0.4
\end{aligned}
$$

Joint and conditional probabilities

- Joint probability of two random variables A and B is:

$$
\mathrm{P}(A=a, B=b)=\sum_{\substack{x \in \Omega \\ A(x)=a \\ B(x)=b}} \mathrm{P}(x)
$$

is sum of probability of all events x where $A(x)=a$ and $B(x)=b$

- Conditional probability of A given B is:

$$
\mathrm{P}(A=a \mid B=b)=\frac{\mathrm{P}(A=a, B=b)}{\mathrm{P}(B=b)}
$$

- Example: $\Omega=\{$ Sam, Sandy, likes $\}$

$$
\mathrm{P}(\text { Sam })=0.5, \mathrm{P}(\text { Sandy })=0.1, \mathrm{P}(\text { likes })=0.4
$$

$\operatorname{Len}(x)=$ number of chars in x, $\operatorname{Pos}($ Sam $)=\operatorname{PoS}($ Sandy $)=\mathrm{n}, \operatorname{PoS}($ likes $)=\mathrm{v}$

$$
\mathrm{P}(\mathrm{PoS}=\mathrm{n} \mid \text { Len }=5)=\frac{\mathrm{P}(\mathrm{PoS}=\mathrm{n}, \text { Len }=5)}{\mathrm{P}(\operatorname{Len}=5)}=0.2
$$

Bayes rule

- For any random variables A, B :

$$
\mathrm{P}(A, B)=\mathrm{P}(A \mid B) \mathrm{P}(B)=\mathrm{P}(B \mid A) \mathrm{P}(A)
$$

SO:

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(B \mid A) \mathrm{P}(A)}{\mathrm{P}(B)}
$$

- Bayes rule is useful for inverting conditional probability distributions

The Noisy Channel model and Bayes rule

- The Noisy Channel model uses Bayes rule to invert probability distributions
- Example: Speech recognition maps acoustic inputs A to texts T
- Probabilistic formulation:

$$
\begin{aligned}
T^{\star}(A) & =\underset{T}{\operatorname{argmax}} \mathrm{P}(T \mid A) \\
& =\underset{T}{\operatorname{argmax}} \frac{\mathrm{P}(A \mid T) \mathrm{P}(T)}{\mathrm{P}(A)} \\
& =\underset{T}{\operatorname{argmax}} \mathrm{P}(A \mid T) \mathrm{P}(T)
\end{aligned}
$$

- $\mathrm{P}(T)$ is called the source model
- $\mathrm{P}(A \mid T)$ is called the channel model
- Other applications of noisy channel models:
- machine translation
- language reconstruction in historical linguistics
- detecting and correcting disfluencies in speech recognition

The Noisy Channel model as a generative process

- The source model generates text strings T

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~T}=" \ldots \text { recognise speech } \ldots ") \\
& \quad>\mathrm{P}(T=" \ldots \text { wreck a nice beach } \ldots ")
\end{aligned}
$$

- The channel model maps text T to an acoustic waveform A
- Computing with the noisy channel model uses Bayes rule to compute

$$
\mathrm{P}(T \mid A)=\frac{\mathrm{P}(A \mid T) \mathrm{P}(T)}{\mathrm{P}(A)}
$$

Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models

Language modelling overview

- Goal of language modelling: distinguish more likely text or speech from less likely text or speech
- A key component of many NLP systems
- Speech recognition: e.g., "recognise speech" vs "wreck a nice beach"
- Machine translation
- n-gram models model text in terms of overlapping n-word sequences
- easy to train from billions of words of text
- produce quite good results
- They also introduce key notions of probability and statistics

What is a language model?

- A sentence or a document is a sequence of words $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$, where each $w_{i} \in \mathcal{W}$ (i.e., \mathcal{W} is the vocabulary)
- Goal: find an accurate probability distribution $\mathrm{P}(\boldsymbol{w})$ over word sequences
- Method: estimate $\mathrm{P}(\boldsymbol{w})$ using statistics collected from a corpus of sentences
- a statistic is a function of the data
- Questions:
- which statistics should we collect?
- how do we use them to estimate $\mathrm{P}(\boldsymbol{w})$?
- Why is this hard?

"Bag of words" (unigram) models

- "Bag of words" assumption: for all positions i, j in a sentence

$$
\mathrm{P}\left(W_{i}=w\right)=\mathrm{P}\left(W_{j}=w\right)
$$

- To generate a sentence $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$:

1. generate a sentence length n from $\mathrm{P}(N)$
2. generate word i from a word distribution $\mathrm{P}\left(W_{i}\right)$

$$
\mathrm{P}\left(\boldsymbol{W}=\left(w_{1}, \ldots, w_{n}\right)\right)=\mathrm{P}(N=n) \prod_{i=1}^{n} \mathrm{P}\left(W_{i}=w_{i}\right)
$$

- A unigram model lets us define a distribution over sentences in terms of distributions over sentence lengths and distributions over words

Estimating $\mathrm{P}(W)$ from a corpus

- Informal idea:
- Given a corpus D, count how often each word w appears
- Set $\mathrm{P}(W=w)$ to the fraction of times w appears in D
- Formalise as a parameter estimation problem
- Introduce parameters

$$
\mathrm{P}\left(W_{i}=w\right)=\varphi_{w} \text { for all } w \in \mathcal{W} \text { and } i=1,2, \ldots
$$

so φ is a vector indexed by word types in \mathcal{W}

- Provide an estimator $\widehat{\varphi}(D)$ for the parameters from data D

$$
\begin{aligned}
\hat{\varphi}_{w} & =\frac{n_{w}(D)}{n(D)}, \text { where: } \\
n_{w}(D) & =\text { number of times } w \text { appears in } D, \text { and } \\
n .(D) & =\sum_{w \in \mathcal{W}} n_{w}(D)=\text { number of words in } D
\end{aligned}
$$

Maximum likelihood estimation

- Maximum likelihood principle:

Choose model parameters to make data as likely as possible

- Likelihood function: probability of data as function of model parameters
- If $D=\left(w_{1}, \ldots, w_{n}\right)$ (i.e., one long sentence)

$$
L_{D}(\varphi)=\mathrm{P}_{\varphi}(D)=\mathrm{P}(N=n) \prod_{i=1}^{n} \varphi_{w_{i}}
$$

- Maximum Likelihood Estimate (MLE):

$$
\widehat{\boldsymbol{\varphi}}=\underset{\varphi}{\operatorname{argmax}} L_{D}(\varphi)
$$

- Fact: MLE is relative frequency, i.e.,

$$
\widehat{\varphi}_{w}=\frac{n_{w}(D)}{n .(D)}
$$

Smoothing the MLE $\widehat{\boldsymbol{\varphi}}$

- Suppose \boldsymbol{w} contains an unknown word w, i.e., $n_{w}(D)=0$

$$
\begin{aligned}
& \Rightarrow \widehat{\varphi}_{w}=0 \\
& \Rightarrow \mathrm{P}_{\varphi}(\boldsymbol{w})=0
\end{aligned}
$$

\Rightarrow Use a different estimator, e.g., Bayesian MAP estimator

$$
\begin{aligned}
\tilde{\varphi}_{w} & =\frac{n_{w}(D)+1}{n \cdot(D)+m}, \text { where: } \\
m & =|\mathcal{W}|=\text { size of vocabulary }
\end{aligned}
$$

- The Bayesian MAP estimator smooths the MLE

More on unknown words

- In many applications you'll often encounter unknown words, no matter how big training data D is
- One approach: replace all words not seen (say) 5 times in D with a special symbol, say \star UNK \star
- Problem: for many infrequent words w, usually $\varphi_{\star \text { UNK } \star}>\varphi_{w}$
- More sophisticated models of unknown words make a big difference
- "Lazy statistical modeller's morphology"
- Multiple kinds of "unknown words"
- classify unknown words by
- capitalisation, or
- last three letters
e.g., Melbourne $\mapsto \star \mathrm{UNK}_{\mathrm{CAP}} \star$, walking $\mapsto \star \mathrm{UNK}_{\text {ing }} \star$

Bigram language model

- A bigram language model captures dependencies between adjacent words
- Conditional decomposition: (exact)

$$
\begin{aligned}
\mathrm{P}\left(w_{1}, \ldots, w_{n}\right)= & \mathrm{P}\left(w_{1}, \ldots, w_{n-1}\right) \mathrm{P}\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) \\
= & \mathrm{P}\left(w_{1}\right) \mathrm{P}\left(w_{2} \mid w_{1}\right) \mathrm{P}\left(w_{3} \mid w_{1}, w_{2}\right) \ldots \\
& \mathrm{P}\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right)
\end{aligned}
$$

- Markov: only last word matters (approximation)

$$
\begin{aligned}
\mathrm{P}\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right) & =\mathrm{P}\left(w_{i} \mid w_{i-1}\right), \text { so: } \\
\mathrm{P}\left(w_{1}, \ldots, w_{n}\right) & =\mathrm{P}\left(w_{1}\right) \mathrm{P}\left(w_{2} \mid w_{1}\right) \mathrm{P}\left(w_{3} \mid w_{2}\right) \ldots \mathrm{P}\left(w_{n} \mid w_{n-1}\right)
\end{aligned}
$$

- Stationarity: position doesn't matter (approximation)

$$
\mathrm{P}\left(w_{i} \mid w_{i-1}\right)=\mathrm{P}\left(w_{j} \mid w_{j-1}\right) \text { for all } i, j
$$

Sentence boundary markers

- Instead of generating w_{1}, \ldots, w_{n}, generate the infinite sequence

$$
\triangleright, w_{1}, \ldots, w_{n}, \triangleleft, \triangleleft, \ldots
$$

where $w_{0}=\triangleright$ is the beginning of sentence marker and $w_{n+1}=\triangleleft$ is the end of sentence marker
\Rightarrow Everything is a bigram dependency, e.g., $\mathrm{P}\left(w_{1}\right)=\mathrm{P}\left(w_{1} \mid \triangleright\right)$; $\mathrm{P}(\triangleleft \mid \triangleleft)=1$

- Bigram language model:

$$
\begin{aligned}
\mathrm{P}\left(w_{1}, \ldots, w_{n}\right) & =\prod_{i=1}^{n+1} \mathrm{P}\left(w_{i} \mid w_{i-1}\right) \\
& =\prod_{i=1}^{n+1} \theta_{w_{i}, w_{i-1}}
\end{aligned}
$$

where $\theta_{w, w^{\prime}}=\mathrm{P}\left(W_{i}=w \mid W_{i-1}=w^{\prime}\right)$ (stationarity)

- $\boldsymbol{\theta}$ is a matrix of transition probabilities indexed by \mathcal{W}.

Bigram example

- Bigram parameters:

$\boldsymbol{\theta}=$| $w_{i} \backslash w_{i-1}$ | \triangleright | likes | Sam | Sandy |
| :---: | :---: | :---: | :---: | :---: |
| likes | 0.1 | 0.1 | 0.2 | 0.4 |
| Sam | 0.5 | 0.2 | 0.1 | 0.1 |
| Sandy | 0.4 | 0.6 | 0.1 | 0.1 |
| \triangleleft | 0 | 0.1 | 0.6 | 0.4 |

- Bigram model estimates:

$$
\begin{aligned}
\mathrm{P}(\triangleright, \text { Sam }, \triangleleft) & =\theta_{\text {Sam }, \triangleright} \theta_{\triangleleft, \text { Sam }} \\
& =0.5 \times 0.6 \\
\mathrm{P}(\triangleright, \text { Sandy, likes, Sam }, \triangleleft) & =\theta_{\text {Sandy }, \triangleright} \theta_{\text {likes }, \text { Sandy }} \theta_{\text {Sam }, \text { likes }} \theta_{\triangleleft, \text { Sam }} \\
& =0.4 \times 0.4 \times 0.2 \times 0.6
\end{aligned}
$$

Estimating bigram model parameters $\boldsymbol{\theta}$

- Maximum Likelihood Estimate from corpus D :

$$
\begin{aligned}
\widehat{\theta}_{w, w^{\prime}} & =\frac{n_{w, w^{\prime}}(D)}{n_{\cdot, w^{\prime}}(D)}, \text { where: } \\
n_{w, w^{\prime}}(D) & =\text { number of times } w \text { follows } w^{\prime} \text { in } D, \text { and } \\
n_{\cdot, w^{\prime}}(D) & =\text { number of times } w^{\prime} \text { follows anything in } D
\end{aligned}
$$

- Data sparsity is even more problematic for bigram models
- Many methods for smoothing using a unigram model $\widehat{\varphi}$, e.g.:

$$
\tilde{\theta}_{w, w^{\prime}}=\lambda \widehat{\varphi}_{w}+(1-\lambda) \widehat{\theta}_{w, w^{\prime}}
$$

- Choose interpolation parameter λ to maximize likelihood of a heldout corpus

Further work in language modelling

- Standard to work with 3-gram to 5-gram models estimated from billions of words of text
- Smoothing is essential, and the method used makes a big difference
- Wide variety of language models have been investigated
- Trigger language models try to track the change in vocabulary within a document
- Syntactic (i.e., parsing-based) language models typically outperform n-grams when trained on same sized corpora

Outline

```
Overview
\(n\)-gram language modelling
```

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models

Machine translation overview

- A machine translation system automatically translates text or speech from one language to another
- Uses the noisy channel to decompose the problem into language model and translation model
- Introduces the Expectation Maximisation (EM) algorithm for learning from hidden data
- translation model maps words to words or phrases to phrases
- most naturally learnt from word-aligned parallel translations
- but virtually all training data is sentence-aligned
\Rightarrow word alignments are hidden
- EM learns word alignments and word translation probabilities from sentence-aligned data

Noisy channel model for translation

- Goal: translate a sentence f (e.g., "foreign", "French") into a sentence \boldsymbol{e} ("English")

$$
E^{\star}(\boldsymbol{f})=\underset{\boldsymbol{e}}{\operatorname{argmax}} \mathrm{P}(\boldsymbol{e} \mid \boldsymbol{f})
$$

- Noisy channel model (i.e., Bayes inversion)

$$
\underset{\boldsymbol{e}}{\operatorname{argmax}} \mathrm{P}(\boldsymbol{e} \mid \boldsymbol{f})=\underset{\boldsymbol{e}}{\operatorname{argmax}} \mathrm{P}(\boldsymbol{e}) \mathrm{P}(\boldsymbol{f} \mid \boldsymbol{e})
$$

- $\mathrm{P}(e)$ is a language model, typically trained
 on billions of words of monolingual text
- $\mathrm{P}(\boldsymbol{f} \mid \boldsymbol{e})$ is a channel model, typically trained on millions of words of parallel text

Sentence-aligned parallel corpus (Canadian Hansards)

- English:
provincial officials are consulted through conference calls and negotiated debriefings.
they have full access to working documents .
consultations have also taken place with groups representing specific sectors of the Canadian economy, including culture, energy, mining , telecommunications and agrifood.
- French:
les fonctionnaires provinciaux sont consultés par appels conférence et comptes rendus.
ils ont accès à tous les documents de travail.
les consultations ont aussi eu lieu avec de les groupes représentant de les secteurs précis de le économie canadienne, y compris la culture, le énergie, les mines, les télécommunications et le agro - alimentaire.

Channel models for machine translation

- Overview of machine translation channel model:
- Analyse the English input e into a sequence of words or phrases
- Replace each English word or phrase with its French translation
- Reorder the translated words or phrases to produce French output f
- Translation units and reorderings can be identified in many ways
- here the translation units are words
- initially we will assume every reordering is equally likely
- but it's easy to use our methods to learn string position based reordering

The IBM 1 translation model $\mathrm{P}(\boldsymbol{f} \mid \boldsymbol{e})$

- A word alignment a pairs each French word f_{k} to a single English word $e_{a_{k}}$.
- One English word may be aligned with several French words
- We add a special "null word" \diamond to e to pair French words with no English counterpart
- To generate \boldsymbol{f} from \boldsymbol{e} :
- Pick an alignment \boldsymbol{a}
- For each k, generate f_{k} from $e_{a_{k}}$ according to $\mathrm{P}\left(f_{k} \mid e_{a_{k}}\right)$

An alternative representation of alignments

	They	have	full	access	to	working documents	
Ils							
ont							
accès							
à							
tous							
le							
documents							
de							
travail							

Mathematical formulation of IBM model 1

- Simple generative model:

$$
\begin{aligned}
\mathrm{P}(\boldsymbol{a}, \boldsymbol{f} \mid \boldsymbol{e}) & =\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}) \mathrm{P}(\boldsymbol{f} \mid \boldsymbol{a}, \boldsymbol{e}) \\
& =\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}) \prod_{k=1}^{|\boldsymbol{a}|} \mathrm{P}\left(f_{k} \mid e_{a_{k}}\right), \text { so: } \\
\mathrm{P}(\boldsymbol{f} \mid \boldsymbol{e}) & =\sum_{\boldsymbol{a}} \mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}) \prod_{k=1}^{|\boldsymbol{a}|} \mathrm{P}\left(f_{k} \mid e_{a_{k}}\right)
\end{aligned}
$$

- In our simple generative model, $\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e})$ is a uniform distribution over alignments given the French sentence length $|\boldsymbol{f}|$
- Even so, $\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})$ is not uniform!

$$
\begin{aligned}
\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f}) & =\frac{\mathrm{P}(\boldsymbol{a}, \boldsymbol{f} \mid \boldsymbol{e})}{\mathrm{P}(\boldsymbol{f} \mid \boldsymbol{e})} \\
& \propto \prod_{k=1}^{|\boldsymbol{a}|} \mathrm{P}\left(f_{k} \mid e_{a_{k}}\right)
\end{aligned}
$$

Learning translation probabilities from a word-aligned

corpus

- Goal: learn word translation probabilities $\mathrm{P}(f \mid e)$
- Easy with a word-aligned parallel corpus $D=(\boldsymbol{e}, \boldsymbol{f}, \boldsymbol{a})$
- Let $\mathrm{P}(f \mid e)=\tau_{f, e}$. Then e.g., the MLE is:

$$
\widehat{\tau}_{f, e}=\frac{n_{f, e}(\boldsymbol{a})}{n_{\cdot, e}(\boldsymbol{a})}, \text { where: }
$$

$n_{f, e}(\boldsymbol{a})=$ the number of times f is aligned to e in D, and
$n_{\cdot, e}(\boldsymbol{a})=\sum_{f} n_{f, e}(\boldsymbol{a})$
$=$ the number of times e is aligned to anything in D

- But word-aligned corpora are very expensive can we learn translation probabilities from sentence-aligned corpora instead?

The Expectation Maximisation Algorithm

- EM is useful for problems
- with hidden variables (variables whose values are unknown, e.g., alignments a), and
- where estimation would be easy if those variables' values were known
- EM is an iterative hill-climbing algorithm
- every iteration is guaranteed not to decrease the likelihood of data
- but EM can "get stuck" in local maxima
- Informal description of EM algorithm:
- initialise parameters $\tau^{(0)}$ somehow (e.g., randomly)
- repeat for $t=0,1, \ldots$, until convergence:
- E-step: Use current parameter estimate $\boldsymbol{\tau}^{(t)}$ to "fill in" hidden variable \boldsymbol{a} in training data, producing "expected data" ($\boldsymbol{a}, \boldsymbol{e}, \boldsymbol{f}$) with "expected count" $\mathrm{P}_{\boldsymbol{\tau}^{(t)}}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})$
- M-step: Estimate parameters $\boldsymbol{\tau}^{(t+1)}$ from expected data constructed in E-step

The Expectation Maximisation Algorithm for Model 1

- Too many possible alignments a to enumerate expected data $\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})$
- but all we need to estimate $\boldsymbol{\tau}^{(t+1)}$ are the sufficient statistics $n_{f, e}$
- High-level description of EM algorithm:

Initialise model parameters $\tau^{(0)}$ somehow (e.g., randomly)
Repeat for $t=0,1, \ldots$ until convergence:

- E-step: Compute expected value of sufficient statistics

$$
\mathrm{E}_{\boldsymbol{\tau}^{(t)}}\left[n_{f, e}\right]=\sum_{\boldsymbol{a}} n_{f, e}(\boldsymbol{a}) \mathrm{P}_{\boldsymbol{\tau}^{(t)}}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})
$$

- M-step: Compute $\boldsymbol{\tau}^{(t+1)}$ from $\mathrm{E}\left[n_{f, e}\right]$

$$
\tau_{f, e}^{(t+1)}=\frac{\mathrm{E}_{\boldsymbol{\tau}^{(t)}}\left[n_{f, e}(\boldsymbol{a})\right]}{\mathrm{E}_{\boldsymbol{\tau}^{(t)}}\left[n_{, e,}(\boldsymbol{a})\right]}
$$

Expected values of translation counts

- If g is a real-valued random variable, its expected value $\mathrm{E}[g]$ is:

$$
\mathrm{E}[g]=\sum_{x \in \Omega} g(x) \mathrm{P}(x)
$$

i.e., an expected value is a kind of weighted average

- If we're given an alignment \boldsymbol{a}, we can calculate translation counts $n_{f, e}(\boldsymbol{a})$ directly
- If we're given a probability distribution $\mathrm{P}(\boldsymbol{a})$ over alignments, we can calculate the expected translation counts:

$$
\mathrm{E}\left[n_{f, e}\right]=\sum_{\boldsymbol{a}} n_{f, e}(\boldsymbol{a}) \mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})
$$

A single iteration of the EM algorithm

- At the beginning of iteration t, the current estimate of the word translation probabilities is $\boldsymbol{\tau}^{(t)}$:

1. E-step:
a. For each possible alignment \boldsymbol{a}, calculate $\mathrm{P}_{\boldsymbol{\tau}^{(t)}}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})$
b. Summing over all possible alignments \boldsymbol{a}, calculate expected translation counts

$$
\mathrm{E}_{\boldsymbol{\tau}^{(t)}}\left[n_{f, e}\right]=\sum_{\boldsymbol{a}} n_{f, e}(\boldsymbol{a}) \mathrm{P}_{\boldsymbol{\tau}^{(t)}}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})
$$

2. M-step: Use the expected counts to update $\boldsymbol{\tau}$:

$$
\tau_{f, e}^{(t+1)}=\frac{\mathrm{E}_{\boldsymbol{\tau}^{(t)}}\left[n_{f, e}\right]}{\sum_{f} \mathrm{E}_{\boldsymbol{\tau}^{(t)}}\left[n_{f, e}\right]}
$$

- Unfortunately, the algorithm as described is infeasible ...

Dynamic programming for expected counts

- By definition, every French word f_{k} in the corpus is aligned with some English word $e_{a_{k}}$, but which one?
- Because we assume $\mathrm{P}_{\boldsymbol{\tau}}(\boldsymbol{a} \mid \boldsymbol{e})$ is uniform, alignment probability only depends on $\boldsymbol{\tau}$. With some algebra, can show:

$$
\mathrm{P}_{\boldsymbol{\tau}}\left(a_{k}=j \mid \boldsymbol{e}, f_{k}\right)=\frac{\tau_{f_{k}, e_{j}}}{\sum_{j^{\prime}=0}^{|e|} \tau_{f_{k}, e_{j^{\prime}}}}
$$

- Expected translation counts:

$$
\mathrm{E}_{\boldsymbol{\tau}}\left[n_{f^{\prime}, e^{\prime}}\right]=\sum_{\substack{k: f_{k}=f^{\prime} \\ j: e_{j}=e^{\prime}}} \mathrm{P}_{\boldsymbol{\tau}}\left(a_{k}=j \mid \boldsymbol{e}, f_{k}\right)
$$

- Informally, to compute transition counts iterate through each French word f_{k} in parallel corpus
- compute probability $\mathrm{P}_{\boldsymbol{\tau}}\left(a_{k}=j \mid \boldsymbol{e}, f_{k}\right)$ that it is aligned to e_{j}
- add $\mathrm{P}_{\boldsymbol{\tau}}\left(a_{k}=j \mid \boldsymbol{e}, f_{k}\right)$ to expected counts $\mathrm{E}_{\boldsymbol{\tau}}\left[n_{f_{k}, e_{j}}\right]$

EM algorithm for learning alignments and translation probabilities

Initialise translation probabilities τ somehow (e.g., randomly)
Repeat for $t=0,1, \ldots$ until convergence:
Initialise expected counts $\mathrm{E}\left[n_{f, e}\right]=0$ for all e, f
For each French word position $k \in 1, \ldots,|\boldsymbol{f}|$:
For each English word position $j \in 1, \ldots,|e|$:

$$
\mathrm{E}\left[n_{f_{k}, e_{j}}\right]+=\mathrm{P}_{\boldsymbol{\tau}}\left(a_{k}=j \mid \boldsymbol{e}, f_{k}\right)=\frac{\tau_{f_{k}, e_{j}}}{\sum_{j^{\prime}=0}^{|e|} \tau_{f_{k}, e^{\prime}}}
$$

Recalulate translation probabilities $\boldsymbol{\tau}$:

$$
\tau_{f, e}=\frac{\mathrm{E}\left[n_{f, e}\right]}{\mathrm{E}\left[n_{., e}\right]}
$$

EM algorithm in pictures: $\mathrm{P}(\boldsymbol{f} \mid \boldsymbol{e})$

	\diamond	They	have	full	access	to	working documents	
Ils	0.01	0.2	0.001	0.001	0.001	0.001	0.001	0.001
ont	0.01	0.001	0.2	0.001	0.001	0.001	0.001	0.001
accès	0.01	0.001	0.001	0.001	0.2	0.001	0.001	0.001
à	0.01	0.001	0.001	0.001	0.001	0.2	0.001	0.001
tous	0.01	0.001	0.001	0.1	0.001	0.001	0.001	0.001
le	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.001
documents	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.2
de	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.001
travail	0.01	0.001	0.001	0.001	0.001	0.001	0.1	0.001

EM algorithm in pictures: $\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})$

	\diamond	They	have	full	access	to	working documents	
Ils	0.05	0.9	0.001	0.001	0.001	0.001	0.001	0.001
ont	0.05	0.001	0.9	0.001	0.001	0.001	0.001	0.001
accès	0.05	0.001	0.001	0.001	0.9	0.001	0.001	0.001
à	0.05	0.001	0.001	0.001	0.001	0.9	0.001	0.001
tous	0.1	0.001	0.001	0.5	0.001	0.001	0.001	0.001
le	0.8	0.001	0.001	0.001	0.001	0.001	0.001	0.001
documents	0.05	0.001	0.001	0.001	0.001	0.001	0.001	0.9
de	0.8	0.001	0.001	0.001	0.001	0.001	0.001	0.001
travail	0.1	0.001	0.001	0.001	0.001	0.001	0.5	0.001

Alignments learnt from Canadian Hansards

count	English	French	count	English	French
306043	,	,	289093	the	le
246182			243395	\diamond	.
213067	of	de	192687	and	et
157561	the	de	106313	the	la
100649	to	à	99661.1	\diamond	le
96360.3	to	de	87601.5	.	de
84200.4	that	que	84127	we	nous
83155.8	is	est	81717.6	\diamond	de
75641.3	the	les	73189.4	:	:
65337.2	a	un	63712.4	not	pas
62694.6	not	ne	57248.2	I	je
56526.6	government	gouvernement	54257.5	i	je
51031.5	-	-	47926.5	a	une
47682.4	the	à	46082.2	in	dans
45835.1	Mr .		44350.8	of	le
44127.6	.	le	42532.5	Speaker	Président
41468.1	in	de	38837.2	to	le
36390.9	,	de	34435.7	?	?
MACOUA ${ }^{\text {UNIVES }}$,	le	33032.2	for	de

From IBM model 1 to a machine translation system

- IBM model 1 produces surprisingly accurate alignments and word translation probabilities
- For translation you need a nontrivial alignment model $\mathrm{P}(\boldsymbol{a} \mid \boldsymbol{e})$
- IBM model 2 learns a probabilistic mapping of French word positions to English word positions
- More sophisticated models are based on phrasal reorderings
- Increasing interest in using syntactic parsing to define phrasal translation units and reordering models
- The problem of finding the optimal translation is usually NP-hard
- beam search for optimal translation

Identifying phrases from word alignments

	They	have	full	access	to	working documents	
Ils							
ont							
accès							
à							
tous							
le							
documents							
de							
travail							

Outline

Overview

```
n-gram language modelling
Machine translation
Sequence tagging with Hidden Markov Models
Grammars and Syntactic Parsing
PCFGs and beyond for statistical parsing
Unsupervised learning with non-parametric Bayesian models
```


Sequence tagging overview

- Sequence tagging: given a sequence $\left(x_{1}, \ldots, x_{n}\right)$ of observations (where each $x_{i} \in \mathcal{X}$), return a sequence $\left(y_{1}, \ldots, y_{n}\right)$ of states or labels (where each $y_{i} \in \mathcal{Y}$)
- Hidden Markov Models, and their three different representations:
- stochastic automata
- Bayes nets
- Trellis
- Even though there are exponentially many label sequences, there are linear time dynamic programming algorithms
- Viterbi algorithm for finding most likely label sequence
- Forward-backward algorithm for finding expected counts
- Expectation Maximisation algorithm for learning HMMs from strings alone

Applications of sequence tagging

- Part of speech (POS) tagging: \boldsymbol{x} are the words of a sentence, \boldsymbol{y} are their parts of speech.

$$
\begin{aligned}
& \boldsymbol{y}: \quad \text { DT JJ NN VBD NNP. } \\
& \boldsymbol{x}:
\end{aligned} \text { the big cat bit } \text { Sam . }
$$

- Noun-phrase chunking: \boldsymbol{x} are the words of a sentence, \boldsymbol{y} indicates whether they are in the beginning, middle or end of a noun phrase (NP) chunk.

$$
\begin{array}{lllllll}
\boldsymbol{y}: & {\left[\begin{array}{lll}
\mathrm{NP} & \mathrm{NP} & \mathrm{NP}] \\
\boldsymbol{x}: & \text { the } & \text { big } \\
\text { cat } & \text { bit } & {[\mathrm{NP}]} \\
\text { Sam }
\end{array} .\right.}
\end{array}
$$

- Named entity detection: The \boldsymbol{x} are the words of a sentence, \boldsymbol{y} indicates whether they are in the beginning, middle or end of a noun phrase (NP) chunk that is the name of a person, company or location.

$\boldsymbol{y}:$	$[\mathrm{CO}$	$\mathrm{CO}]$	-	$[\mathrm{LOC}]$	-	$[\mathrm{PER}]$	-
$\boldsymbol{x}:$	XYZ	Corp.	of	Boston	announced	Spade's	resignation

- Speech recognition: \boldsymbol{x} are 100 msec . time slices of acoustic input, and \boldsymbol{y} are the corresponding phonemes (i.e., y_{i} is the phoneme being uttered in time slice x_{i})

Hidden Markov Models (HMMs)

- A Markov model generates sequence $\boldsymbol{y}=\left(y_{0}=\triangleright, y_{1}, \ldots, y_{n}, y_{n+1}=\triangleleft\right)$ by generating each y_{i} from y_{i-1}

$$
\mathrm{P}(\boldsymbol{y})=\prod_{i=1}^{n+1} \mathrm{P}\left(y_{i} \mid y_{i-1}\right)=\prod_{i=1}^{n+1} \sigma_{y_{i}, y_{i-1}}
$$

- In a Hidden Markov Model:
- the state sequence $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ is generated by a Markov model
- each x_{i} in the observation sequence $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is generated from its corresponding state y_{i}

$$
\mathrm{P}(\boldsymbol{x} \mid \boldsymbol{y})=\prod_{i=1}^{n} \mathrm{P}\left(x_{i} \mid y_{i}\right)=\prod_{i=1}^{n} \tau_{x_{i}, y_{i}}
$$

- so the joint distribution over $(\boldsymbol{x}, \boldsymbol{y})$ is:

$$
\mathrm{P}(\boldsymbol{x}, \boldsymbol{y})=\left(\prod_{i=1}^{n} \mathrm{P}\left(y_{i} \mid y_{i-1}\right) \mathrm{P}\left(x_{i} \mid y_{i}\right)\right) \mathrm{P}\left(\triangleleft \mid y_{n}\right)=\left(\prod_{i=1}^{n} \sigma_{y_{i}, y_{i-1}} \tau_{x_{i}, y_{i}}\right) \sigma_{\triangleleft, y_{n}}
$$

HMMs as stochastic automata (Moore machines)

- Automaton depicts all possible $(\boldsymbol{x}, \boldsymbol{y})$ sequences
- States are nodes in graph (identified with a label)
- State-to-state transition probabilities σ are arc labels
- State-to-observation emission probabilities τ are nodel labels

HMMs as Bayes nets

- Each random variable (e.g., observation x_{i} and label y_{i}) is represented by a node
- Shows factorisation of joint distribution $\mathrm{P}(\boldsymbol{x}, \boldsymbol{y})$ into product of conditional distributions
- Each node is associated with a conditional distribution from each of its parents

Important problems for HMMs

1. What's the probability of a sequence of states and observations $\mathrm{P}(\boldsymbol{x}, \boldsymbol{y})$?
2. What's the probability of a sequence of observations
$\mathrm{P}(\boldsymbol{x})=\sum_{\boldsymbol{y} \in \mathcal{Y}^{n}} \mathrm{P}(\boldsymbol{x}, \boldsymbol{y})$?
3. Given a sequence of observations \boldsymbol{x}, what is the most likely sequence of states $\operatorname{argmax}_{\boldsymbol{y} \in \mathcal{Y}^{n}} \mathrm{P}(\boldsymbol{y} \mid \boldsymbol{x})$?
4. Given visible training data $(\boldsymbol{x}, \boldsymbol{y})$, estimate the HMM parameters $\boldsymbol{\sigma}$ and τ
5. Given hidden training data \boldsymbol{x}, estimate the HMM parameters $\boldsymbol{\sigma}$ and $\boldsymbol{\tau}$

- Problems 2, 3 and 5 involve summing over all $\boldsymbol{y} \in \mathcal{Y}^{n}$,
- but this can be done in linear time using dynamic programming over a trellis

HMM computation using a trellis

- The trellis represents all possible state sequences $\boldsymbol{y} \in \mathcal{Y}^{n}$ for a fixed observation sequence $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$
- One node for each (y, i) combination for $y \in \mathcal{Y}, i \in 1, \ldots, n$
- The weight of an edge from $\left(y^{\prime}, i-1\right)$ to (y, i) is $\sigma_{y, y^{\prime}} \tau_{x_{i}, y}$, i.e., probability of moving from y^{\prime} to y and emitting x_{i}
- The weight of a path is the product of the weights of the edges in it
- Each state sequence \boldsymbol{y} identifies a path from \triangleright to \triangleleft in trellis
- $\mathrm{P}(\boldsymbol{x} \boldsymbol{y})=$ weight of path \boldsymbol{y}

Calculating the probability of an observation sequence \boldsymbol{x}

- Goal: compute probability $\mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{x})$ of observed sequence \boldsymbol{x}

$$
\begin{aligned}
\mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{x}) & =\sum_{\boldsymbol{y} \in \mathcal{Y}^{n}} \mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{x}, \boldsymbol{y}) \\
& =\sum_{\boldsymbol{y} \in \mathcal{Y}^{n}}\left(\prod_{i=1}^{n} \sigma_{y_{i}, y_{i-1}} \tau_{x_{i}, y_{i}}\right) \sigma_{\triangleleft, y_{n}}
\end{aligned}
$$

- $\mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{x})$ is the sum of the probability of all paths in trellis
- The number of sequences in \mathcal{Y}^{n} grows exponentially with n
\Rightarrow calculating $\mathrm{P}_{\sigma, \tau}(x)$ by direct summation is infeasible

Forward probabilities $\boldsymbol{\alpha}$

- Forward probability $\alpha_{i, y^{\prime}}$ is the probability of generating $\left(x_{1}, \ldots, x_{i}\right)$ ending in a state y^{\prime}

$$
\alpha_{i, y^{\prime}}=\sum_{\mathbf{y} \in \mathcal{Y}^{i-1}} \mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}\left(\boldsymbol{Y}_{1: i-1}=\boldsymbol{y}, Y_{i}=y^{\prime}, V x_{1: i}\right)
$$

- $\alpha_{i, y^{\prime}}$ is sum of weights of all paths from \triangleleft to $\left(i, y^{\prime}\right)$
- $\boldsymbol{\alpha}$ is an array indexed by a position i and a state $y^{\prime} \in \mathcal{Y}$
- Probability of observations $\mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{x})=\alpha_{n+1, \triangleleft}$

Dynamic programming for forward probabilities $\boldsymbol{\alpha}$

- With simple algebra it's possible to show that:

$$
\alpha_{i, y^{\prime}}=\sum_{y^{\prime \prime} \in \mathcal{Y}} \alpha_{i-1, y^{\prime \prime}}\left(\sigma_{y^{\prime}, y^{\prime \prime}} \tau_{x_{i}, y^{\prime}}\right)
$$

\Rightarrow Dynamic programming algorithm for calculating $\boldsymbol{\alpha}$
Set $\alpha_{0, \triangleleft}=1$ and $\alpha_{0, y}=0$ for all other $y \in \mathcal{Y}$
For $i=1, \ldots, n$:
For $y^{\prime} \in \mathcal{Y}$:

$$
\alpha_{i, y^{\prime}}=\sum_{y^{\prime \prime} \in \mathcal{Y}} \alpha_{i-1, y^{\prime \prime}}\left(\sigma_{y^{\prime}, y^{\prime \prime}} \tau_{x_{i}, y^{\prime}}\right)
$$

Finding the most likely state sequence

- Goal: find the most likely state sequence $\boldsymbol{Y}^{\star}(\boldsymbol{x})$ wrt $\operatorname{HMM}(\boldsymbol{\sigma}, \boldsymbol{\tau})$

$$
\boldsymbol{Y}^{\star}(\boldsymbol{x})=\underset{\boldsymbol{y} \in \mathcal{Y}^{n}}{\operatorname{argmax}} \mathrm{P}(\boldsymbol{y} \mid \boldsymbol{x})=\underset{\boldsymbol{y}}{\operatorname{argmax}} \mathrm{P}(\boldsymbol{y}, \boldsymbol{x})
$$

- This is how you use an HMM to tag an observation sequence \boldsymbol{x}
- Key observation: best path from \triangleright to $\left(i, y^{\prime}\right)$ must begin with the best path to $\left(i-1, y^{\prime \prime}\right)$ for some $y^{\prime \prime} \in \mathcal{Y}$

The Viterbi algorithm for most likely state sequence

- Compute best path to every node $\left(i, y^{\prime}\right)$ as well as its weight
- Algorithm overview:

$$
\begin{aligned}
& \text { For } i=1, \ldots, n+1 \text { : } \\
& \quad \text { for each } y^{\prime} \in \mathcal{Y}:
\end{aligned}
$$

calculate best path to (i, y^{\prime}) and its probability using best paths to ($i-1, y^{\prime \prime}$) and their probabilities

The Viterbi algorithm for HMMs and shortest path algorithms

- If we define the weight of an edge from $\left(y^{\prime}, i-1\right)$ to (y, i) as its negative log probability

$$
w_{\left(y^{\prime}, i-1\right),(y, i)}=-\log \sigma_{y, y^{\prime}} \tau_{x_{i}, y}
$$

- Then the negative log probability of path is the sum of its weights
\Rightarrow The highest probability state sequence is the shortest path from \triangleright to \triangleleft

Estimating HMMs from visible training data

- Training data $D=(\boldsymbol{x}, \boldsymbol{y})=\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)$, i.e., observations and their states
- E.g., They/PRP liked/VBD the/DT Old/NNP Man/NNP
- Identifies a unique path in the trellis
- Because HMMs are products of multinomials, the MLEs are relative frequencies

$$
\begin{aligned}
\widehat{\sigma}_{y, y^{\prime}} & =\frac{n_{y, y^{\prime}}(D)}{n_{\cdot, y^{\prime}}(D)} \\
\widehat{\tau}_{x, y} & =\frac{n_{x, y}(D)}{n_{\cdot, y}(D)}
\end{aligned}
$$

Estimating HMMs from observations alone

- Training data $D=\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, i.e., observations but not the states
- E.g., They liked the Old Man
- State sequence could be any path in the trellis
- Expectation Maximization algorithm for estimating HMMs from observations alone:

Initialise $\boldsymbol{\sigma}^{(0)}, \boldsymbol{\tau}^{(0)}$ somehow (e.g., randomly)
For iteration $t=0,1,2, \ldots$ until converged:
E-step: Calculate $\mathrm{E}_{\boldsymbol{\sigma}^{(t)}, \boldsymbol{\tau}^{(t)}}\left[n_{y, \boldsymbol{y}^{\prime}}\right]$ and $\mathrm{E}_{\boldsymbol{\sigma}^{(t)}, \boldsymbol{\tau}^{(t)}}\left[n_{x, y}\right]$
M-step: Calculate $\boldsymbol{\sigma}^{(t+1)}$ and $\boldsymbol{\tau}^{(t+1)}$

$$
\begin{aligned}
\sigma_{y, y^{\prime}}^{(t+1)} & =\frac{\mathrm{E}_{\boldsymbol{\sigma}^{(t)}, \boldsymbol{\tau}^{(t)}}\left[n_{y, y^{\prime}}\right]}{\mathrm{E}_{\boldsymbol{\sigma}^{(t)}, \boldsymbol{\tau}^{(t)}}\left[n_{\cdot, y^{\prime}}\right]} \\
\tau_{x, y}^{(t+1)} & =\frac{\mathrm{E}_{\boldsymbol{\sigma}^{(t)}, \boldsymbol{\tau}^{(t)}}^{\left(n_{x, y}\right]}}{\mathrm{E}_{\boldsymbol{\sigma}^{(t)}, \boldsymbol{\tau}^{(t)}}\left[n_{\cdot, y}\right]}
\end{aligned}
$$

Calculating expected counts by enumeration

- Training data $D=\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ (no state information)
- Given model $\sigma, \boldsymbol{\tau}$, the expected values are as follows:

$$
\begin{aligned}
\mathrm{E}\left[n_{y^{\prime}, y^{\prime \prime}}\right] & =\sum_{\boldsymbol{y} \in \mathcal{Y}^{n}} n_{y^{\prime}, y^{\prime \prime}}(\boldsymbol{x}, \boldsymbol{y}) \mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{y} \mid \boldsymbol{x}) \\
\mathrm{E}\left[n_{x^{\prime}, y^{\prime}}\right] & =\sum_{\boldsymbol{y} \in \mathcal{Y}^{n}} n_{x^{\prime}, y^{\prime}}(\boldsymbol{x}, \boldsymbol{y}) \mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{y} \mid \boldsymbol{x}), \text { where: } \\
\mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{y} \mid \boldsymbol{x}) & =\frac{\mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{x}, \boldsymbol{y})}{\sum_{\boldsymbol{y}^{\prime} \in \mathcal{Y}^{n}} \mathrm{P}(\boldsymbol{x}, \boldsymbol{y})} \\
\mathrm{P}_{\boldsymbol{\sigma}, \boldsymbol{\tau}}(\boldsymbol{x}, \boldsymbol{y}) & =\left(\prod_{i=1}^{n} \sigma_{y_{i}, y_{i-1}} \tau_{x_{i}, y_{i}}\right) \sigma_{\triangleleft, y_{n}}
\end{aligned}
$$

- The number of state sequences \boldsymbol{y} grows exponentially with n
\Rightarrow Enumerating all state sequences is infeasible except when \boldsymbol{x} is very short.

Dynamic programming for computing expected counts

- High level description:
- compute expected number of times each edge in trellis is traversed $\mathrm{E}\left[N_{\left(i, y^{\prime}\right),\left(i-1, y^{\prime \prime}\right)}\right]$
- sum these over positions $i \in 1, \ldots, n+1$ to compute $\mathrm{E}\left[N_{y^{\prime}, y^{\prime \prime}}\right]$
- $\mathrm{E}\left[N_{\left(i, y^{\prime}\right),\left(i-1, y^{\prime \prime}\right)}\right]$ is computed using forward probability $\alpha_{i-1, y^{\prime \prime}}$ and backward probability $\beta_{i, y^{\prime}}$
- Backward probability $\beta_{i, y^{\prime}}$ is sum of weights of all paths from $\left(i, y^{\prime}\right)$ to \triangleleft - there is a dynamic programming algorithm for $\beta_{i, y^{\prime}}$

Learning a 17-state HMM with EM from Penn WSJ corpus

count words generated by state

123911 of in, and for to from on at with as by 's or ; than that - rose after
116885 the a an its this his new their one last that any chief another her no our 116262 company year market share quarter week group time u.s. month board sh 102328 sales trading prices president companies one it more stocks bonds investo 76547.5 to n't be been not have more up " out expected and it also so going do b 76250 's new stock first " york u.s. federal big and market major national last fi 66005.4 is to are was will has would were have had could and can may 's do did d 65616.9 in to by for on with at that as from about than up into be have make une 65097.6 it mr. he they which we i there who you that she this analysts what howe 58808.6 other their its some u.s. these " many more and as such all net those nev 57329.6 , that and - " who because : also ; " by as such but -lrb- when ago out y 53400.4 . " ?: -rrb- ago ... earlier outstanding - !' yesterday " in here today of 46854.1 " " but and said that as says if when which in while even some including 43697.8 40517.8 33486.3 30768

Another EM run on same corpus

count words generated by state

118833
116130
105943 100047 84530.4 69977.6 69784.6 67787.4 62922.6 62719.6 55219.1 52359.5 52252.1 47304.5 40179.2 36356.3
31420.7 the a $\$$ an its this his their one last that any chief another her no each ou million year company market share billion quarter shares president week ti of in and for to on from at with 's as by or ; after over ' is under about \% years cents sales trading prices it companies stocks bonds them days e , that and - also : because -Irb- ; " who as said " than when but -rrb- ou \$ million a \% new first " billion u.s. stock big major last next own most to be n't been not have more " out expected it up also so do going well in to by for at on with as from about than that up into make sell buy thr it he they " which we i there who that you she analysts however this and other their its two some these u.s. new three net many 8 such all more 10 is are was will has would were have had 's could to can may do did does " ? : -rrb- - ...!' " in ends of , activity -rcb- shares daffynition off mi 's and corp. inc. \& co. york stock exchange group officials street bank se " mr. but " and that if when as some which while many even president b to and " more up or ago according earlier such yesterday compared based said says and is 's or say was has including " had added reported are -rrbnew american company federal san wall national u.s. dow general first we

Further topics on HMMs and sequence modelling

- Wide range of applications for sequence modelling in computational linguistics
- Higher-order HMMs
- The HMMs we investigated here are first-order, i.e., the next state y_{i} is generated from y_{i-1}
- In a k-th order HMM, y_{i} is generated from y_{i-1}, \ldots, y_{i-k}
- This theory generalises to stochastic finite-state transducers (useful for modelling morphology)
- It is possible to train HMMs discriminatively to maximise $\mathrm{P}(\boldsymbol{y} \mid \boldsymbol{x})$; such models are called Conditional Random Fields

Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models

Why grammars?

Grammars specify a wide range of sets of structured objects

- especially useful for describing human languages
- applications in vision, computational biology, etc

There is a hierarchy of kinds of grammars

- if a language can be specified by a grammar low in the hierarchy, then it can be specified by a grammar higher in the hierarchy
- the location of a grammar in this hierarchy determines its computational properties
There are generic algorithms for computing with and estimating (learning) each kind of grammar
- no need to devise new models and corresponding algorithms for each new set of structures

Preview of (P)CFG material

- Why are context-free grammars called "context-free"?
- Context-free grammars (CFG) derivations and parse trees
- Probabilistic CFGs (PCFGs) define probability distributions over derivations/trees
- The number of derivations often grows exponentially with sentence length
- Even so, we can compute the sum/max of probabilities of all trees in cubic time
- It's easy to estimate PCFGs from a treebank (a sequence of trees)
- The EM algorithm can estimate PCFGs from a corpus of strings

Formal languages

\mathcal{W} is a finite set of terminal symbols, the vocabulary of the language

- E.g., $\mathcal{W}=\{$ likes, Sam, Sasha, thinks $\}$

A string is a finite sequence of elements of \mathcal{W}

- E.g., Sam thinks Sam likes Sasha
\mathcal{W}^{\star} is the set of all strings (including the empty string ϵ)
\mathcal{W}^{+}is the set of all non-empty strings
A (formal) language is a set of strings (a subset of \mathcal{W}^{\star})
- E.g., $L=\{$ Sam, Sam thinks, Sasha thinks, ...\}

A probabilistic language is a probability distribution over a language

Rewrite grammars

A rewrite grammar $G=(\mathcal{W}, \mathcal{N}, S, \mathcal{R})$ consists of
\mathcal{W}, a finite set of terminal symbols
\mathcal{N}, a finite set of nonterminal symbols disjoint from \mathcal{W}
$S \in \mathcal{N}$ is the start symbol, and
\mathcal{R} is a finite subset of $\mathcal{N}^{+} \times(\mathcal{N} \cup \mathcal{W})^{\star}$
The members of \mathcal{R} are called rules or productions, and usually written $\alpha \rightarrow \beta$, where $\alpha \in \mathcal{N}^{+}$and $\beta \in(\mathcal{N} \cup \mathcal{W})^{\star}$
A rewrite grammar defines the rewrites relation \Rightarrow, where $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$ iff $\alpha \rightarrow \beta \in \mathcal{R}$ and $\gamma, \delta \in(\mathcal{N} \cup \mathcal{W})^{\star}$.
A derivation of a string $\boldsymbol{w} \in \mathcal{W}^{\star}$ is a finite sequence of rewritings $S \Rightarrow \ldots \Rightarrow \boldsymbol{w}$.
\Rightarrow^{\star} is the reflexive transitive closure of \Rightarrow
The language generated by G is $\left\{\boldsymbol{w}: S \Rightarrow^{\star} \boldsymbol{w}\right.$, where $\left.\boldsymbol{w} \in \mathcal{W}^{\star}\right\}$

Example of a rewriting grammar

$$
\begin{aligned}
G_{1}= & \left(\mathcal{W}_{1}, \mathcal{N}_{1}, \mathrm{~S}, \mathcal{R}_{1}\right), \text { where } \\
& \mathcal{W}_{1}=\{\mathrm{Al}, \text { George, snores }\}, \\
& \mathcal{N}_{1}=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}\}, \\
\mathcal{R}_{1} & =\{\mathrm{S} \rightarrow \mathrm{NP} \text { VP, NP } \rightarrow \mathrm{Al}, \mathrm{NP} \rightarrow \text { George, } \mathrm{VP} \rightarrow \text { snores }\} .
\end{aligned}
$$

Sample derivations:

$$
\begin{aligned}
& \mathrm{S} \Rightarrow \mathrm{NP} \mathrm{VP} \Rightarrow \mathrm{Al} \mathrm{VP} \Rightarrow \mathrm{Al} \text { snores } \\
& \mathrm{S} \Rightarrow \mathrm{NP} \mathrm{VP} \Rightarrow \text { George } \mathrm{VP} \Rightarrow \text { George snores }
\end{aligned}
$$

The Chomsky Hierarchy

Grammars classified by the shape of their productions $\alpha \rightarrow \beta$.

$$
\begin{aligned}
& \text { Context-sensitive: }|\alpha| \leq|\beta| \\
& \text { Context-free: }|\alpha|=1 \\
& \text { Right-linear: }|\alpha|=1 \text { and } \beta \in \mathcal{W}^{\star}(\mathcal{N} \cup \epsilon) .
\end{aligned}
$$

The classes of languages generated by these classes of grammars form a strict hierarchy (ignoring ϵ).

Language class	Recognition complexity
Unrestricted	undecidable
Context-sensitive	exponential time
Context-free	polynomial time
Linear	linear time

Right linear grammars define finite state languages, and probabilistic right linear grammars define the same distributions as Hidden Markov Models.

Context-sensitivity in human languages

Some human languages are not context-free (Shieber 1984, Culy 1984). Context-sensitive grammars don't seem useful for describing human languages.
Trees are intuitive descriptions of linguistic structure and are normal forms for context-free grammar derivations.
There is an infinite hierarchy of language families (and grammars) between context-free and context-sensitive.
Mildly context-sensitive grammars, such as Tree Adjoining Grammars (Joshi) and Combinatory Categorial Grammar (Steedman) seem useful for natural languages.

Parse trees for context-free grammars

A parse tree generated by CFG $G=(\mathcal{W}, \mathcal{N}, S, \mathcal{R})$ is a finite ordered tree labeled with labels from $\mathcal{N} \cup \mathcal{W}$, where:

- the root node is labeled S
- for each node n labeled with a nonterminal $A \in \mathcal{N}$ there is a rule $A \rightarrow \beta \in \mathcal{R}$ and n 's children are labeled β
- each node labeled with a terminal has no children
\mathcal{T}_{G} is the set of all parse trees generated by G. $\mathcal{T}_{G}(\boldsymbol{w})$ is the subset of \mathcal{T}_{G} with yield $\boldsymbol{w} \in \mathcal{W}^{\star}$.

$$
\mathcal{R}=\{\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}, \mathrm{NP} \rightarrow \mathrm{Al}, \mathrm{NP} \rightarrow \text { George, } \mathrm{VP} \rightarrow \text { snores }\}
$$

Example of a CF derivation and parse tree

$$
\mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\}
$$

S

S

Example of a CF derivation and parse tree

$$
\begin{gathered}
\mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\} \\
\\
\begin{array}{c}
\mathrm{S} \\
\mathrm{NP}
\end{array} \begin{array}{c}
\mathrm{S} \\
\mathrm{VP}
\end{array}
\end{gathered}
$$

Example of a CF derivation and parse tree

$$
\begin{aligned}
& \mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \text { VP } & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\} \\
& \begin{array}{clc}
& & S \\
\frac{S}{N P} V P & & \Rightarrow
\end{array}
\end{aligned}
$$

Example of a CF derivation and parse tree

$$
\mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\}
$$

Example of a CF derivation and parse tree

$$
\begin{aligned}
& \mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \text { VP } & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\}
\end{aligned}
$$

Example of a CF derivation and parse tree

$$
\mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\}
$$

Example of a CF derivation and parse tree

$$
\mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\}
$$

	S
\Rightarrow	NP VP
\Rightarrow	D N VP
\Rightarrow	the N VP
\Rightarrow	the dog VP
\Rightarrow	the dog V
\Rightarrow	the dog barks

Example of a CF derivation and parse tree

$$
\mathcal{R}=\left\{\begin{array}{ccc}
\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{VP} \rightarrow \mathrm{~V} \\
\mathrm{D} \rightarrow \text { the } & \mathrm{N} \rightarrow \operatorname{dog} & \mathrm{~V} \rightarrow \text { barks }
\end{array}\right\}
$$

	S
\Rightarrow	NP VP
\Rightarrow	D N VP
\Rightarrow	the N VP
\Rightarrow	the dog VP
\Rightarrow	the dog V
\Rightarrow	the dog barks

Trees can depict constituency

CFGs can describe structural ambiguity

CFG account of subcategorization

Nouns and verbs differ in the number of complements they appear with. We can use a CFG to describe this by splitting or subcategorizing the basic categories.

Nonlocal "movement" constructions

"Movement" constructions involve a phrase appearing far from its normal location.
Linguists believed CFGs could not generate them, and posited "movement transformations" to produce them (Chomsky 1957)
But CFGs can generate them via "feature passing" using a conspiracy of rules (Gazdar 1984)

Probabilistic grammars

A probabilistic grammar G defines a probability distribution $\mathrm{P}_{G}(t)$ over the parse trees \mathcal{T} generated by G, and hence over strings generated by G.

$$
\mathrm{P}_{G}(\boldsymbol{w})=\sum_{t \in \mathcal{T}_{G}(\boldsymbol{w})} \mathrm{P}_{G}(t)
$$

Standard (non-stochastic) grammars distinguish grammatical from ungrammatical strings (only the grammatical strings receive parses). Probabilistic grammars can assign non-zero probability to every string, and rely on the probability distribution to distinguish likely from unlikely strings.

Probabilistic context-free grammars

A Probabilistic Context Free Grammar (PCFG) consists of $(\mathcal{W}, \mathcal{N}, S, \mathcal{R}, p)$ where:

- $(\mathcal{W}, \mathcal{N}, S, \mathcal{R})$ is a CFG with no useless productions or nonterminals, and
- p is a vector of production probabilities, i.e., a function $\mathcal{R} \rightarrow[0,1]$ that satisfies for each $A \in \mathcal{N}$:

$$
\sum_{A \rightarrow \beta \in \mathcal{R}(A)} p(A \rightarrow \beta)=1
$$

where $\mathcal{R}(A)=\{A \rightarrow \alpha: A \rightarrow \alpha \in \mathcal{R}\}$.
A production $A \rightarrow \alpha$ is useless iff there are no derivations of the form $S \Rightarrow^{\star} \gamma \boldsymbol{A} \delta \Rightarrow \gamma \alpha \delta \Rightarrow^{*} w$ for any $\gamma, \delta \in(\mathcal{N} \cup \mathcal{W})^{\star}$ and $w \in \mathcal{W}^{\star}$.

Probability distribution defined by a PCFG

Intuitive interpretation:

- the probability of rewriting nonterminal A to α is $p(A \rightarrow \alpha)$
- the probability of a derivation is the product of probabilities of rules used in the derivation
For each production $A \rightarrow \alpha \in \mathcal{R}$, let $f_{A \rightarrow \alpha}(t)$ be the number of times $A \rightarrow \alpha$ is used in t.
A PCFG G defines a probability distribution P_{G} on \mathcal{T} that is non-zero on $\mathcal{T}(G):$

$$
\mathrm{P}_{G}(t)=\prod_{r \in \mathcal{R}} p(r)^{f_{r}(t)}
$$

This distribution is properly normalized if p satisfies suitable constraints.

Example PCFG

Things we want to compute with PCFGs

Given a PCFG G and a string $\boldsymbol{w} \in \mathcal{W}^{\star}$,

- (parsing): the most likely tree for \boldsymbol{w},

$$
\underset{t \in \mathcal{T}_{G}(\boldsymbol{w})}{\operatorname{argmax}} \mathrm{P}_{G}(t)
$$

- (language modeling): the probability of \boldsymbol{w},

$$
\mathrm{P}_{G}(\boldsymbol{w})=\sum_{t \in \mathcal{T}_{G}(\boldsymbol{w})} \mathrm{P}_{G}(t)
$$

Learning rule probabilities from data:

- (maximum likelihood estimation from visible data): given a corpus of trees $\boldsymbol{D}=\left(t_{1}, \ldots, t_{n}\right)$, which rule probabilities p makes \boldsymbol{D} as likely as possible?
- (maximum likelihood estimation from hidden data): given a corpus of strings $\boldsymbol{D}=\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right)$, which rule probabilities p makes \boldsymbol{D} as likely as possible?

Parsing and language modeling

The probability $\mathrm{P}_{G}(t)$ of a tree $t \in \mathcal{T}_{G}(\boldsymbol{w})$ is:

$$
\mathrm{P}_{G}(t)=\prod_{r \in \mathcal{R}} p(r)^{f_{r}(t)}
$$

Suppose the set of parse trees $\mathcal{T}_{G}(w)$ is finite, and we can enumerate it. Naive parsing/language modeling algorithms for PCFG G and string $w \in \mathcal{W}^{\star}$:

1. Enumerate the set of parse trees $\mathcal{T}_{G}(\boldsymbol{w})$
2. Compute the probability of each $t \in \mathcal{T}_{G}(\boldsymbol{w})$
3. Argmax/sum as appropriate

Chomsky normal form

A CFG is in Chomsky Normal Form (CNF) iff all productions are of the form $A \rightarrow B C$ or $A \rightarrow x$, where $A, B, C \in \mathcal{N}$ and $x \in \mathcal{W}$.
PCFGs without epsilon productions $A \rightarrow \epsilon$ can always be put into CNF.
Key step: binarize productions with more than two children by introducing new nonterminals

Substrings and string positions

Let $\boldsymbol{w}=w_{1} w_{2} \ldots w_{n}$ be a string of length n
A string position for w is an integer $i \in 0, \ldots, n$ (informally, it identifies the position between words w_{i-1} and w_{i})

A substring of \boldsymbol{w} can be specified by beginning and ending string positions $\boldsymbol{w}_{i: j}$ is the substring starting at word $i+1$ and ending at word j.
$\boldsymbol{w}_{0: 4}=$ the dog chases cats
$\boldsymbol{w}_{1: 2}=\operatorname{dog}$
$\boldsymbol{w}_{2: 4}=$ chases cats

Language modeling using dynamic programming

- Goal: To compute $\mathrm{P}_{G}(\boldsymbol{w})=\sum_{t \in \mathcal{T}_{G}(\boldsymbol{w})} \mathrm{P}_{G}(t)=\mathrm{P}_{G}\left(S \Rightarrow^{*} \boldsymbol{w}\right)$
- Data structure: A table called a chart recording $\mathrm{P}_{G}\left(A \Rightarrow^{*} \boldsymbol{w}_{i: k}\right)$ for all $A \in N$ and $0 \leq i<k \leq|\boldsymbol{w}|$
- Base case: For all $i=1, \ldots, n$ and $A \rightarrow w_{i}$, compute:

$$
\mathrm{P}_{G}\left(A \Rightarrow^{*} \boldsymbol{w}_{i-1: i}\right)=p\left(A \rightarrow w_{i}\right)
$$

- Recursion: For all $k-i=2, \ldots, n$ and $A \in \mathcal{N}$, compute:

$$
\begin{aligned}
& \mathrm{P}_{G}\left(A \Rightarrow^{*} \boldsymbol{w}_{i: k}\right) \\
& \quad=\sum_{j=i+1}^{k-1} \sum_{A \rightarrow B} p(A \rightarrow B C) \mathrm{P}_{G}\left(B \Rightarrow^{*} \boldsymbol{w}_{i: j}\right) \mathrm{P}_{G}\left(C \Rightarrow^{*} \boldsymbol{w}_{j: k}\right)
\end{aligned}
$$

Dynamic programming recursion

$$
\mathrm{P}_{G}\left(A \Rightarrow^{*} \boldsymbol{w}_{i: k}\right)=\sum_{j=i+1}^{k-1} \sum_{A \rightarrow B} p(A \rightarrow B C) \mathrm{P}_{G}\left(B \Rightarrow^{*} \boldsymbol{w}_{i: j}\right) \mathrm{P}_{G}\left(C \Rightarrow^{*} \boldsymbol{w}_{j: k}\right)
$$

$\mathrm{P}_{G}\left(A \Rightarrow^{*} \boldsymbol{w}_{i: k}\right)$ is called the inside probability of A spanning $\boldsymbol{w}_{i: k}$.

Example PCFG string probability calculation

$$
w=\text { George hates John }
$$

$$
R=\left\{\begin{array}{llll}
1.0 & \mathrm{~S} \rightarrow \mathrm{NP} \text { VP } & 1.0 & \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\
0.7 & \mathrm{NP} \rightarrow \text { George } & 0.3 & \mathrm{NP} \rightarrow \text { John } \\
0.5 & \mathrm{~V} \rightarrow \text { likes } & 0.5 & \mathrm{~V} \rightarrow \text { hates }
\end{array}\right\}
$$

Right string position 12

3

Computational complexity of PCFG parsing

$$
\mathrm{P}_{G}\left(A \Rightarrow^{*} \boldsymbol{w}_{i: k}\right)=\sum_{j=i+1}^{k-1} \sum_{A \rightarrow B} p(A \rightarrow B C) \mathrm{P}_{G}\left(B \Rightarrow^{*} \boldsymbol{w}_{i: j}\right) \mathrm{P}_{G}\left(C \Rightarrow^{*} \boldsymbol{w}_{j: k}\right)
$$

For each production $r \in \mathcal{R}$ and each i, k, we must sum over all intermediate positions $j \Rightarrow O\left(n^{3}|\mathcal{R}|\right)$ time

Estimating (learning) PCFGs from data

Estimating productions and production probabilities from visible data (corpus of parse trees) is straight-forward:

- the productions are identified by the local trees in the data
- Maximum likelihood principle: select production probabilities in order to make corpus as likely as possible
Estimating production probabilities from hidden data (corpus of terminal strings) is much more difficult:
- The Expectation-Maximization (EM) algorithm finds probabilities that locally maximize likelihood of corpus
- The Inside-Outside algorithm runs in cubic time in length of corpus

Estimating PCFGs from visible data

Data: A treebank of parse trees $D=\left(t_{1}, \ldots, t_{n}\right)$.

$$
L_{D}(p)=\prod_{i=1}^{n} \mathrm{P}_{G}\left(t_{i}\right)=\prod_{A \rightarrow \alpha \in \mathcal{R}} p(A \rightarrow \alpha)^{f_{A \rightarrow \alpha}(D)}
$$

where $f_{A \rightarrow \alpha}(D)=\sum_{i=1}^{n} f_{A \rightarrow \alpha}\left(t_{i}\right)$ is the number of times $A \rightarrow \alpha$ is used in D. Introduce $|N|$ Lagrange multipliers c_{B} for each $B \in \mathcal{N}$ for the constraints $\sum_{B \rightarrow \beta \in \mathcal{R}(B)} p(B \rightarrow \beta)=1:$

$$
\frac{\partial\left(L_{D}(p)-\sum_{B \in \mathcal{N}} c_{B}\left(\sum_{B \rightarrow \beta \in \mathcal{R}(B)} p(B \rightarrow \beta)-1\right)\right)}{\partial p(A \rightarrow \alpha)}=\frac{L_{D}(p) f_{r}(D)}{p(A \rightarrow \alpha)}-c_{A}
$$

Setting this to $0, \quad p(A \rightarrow \alpha)=\frac{f_{A \rightarrow \alpha}(D)}{\sum_{A \rightarrow \alpha^{\prime} \in \mathcal{R}(A)} f_{A \rightarrow \alpha^{\prime}}(D)}$

Visible PCFG estimation example

Rule
$S \rightarrow N P V P$
NP \rightarrow rice
NP \rightarrow corn
VP \rightarrow grows

Count Rel Freq
31
2 2/3
1
$1 / 3$
1

P

Estimating production probabilities from hidden data

Data: A corpus of sentences $D=\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}\right)$.

$$
\begin{gathered}
L_{D}(p)=\prod_{i=1}^{n} \mathrm{P}_{G}\left(\boldsymbol{w}_{i}\right) . \quad \mathrm{P}_{G}(\boldsymbol{w})=\sum_{t \in \mathcal{T}_{G}(w)} \mathrm{P}_{G}(t) . \\
\frac{\partial L_{D}(p)}{\partial p(A \rightarrow \alpha)}=\frac{L_{D}(p) \sum_{i=1}^{n} \mathrm{E}_{G}\left[f_{A \rightarrow \alpha} \mid \boldsymbol{w}_{i}\right]}{p(A \rightarrow \alpha)}
\end{gathered}
$$

After introducing a Lagrange multiplier for the constraint
$\sum_{B \rightarrow \beta \in \mathcal{R}(B)} p(B \rightarrow \beta)=1:$

$$
p(A \rightarrow \alpha)=\frac{\sum_{i=1}^{n} \mathrm{E}_{G}\left[f_{A \rightarrow \alpha} \mid \boldsymbol{w}_{i}\right]}{\sum_{A \rightarrow \alpha^{\prime} \in \mathcal{R}(A)} \sum_{i=1}^{n} \mathrm{E}_{G}\left[f_{A \rightarrow \alpha^{\prime}} \mid \boldsymbol{w}_{i}\right]}
$$

This is an iteration of the Expectation Maximization algorithm!

The EM algorithm for PCFGs

Input: a corpus of strings $D=\left(w_{1}, \ldots, w_{n}\right)$
Guess initial production probabilities $p^{(0)}$
For $u=1,2, \ldots$ do:

1. Calculate expected frequency $\sum_{i=1}^{n} \mathrm{E}_{p^{(u-1)}}\left[f_{A \rightarrow \alpha} \mid \boldsymbol{w}_{i}\right]$ of each production:

$$
\mathrm{E}_{p}\left[f_{A \rightarrow \alpha} \mid \boldsymbol{w}\right]=\sum_{t \in \mathcal{T}_{G}(w)} f_{A \rightarrow \alpha}(t) \mathrm{P}_{p}(t)
$$

2. Set $p^{(u)}$ to the relative expected frequency of each production

$$
p^{(u)}(A \rightarrow \alpha)=\frac{\sum_{i=1}^{n} \mathrm{E}_{p^{(u-1)}}\left[f_{A \rightarrow \alpha} \mid \boldsymbol{w}_{i}\right]}{\sum_{A \rightarrow \alpha^{\prime}} \sum_{i=1}^{n} \mathrm{E}_{p^{(u-1)}}\left[f_{A \rightarrow \alpha^{\prime}} \mid \boldsymbol{w}_{i}\right]}
$$

It is as if $p^{(u)}$ were estimated from a visible corpus \mathcal{T}_{G} in which each tree t occurs $\sum_{i=1}^{n} \mathrm{P}_{p^{(u-1)}}\left(t \mid \boldsymbol{w}_{i}\right)$ times.

Dynamic programming for $E_{p}\left[f_{A \rightarrow B C} \mid w\right]$ $E_{p}\left[f_{A \rightarrow B C} \mid \boldsymbol{w}\right]=$

$$
\frac{\sum_{0 \leq i<j<k \leq n} \mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{1: i} A \boldsymbol{w}_{k: n}\right) p(A \rightarrow B C) \mathrm{P}\left(B \Rightarrow^{*} \boldsymbol{w}_{i: j}\right) \mathrm{P}\left(C \Rightarrow^{*} \boldsymbol{w}_{j: k}\right)}{\mathrm{P}_{G}(\boldsymbol{w})}
$$

S

Calculating "outside probabilities"

Construct a table of "outside probabilities" $\mathrm{P}_{G}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: i} A \boldsymbol{w}_{k: n}\right)$ for all $0 \leq i<k \leq n$ and $A \in \mathcal{N}$
Recursion from larger to smaller substrings in \boldsymbol{w}.
Base case: $\mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: 0} S \boldsymbol{w}_{n: n}\right)=1$
Recursion: $\mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: j} C \boldsymbol{w}_{k: n}\right)=$

$$
\begin{aligned}
& \sum_{i=0}^{j-1} \sum_{\substack{A, B \in \mathcal{N} \\
A \rightarrow B C \in \mathcal{R}}} \mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: i} A \boldsymbol{w}_{k: n}\right) p(A \rightarrow B C) \mathrm{P}\left(B \Rightarrow^{*} \boldsymbol{w}_{i: j}\right) \\
+ & \sum_{l=k+1}^{n} \sum_{\substack{A, D \in \mathcal{N} \\
A \rightarrow C D \in \mathcal{R}}} \mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: j} A \boldsymbol{w}_{l: n}\right) p(A \rightarrow C D) \mathrm{P}\left(D \Rightarrow^{*} \boldsymbol{w}_{k: l}\right)
\end{aligned}
$$

Recursion in $\mathrm{P}_{G}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: i} A \boldsymbol{w}_{k: n}\right)$
$\mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{0 . j} C \boldsymbol{w}_{k: n}\right)=$

$$
\begin{aligned}
& \sum_{i=0}^{j-1} \sum_{\substack{A, B \in \mathcal{N} \\
A \rightarrow B C \mathcal{R}}} \mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: i} A \boldsymbol{w}_{k: n}\right) p(A \rightarrow B C) \mathrm{P}\left(B \Rightarrow^{*} \boldsymbol{w}_{i: j}\right) \\
+ & \sum_{I=k+1}^{n} \sum_{\substack{A, D \in \mathcal{N} \\
A \rightarrow C D \in \mathcal{R}}} \mathrm{P}\left(S \Rightarrow^{*} \boldsymbol{w}_{0: j} A \boldsymbol{w}_{l: n}\right) p(A \rightarrow C D) \mathrm{P}\left(D \Rightarrow^{*} \boldsymbol{w}_{k: I}\right)
\end{aligned}
$$

$$
S
$$

Expectation Maximization with a toy grammar

Initial rule probs

rule	prob
\ldots	\ldots
$\mathrm{VP} \rightarrow \mathrm{V}$	0.2
$\mathrm{VP} \rightarrow$ V NP	0.2
$\mathrm{VP} \rightarrow$ NP V	0.2
$\mathrm{VP} \rightarrow$ V NP NP	0.2
$\mathrm{VP} \rightarrow$ NP NP V	0.2
\cdots	\ldots
Det \rightarrow the	0.1
$\mathrm{~N} \rightarrow$ the	0.1
$\mathrm{~V} \rightarrow$ the	0.1

"English" input the dog bites the dog bites a man a man gives the dog a bone
"pseudo-Japanese" input the dog bites the dog a man bites
a man the dog a bone gives

Probability of "English"

Rule probabilities from "English"

Probability of "Japanese"

Rule probabilities from "Japanese"

Expectation Maximisation on real text

- ATIS treebank consists of 1,300 hand-constructed parse trees
- input consists of POS tags rather than words
- about 1,000 PCFG rules are needed to build these trees

Probability of training strings

Accuracy of parses of training strings

Summary of PCFG parsing

- PCFGs define probability distributions over trees
- Context free \Rightarrow local dependencies \Rightarrow efficient dynamic programming
- Expectation Maximisation on its own can't learn grammars from scratch
- it is able to learn specialised grammars
- most work on unsupervised grammar induction focuses on dependency grammars

Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models

What is parsing?

- Syntactic structure depicts:
- the way words combine to form phrases and sentences, and
- the dependencies between these words and phrases
- A grammar is a finite specification of the syntactic structures of a language
- a probabilistic grammar defines a probability distribution over syntactic structures
- Parsing is the process of recovering syntactic structures from text or speech

Parsing lies on the path from form to meaning

- "Classical Al": map text/speech to "meaning representations"
- Might be able to do this if only we knew what "meaning" is
- Problem is figuring out
- what information should be in a "meaning representation", and
- what to do with a meaning representation once you have it

Two kinds of uses for probabilistic parsing

"If you build it, they will come ..."

- Parses as (proxy) meaning representations
- machine translation

English text \rightarrow English parse \rightarrow French parse \rightarrow French text

- text summarization
- information retrieval / question answering parsing may become more useful with higher bandwidth inputs and lower bandwidth outputs
(should optimize information parses contain for each application)
- Improved language models for "noisy channel" applications (use parsing model to compute string probability; throw away parse trees)
- speech recognition
- machine translation

Linguistic grammar-based approaches to parsing

- Division of labour:
- Computational linguists
- design a formalism for stating grammars (e.g., Lexical-functional grammar (LFG), Head-driven phrase-structure grammar (HPSG), Combinatory Categorial Grammar (CCG))
- design algorithms that find parses generated by any grammar written in formalism
- Linguists write grammar fragments in formalism that describe interesting constructions
- Central questions:
- how complicated does the formalism for stating grammars need to be?
- how much computational work is required to parse, i.e., find the analysis of a sentence

The ambiguity vs. coverage vs. detail trilemma

- Ambiguity grows exponentially with length of sentence Put the rice in a box on the table in the kitchen ...
- world-knowledge and pragmatics might resolve some ambiguities
- many syntactic ambiguities don't correspond to differences in meaning
- Coverage: no complete grammars of English or any other language
- as you increase coverage, ambiguity usually increases as well
- Detail: calling in the linguists often makes matters worse
- E.g., systematically distinguishing count and mass nouns adds more ambiguity than it resolves

Statistical approaches to parsing

- Goal: find most probable analysis of a string of words
- Approach:
- define a probability distribution P (Tree) over all possible analyses of all possible strings
- from this, we can compute:
- probability of a tree given words P (Tree | Words)
- probability that a sequence of words is a sentence P (Words) (language model)
- probability that a sequence of words is a prefix of a sentence
- Doesn't decide whether an analysis Tree or a string Words is grammatical
- usually assign every possible Tree a positive probability \Rightarrow guarantees every string gets an analysis
- but these probabilities can vary enormously

A new division of labour

- Why has the statistical approach been so successful?
- Factor the parsing task into two steps:
- linguists design (and annotate) the corpora
- computer scientists design machine-learning algorithms that generalise from the corpora
- Each group needs only minimal understanding of the other's task

Conventional grammars are closed-world

- The closed world assumption for grammars
- Rules and lexical entries define set of grammatical structures
- Everything not grammatical is ungrammatical
- "Parsing as deduction": parsing is the process of proving the grammaticality of a sentence
- But: goal is understanding what the speaker's trying to say; not determining whether the sentence is grammatical
- Ideal parser should be open-world
- even ungrammatical sentences are interpretable E.g., man bites dog \neq dog bites man
- words and constructions we recognize provide information about sentence's meaning
- unknown words or phrases do not cause interpretation to fail
- parsing and acquisition are two aspects of same process
- Statistical treebank parsers are open-world
- every possible tree receives positive probability

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

A "history-based" generative parsing model

- Generates nodes of tree in (roughly) top-down order
- Predict each node from nodes already generated:
- governor and its maximal projection
- governor's governor and its maximal projection

Estimating grammar probabilities from treebanks

- The statistical parser needs to know the conditional probability of generating node type at each location in the tree
- A treebank is a corpus in which each sentence is labelled with its analysis tree

- The Penn WSJ treebank contains parses for $\sim 40,000$ sentences $(1.2$ million words)
- The conditional probabilities can be estimated from a treebank by counting how often each node type appears in each context
- There are methods for learning these probabilities from strings alone, but the resulting grammars are not very good

Capturing vs. covering linguistic generalizations

- Capturing a generalization: grammar accurately describes phenomenon at appropriate level, e.g., subject-verb agreement via PERSON and NUMBER features
- Covering a generalization: model covers common cases of a generalization, perhaps
 indirectly. E.g., head-to-head POS dependencies
- An "engineering" parser only needs to cover generalizations
- Even so, feature design requires linguistic insight
- basic linguistic insights are often most useful

Parsing in the late 1990s

- Parsers for hand-written grammars (LFG, HPSG, etc)
- linguistically rich, detailed representations
- uneven / poor coverage of English
- even simple sentences are highly ambiguous
- only ad hoc treatment of preferences
- could not be learnt from data
- Generative probabilistic parsers
- systematic treatment of preferences
- learnt from treebank corpora
- simple constituent structure representations
- wide (if superficial) coverage of English
- Could the two approaches be combined?

Generative statistical parsers

- "History-based" generative statistical parsers (Bikel, Charniak, Collins) generate each new node in parse conditioned on the structure already generated:

$$
\mathrm{P}(\text { price } \mid \mathrm{NN}, \mathrm{NP}, \text { raises, VBZ, VP, S })
$$

- Assume each node is independent of all existing structure except for nodes explicitly conditioned on
$\Rightarrow \mathrm{P}(t)$ is product of node probabilities
\Rightarrow simple "relative frequency" estimators (smoothing is essential $\diamond \diamond$)

Reentrant dependencies cause problems

- Linguistic structures exhibit cyclic dependencies
- Linguistically-motivated grammars typically include many kinds of these
- Cannot generate such parses as sequence of independent steps (naive approach "double counts")

\Rightarrow Estimating parameters of such grammars is computationally much harder
"Sandy bought the wine Sam likes"

Generalising beyond generative models

- Mathematically straight-forward to define models in which parse is is not generated as a sequence of independent decisions
- Maximum Entropy, log-linear, exponential, Gibbs,...

$$
\mathrm{P}(t)=\frac{1}{Z} \exp \sum_{j=1}^{m} w_{j} f_{j}(t)
$$

- Once we no longer require factors to be independent
- parses t need not be trees
- features f_{j} can be any computable function of parses e.g., one feature for each possible kind of dependency
- But simple "relative frequency" estimators for feature weights w no longer work; maximum likelihood estimation is very hard

Abney (1997)

Log-linear models are more expressive

- Define features $f_{x, c}$ for all node labels x and contexts c $f_{(\text {price }, \mathrm{NN}, \mathrm{NP}, \text { raises }, \mathrm{VBZ}, \mathrm{VP}, \mathrm{S})}(t)$ is the number of times (price, NN, NP, raises, VBZ, VP, S) appears in parse t
- Let weight $w_{x, c}=\log \mathrm{P}(x \mid c)$

$$
w_{(\text {price, NN,NP, raises, } \mathrm{VBZ}, \mathrm{VP}, \mathrm{~S})}=\log \mathrm{P}(\text { price } \mid \mathrm{NN}, \mathrm{NP}, \text { raises, } \mathrm{VBZ}, \mathrm{VP}, \mathrm{~S})
$$

- Generative and log-linear models define same prob. distribution
- Easy to add additional features to log-linear model, but difficult to add additional features to the generative model

Why is maximum likelihood estimation hard?

- Given treebank training corpus $D=\left(t_{1}^{\star}, \ldots, t_{n}^{\star}\right)$, maximum likelihood estimator adjusts feature weights w to maximize $\mathrm{P}(D)=\prod_{i} \mathrm{P}\left(t_{i}^{\star}\right)$

$$
\begin{aligned}
\mathrm{P}(t) & =\frac{1}{Z} \exp \sum_{j=1}^{m} w_{j} f_{j}(t) \\
Z & =\sum_{t^{\prime} \in \mathcal{T}} \exp \sum_{j=1}^{m} w_{j} f_{j}\left(t^{\prime}\right)
\end{aligned}
$$

where \mathcal{T} is set of all possible trees for all possible strings

- ML estimator adjusts \boldsymbol{w} to make trees in D more likely than any other trees
- Features form a tree of independent generative steps $\Rightarrow Z=1$ \Rightarrow estimation easy
- Features have complex dependencies $\Rightarrow Z \neq 1 \Rightarrow$ estimation hard

Conditional maximum likelihood estimation

- Most likely parse $\hat{t}(s)$ for string s only depends on $\mathrm{P}(t \mid s)$
\Rightarrow only need to estimate $\mathrm{P}(t \mid s)$

$$
\begin{aligned}
& \hat{t}(s)=\underset{t \in \mathcal{T}(s)}{\operatorname{argmax}} \mathrm{P}(t \mid s), \text { where } \mathcal{T}(s)=\text { set of possible trees for } s \\
& \mathrm{P}(t \mid s)=\frac{1}{Z(s)} \exp \sum_{j} w_{j} f_{j}(t) ; \quad Z(s)=\sum_{t \in \mathcal{T}(s)} \exp \sum_{j} w_{j} f_{j}(t)
\end{aligned}
$$

- Partition functions $Z\left(s_{i}\right)$ "only" require summing over $\mathcal{T}\left(s_{i}\right)$, i.e., all parses for each string s_{i} in training data D
- Conditional maximum likelihood selects \boldsymbol{w} to optimize conditional probability of training data $D=\left(\left(s_{1}, t_{1}^{\star}\right), \ldots,\left(s_{n}, t_{n}^{\star}\right)\right)$

$$
\hat{w}=\underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} \mathrm{P}\left(t_{i}^{\star} \mid s_{i}\right)
$$

Johnson, Geman, Canon, Chi and Riezler (1999)

Conditional estimation

s_{i}	$f\left(t_{i}^{\star}\right)$	feature vectors of other parses for s_{i}
sentence 1	$(1,3,2)$	$(2,2,3)(3,1,5)(2,6,3)$
sentence 2	$(7,2,1)$	$(2,5,5)$
sentence 3	$(2,4,2)$	$(1,1,7)(7,2,1)$
\ldots	\ldots	\ldots

- Treebank training data D provides correct parse t_{i}^{\star} for sentence s_{i}
- Parser produces all possible parse trees for each sentence s
- Feature extractor extracts feature vectors $\left(f_{1}(t), \ldots, f_{m}(t)\right)$ for each parse tree t
- Estimator selects feature weights $w=\left(w_{1}, \ldots, w_{m}\right)$ to make each t_{i}^{\star} score as high as possible relative to other parses for s_{i}

Conditional vs joint estimation

$$
\mathrm{P}(t, s)=\mathrm{P}(t \mid s) \mathrm{P}(s)
$$

- MLE maximizes probability of training trees \boldsymbol{t}^{\star} and strings s
- Can be used for language modeling $\mathrm{P}(s)=\sum_{t \in \mathcal{T}(s)} \mathrm{P}(t, s)$
- Extends to unsupervised estimation via EM
- Conditional MLE maximizes probability of \boldsymbol{t}^{\star} given strings s
- estimates exactly what we need for parsing
- uses less information from the data (ignores $\mathrm{P}(s)$)
- ignores unambiguous sentences (i.e., $|\mathcal{T}(s)|=1$)
- Joint estimation should be better (lower variance) if model correctly relates $\mathrm{P}(t \mid s)$ and $\mathrm{P}(s)$
- Conditional estimation should be better if model incorrectly relates $\mathrm{P}(t \mid s)$ and $\mathrm{P}(s)$

Details of syntactic representation don't matter

- Log-linear models make decisions based only on feature vectors $f(t)$
\Rightarrow Representation t doesn't matter as long as t is "rich enough" to define $f_{j}(t)$

Conditional estimation for parse rescoring

- Easy to over-fit training data with large number of features
\Rightarrow Regularize by adding a penalty term to log likelihood
- L1 penalty term \Rightarrow sparse feature weight vector
- L2 penalty term (Gaussian prior) seems best
- 50-best parses $\mathcal{T}(s)$ may not include true parse $t^{\star}(s)$
\Rightarrow Train rescorer to prefer parse in $\mathcal{T}_{c}(s)$ closest to $t^{\star}(s)$
- Often several parses from 50-best list are equally close to true parse
\Rightarrow EM-inspired (non-convex) loss function
- Direct numerical optimization with L-BFGS (modified for L1 regularizer) produces best results

Riezler, King, Kaplan, Crouch, Maxwell and Johnson (2002), Goodman (2004), Andrew and Gao (2007)

Features for rescoring parses

- Parse rescorer's features can be any computable function of parse
- Choice of features is the most important and least understood aspect of the parser
- feature design has a much greater impact on performance than the learning algorithm
- Features can be based on a linguistic theory (or more than one)
- ...but need not be
- "shot-gun" or "hail Mary" features very useful
- Feature selection: a feature's values on $t^{\star}(s)$ and $\mathcal{T}(s) \backslash\left\{t^{\star}(s)\right\}$ must differ on at least 5 sentences $s \in D$
- The Charniak parser's log probability combines all of the generative parser's conditional distributions into a single rescorer feature \Rightarrow rescoring should never hurt

Lexicalized and parent-annotated rules

Lexicalization associates each constituent with its head Ancestor annotation provides a little "vertical context"
Context annotation indicates constructions that only occur in main clause (c.f., Emonds)

n-gram rule features generalize rules

Collects adjacent constituents in a local tree Also includes relationship to head (e.g., adjacent? left or right?) Parameterized by ancestor-annotation, lexicalization and head-type
There are 5,143 unlexicalized rule bigram features and 43,480 lexicalized rule bigram features

Bihead dependency features

(S (NP (NN date)) (VP (VBN set)))

- Bihead dependency features approximate linguistic function-argument dependencies
- Computed for lexical (\approx semantic) and functional (\approx syntactic) heads
- One feature for each head-to-head dependency found in training corpus (70,000 features in all)

Head trees record all dependencies

- Head trees consist of a (lexical) head, all of its projections and (optionally) all of the siblings of these nodes
- correspond roughly to TAG elementary trees
- parameterized by head type, number of sister nodes and lexicalization

Rightmost branch bias

The RightBranch feature's value is the number of nodes on the right-most branch (ignoring punctuation) (c.f., Charniak 00)
Reflects the tendancy toward right branching in English Only 2 different features, but very useful in final model!

Constituent Heavyness and location

- Heavyness measures the constituent's category, its (binned) size and (binned) closeness to the end of the sentence

Coordination parallelism (1)

- A CoPar feature indicates the depth to which adjacent conjuncts are parallel

Coordination parallelism (2)

- The CoLenPar feature indicates the difference in length in adjacent conjuncts and whether this pair contains the last conjunct.

Word

- A Word feature is a word plus n of its parents (c.f., Klein and Manning's non-lexicalized PCFG)
- A WProj feature is a word plus all of its (maximal projection) parents, up to its governor's maximal projection

Constituent "edge neighbour" features

(IN over) (NP (DT the ...))

- Edge features are a kind of bigram context for constituents
- Would be difficult to incorporate into a generative parser

Tree n-gram

- A tree n-gram feature is a tree fragment that connect sequences of adjacent n words, for $n=2,3,4$ (c.f. Bod's DOP models)
- lexicalized and non-lexicalized variants
- There are 62,487 tree n-gram features

Experimental setup

- Feature tuning experiments done using Collins' split: sections 2-19 as train, 20-21 as dev and 24 as test
- $\mathcal{T}_{c}(s)$ computed using Charniak 50-best parser
- Features which vary on less than 5 sentences pruned
- Optimization performed using LMVM optimizer from Petsc/TAO optimization package or Averaged Perceptron
- Regularizer constant c adjusted to maximize f-score on dev

Evaluating features

- The feature weights are not that indicative of how important a feature is
- The MaxEnt ranker with regularizer tuning takes approx 1 day to train
- The averaged perceptron algorithm takes approximately 2 minutes
- used in experiments comparing different sets of features
- Used to compare models with the following features: NLogP Rule NGram Word WProj RightBranch Heavy NGramTree HeadTree Heads Neighbours CoPar CoLenPar

Adding one feature class

- Averaged perceptron baseline with only base parser log prob feature
- section 20-21 f-score $=0.894913$
- section 24 f-score $=0.889901$

Subtracting one feature class

- Averaged perceptron baseline with all features
- section 20-21 f-score $=0.906806$
- section 24 f-score $=0.902782$

Comparing estimators

- Training on sections $2-19$, regularizer tuned on $20-21$, evaluate on 24

Estimator	\# features	sec 20-21	sec 24
MaxEnt model, $p=2$	670,688	0.9085	0.9037
MaxEnt model, $p=1$	14,549	0.9078	0.9024
averaged perceptron	523,374	0.9068	0.9028
expected f-score	670,688	0.9084	0.9029

- None of the differences are significant
- Because the exponential model with $p=2$ was the first model I tested new features on, they may be biased to work well with it.

Sample parser output (1)

Investment-grade corporate , municipal and mortgage-backed securities also fell

Sample parser output (2 parser)

Sample parser output (2 gold)

Sample parser output (3 parser)

Sample parser output (3 gold)

Sample parser output (4 parser)

Sample parser output (4 gold)

Sample parser output (5 parser)

Sample parser output (5 gold)

Sample parser output (6 parser)

Sample parser output (6 gold)

Variation in parser accuracy on different test sets

- Each point shows the accuracy of a reranker trained using the averaged perceptron algorithm

Further directions in syntactic parsing

- Self-training: semi-supervised learning using the parser's trees as input for training
- Automatic domain adaptation: selecting an optimal combination of treebanks for parser training based on properties of the corpus
- Parsing speech recognizer output: detecting and partially correcting disfluencies; using prosody in place of punctuation

Conclusion

- It's possible to define probability distributions over essentially any kind of linguistic objects
\Rightarrow No conflict between statistics and linguistics
- If the model is generative (i.e., products of conditional distributions)
- partition function $Z=1$
\Rightarrow ML estimation is easy (no need to sum over all possible structures)
$\Rightarrow \mathrm{EM}$ algorithm for learning from hidden data
- If the model includes arbitrary "context-sensitive" dependencies
- partition function $Z \neq 1$
\Rightarrow ML estimation is intractible (need to sum over all possible structures)
- Conditional ML estimation is possible, but computationally demanding
\Rightarrow EM algorithm for learning from hidden data is intractible

Outline

Overview

n-gram language modelling

Machine translation

Sequence tagging with Hidden Markov Models

Grammars and Syntactic Parsing

PCFGs and beyond for statistical parsing

Unsupervised learning with non-parametric Bayesian models

Ideas behind talk

- Statistical methods have revolutionized computational linguistics and cognitive science
- But most successful learning methods are parametric
- learn values of a fixed number of parameters
- Non-parametric Bayesian methods learn the parameters
- Adaptor Grammars learn probability of each adapted subtree
- c.f., data-oriented parsing
- "Rich get richer" learning rule \Rightarrow Zipf distributions
- Applications of Adaptor Grammars:
- acquisition of concatenative morphology
- word segmentation and lexical acquisition
- learning the structure of named-entity NPs
- Sampling (instead of EM) is a natural approach to Adaptor Grammar inference

Language acquisition as Bayesian inference

- Likelihood measures how well grammar describes data
- Prior expresses knowledge of grammar before data is seen
- can be very specific (e.g., Universal Grammar)
- can be very general (e.g., prefer shorter grammars)
- Posterior is a distribution over grammars
- captures learner's uncertainty about which grammar is correct
- Language learning is non-parametric inference
- no (obvious) bound on number of words, grammatical morphemes, etc

Outline

```
Review of Probabilistic Context-Free Grammars
Chinese Restaurant Processes
Adaptor grammars
Adaptor grammars for unsupervised word segmentation
Bayesian inference for adaptor grammars
Biased priors for learning syllabification
Adaptor grammars for Sesotho morphology
LDA Topic models as PCFGs
Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion
```


Probabilistic context-free grammars

- Rules in Context-Free Grammars (CFGs) expand nonterminals into sequences of terminals and nonterminals
- A Probabilistic CFG (PCFG) associates each nonterminal with a multinomial distribution over the rules that expand it
- Probability of a tree is the product of the probabilities of the rules used to construct it

Learning syntactic structure is hard

- Bayesian PCFG estimation works well on toy data
- Results are disappointing on "real" data
- wrong data?
- wrong rules?
(rules in PCFG are given a priori; can we learn them too?)
- Strategy: study simpler cases
- Morphological segmentation (e.g., walking = walk+ing)
- Word segmentation of unsegmented utterances

A CFG for stem-suffix morphology

Word	\rightarrow Stem Suffix	Chars	\rightarrow Char
Stem	\rightarrow Chars	Chars	\rightarrow Char Chars
Suffix	\rightarrow Chars	Char	$\rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{c} \mid \ldots$

- Grammar's trees can represent any segmentation of words into stems and suffixes
\Rightarrow Can represent true segmentation
- But grammar's units of generalization (PCFG rules) are "too small" to learn morphemes

A "CFG" with one rule per possible morpheme

Word	\rightarrow Stem Suffix
Stem	\rightarrow all possible stems
Suffix	\rightarrow all possible suffixes

- A rule for each morpheme
\Rightarrow "PCFG" can represent probability of each morpheme
- Unbounded number of possible rules, so this is not a PCFG
- not a practical problem, as only a finite set of rules could possibly be used in any particular data set

Maximum likelihood estimate for $\boldsymbol{\theta}$ is trivial

- Maximum likelihood selects $\boldsymbol{\theta}$ that minimizes KL-divergence between model and training data \boldsymbol{W} distributions
- Saturated model in which each word is generated by its own rule replicates training data distribution \boldsymbol{W} exactly
\Rightarrow Saturated model is maximum likelihood estimate
- Maximum likelihood estimate does not find any suffixes

Forcing generalization via sparse Dirichlet priors

- Idea: use Bayesian prior that prefers fewer rules
- Set of rules is fixed in standard PCFG estimation, but can "turn rule off" by setting $\theta_{A \rightarrow \beta} \approx 0$
- Dirichlet prior with $\alpha_{A \rightarrow \beta} \approx 0$ prefers $\theta_{A \rightarrow \beta} \approx 0$

Morphological segmentation experiment

- Trained on orthographic verbs from U Penn. Wall Street Journal treebank
- Uniform Dirichlet prior prefers sparse solutions as $\alpha \rightarrow 0$
- Gibbs sampler samples from posterior distribution of parses
- reanalyses each word based on parses of the other words

Posterior samples from WSJ verb tokens

$\alpha=0.1$	$\alpha=10^{-5}$	$\alpha=10^{-10}$	$\alpha=10^{-15}$
expect	expect	expect	expect
expects	expects	expects	expects
expected	expected	expected	expected
expecting	expect ing	expect ing	expect ing
include	include	include	include
includes	includes	includ es	includ es
included	included	includ ed	includ ed
including	including	including	including
add	add	add	add
adds	adds	adds	add s
added	added	add ed	added
adding	adding	add ing	add ing
continue	continue	continue	continue
continues	continues	continue s	continue s
continued	continued	continu ed	continu ed
continuing	continuing	continu ing	continu ing
report	report	report	report
reports	report s	report s	report s
MACQUARMO:tod UNIVERSITYOROM	reported report ing	reported report ing	reported report ing

Log posterior for models on token data

Dirichlet prior parameter α

- Correct solution is nowhere near as likely as posterior \Rightarrow model is wrong!

Relative frequencies of inflected verb forms

Types and tokens

- A word type is a distinct word shape
- A word token is an occurrence of a word

$$
\begin{aligned}
\text { Data } & =\text { "the cat chased the other cat" } \\
\text { Tokens } & =\text { "the", "cat", "chased", "the", "other", "cat" } \\
\text { Types } & =\text { "the", "cat", "chased", "other" }
\end{aligned}
$$

- Estimating θ from word types rather than word tokens eliminates (most) frequency variation
- 4 common verb suffixes, so when estimating from verb types

$$
\theta_{\text {Suffix } \rightarrow \text { ing }} \# \approx 0.25
$$

- Several psycholinguists believe that humans learn morphology from word types
- Adaptor grammar mimics Goldwater et al "Interpolating between Types and Tokens" morphology-learning model

Posterior samples from WSJ verb types

$\alpha=0.1$	$\alpha=10^{-5}$	$\alpha=10^{-10}$	$\alpha=10^{-15}$
expect	expect	expect	exp ect
expects	expect s	expect s	\exp ects
expected	expect ed	expect ed	exp ected
expect ing	expect ing	expect ing	\exp ecting
include	nclud e	includ e	includ e
include s	includ es	includ es	includ es
included	includ ed	includ ed	includ ed
including add	includ ing	includ ing add	includ ing
		ad	add
adds	add s	add s	add s
add ed	add ed	add ed	add ed
adding	add ing	add ing	add ing
continue	continu e	continu e	continu e
continue s	continu es	continu es	continu es
continu ed	continu ed	continu ed	continu ed
continuing	continu ing	continu ing	continu ing
report	report	repo rt	rep ort
reports	report s	repo rts	rep orts
	report ed	repo rted	rep orted
enver ing	report ing	repo rting	rep orting

Log posterior of models on type data

- Correct solution is close to optimal at $\alpha=10^{-3}$

Desiderata for an extension of PCFGs

- PCFG rules are "too small" to be effective units of generalization \Rightarrow generalize over groups of rules
\Rightarrow units of generalization should be chosen based on data
- Type-based inference mitigates over-dispersion \Rightarrow Hierarchical Bayesian model where:
- context-free rules generate types
- another process replicates types to produce tokens
- Adaptor grammars:
- learn probability of entire subtrees (how a nonterminal expands to terminals)
- use grammatical hierarchy to define a Bayesian hierarchy, from which type-based inference naturally emerges

Outline

Review of Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Bayesian inference for adaptor grammars
Biased priors for learning syllabification
Adaptor grammars for Sesotho morphology
LDA Topic models as PCFGs
Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion

Bayesian inference for Dirichlet-multinomials

- Probability of next event with uniform Dirichlet prior with mass α over m outcomes and observed data $Z_{1: n}=\left(Z_{1}, \ldots, Z_{n}\right)$

$$
\mathrm{P}\left(Z_{n+1}=k \mid Z_{1: n}, \alpha\right) \propto n_{k}\left(Z_{1: n}\right)+\alpha / m
$$

where $n_{k}\left(\boldsymbol{Z}_{1: n}\right)$ is number of times k appears in $\boldsymbol{Z}_{1: n}$

- Example: Coin $(m=2), \alpha=1, \boldsymbol{Z}_{1: 2}=$ (heads, heads)
- $\mathrm{P}\left(Z_{3}=\right.$ heads $\left.\mid Z_{1: 2}, \alpha\right) \propto 2.5$
- $\mathrm{P}\left(Z_{3}=\right.$ tails $\left.\mid Z_{1: 2}, \alpha\right) \propto 0.5$

Dirichlet-multinomials with many outcomes

- Predictive probability:

$$
\mathrm{P}\left(Z_{n+1}=k \mid \boldsymbol{Z}_{1: n}, \alpha\right) \propto n_{k}\left(\boldsymbol{Z}_{1: n}\right)+\alpha / m
$$

- Suppose the number of outcomes $m \gg n$. Then:

$$
\mathrm{P}\left(Z_{n+1}=k \mid \boldsymbol{Z}_{1: n}, \alpha\right) \propto \begin{cases}n_{k}\left(\boldsymbol{Z}_{1: n}\right) & \text { if } n_{k}\left(\boldsymbol{Z}_{1: n}\right)>0 \\ \alpha / m & \text { if } n_{k}\left(\boldsymbol{Z}_{1: n}\right)=0\end{cases}
$$

- But most outcomes will be unobserved, so:

$$
\mathrm{P}\left(Z_{n+1} \notin \boldsymbol{Z}_{1: n} \mid \boldsymbol{Z}_{1: n}, \alpha\right) \propto \alpha
$$

From Dirichlet-multinomials to Chinese Restaurant Processes

- Suppose number of outcomes is unbounded but we pick the event labels
- If we number event types in order of occurrence
\Rightarrow Chinese Restaurant Process

$$
\begin{aligned}
& Z_{1}=1 \\
& \mathrm{P}\left(Z_{n+1}=k \mid Z_{1: n}, \alpha\right) \propto \begin{cases}n_{k}\left(\boldsymbol{Z}_{1: n}\right) & \text { if } k \leq m=\max \left(\boldsymbol{Z}_{1: n}\right) \\
\alpha & \text { if } k=m+1\end{cases}
\end{aligned}
$$

Chinese Restaurant Process (0)

- Customer \rightarrow table mapping $\boldsymbol{Z}=$
- $\mathrm{P}(z)=1$
- Next customer chooses a table according to:

$$
\mathrm{P}\left(Z_{n+1}=k \mid \boldsymbol{Z}_{1: n}\right) \propto \begin{cases}n_{k}\left(\boldsymbol{Z}_{1: n}\right) & \text { if } k \leq m=\max \left(\boldsymbol{Z}_{1: n}\right) \\ \alpha & \text { if } k=m+1\end{cases}
$$

Chinese Restaurant Process (1)

- Customer \rightarrow table mapping $\boldsymbol{Z}=1$
- $\mathrm{P}(\boldsymbol{z})=\alpha / \alpha$
- Next customer chooses a table according to:

$$
\mathrm{P}\left(Z_{n+1}=k \mid \boldsymbol{Z}_{1: n}\right) \propto \begin{cases}n_{k}\left(\boldsymbol{Z}_{1: n}\right) & \text { if } k \leq m=\max \left(\boldsymbol{Z}_{1: n}\right) \\ \alpha & \text { if } k=m+1\end{cases}
$$

Chinese Restaurant Process (2)

- Customer \rightarrow table mapping $\boldsymbol{Z}=1,1$
- $\mathrm{P}(z)=\alpha / \alpha \times 1 /(1+\alpha)$
- Next customer chooses a table according to:

$$
\mathrm{P}\left(Z_{n+1}=k \mid \boldsymbol{Z}_{1: n}\right) \propto \begin{cases}n_{k}\left(\boldsymbol{Z}_{1: n}\right) & \text { if } k \leq m=\max \left(\boldsymbol{Z}_{1: n}\right) \\ \alpha & \text { if } k=m+1\end{cases}
$$

Chinese Restaurant Process (3)

- Customer \rightarrow table mapping $\boldsymbol{Z}=1,1,2$
- $\mathrm{P}(\boldsymbol{z})=\alpha / \alpha \times 1 /(1+\alpha) \times \alpha /(2+\alpha)$
- Next customer chooses a table according to:

$$
\mathrm{P}\left(Z_{n+1}=k \mid \boldsymbol{Z}_{1: n}\right) \propto \begin{cases}n_{k}\left(\boldsymbol{Z}_{1: n}\right) & \text { if } k \leq m=\max \left(\boldsymbol{Z}_{1: n}\right) \\ \alpha & \text { if } k=m+1\end{cases}
$$

Chinese Restaurant Process (4)

- Customer \rightarrow table mapping $\boldsymbol{Z}=1,1,2,1$
- $\mathrm{P}(\boldsymbol{z})=\alpha / \alpha \times 1 /(1+\alpha) \times \alpha /(2+\alpha) \times 2 /(3+\alpha)$
- Next customer chooses a table according to:

$$
\mathrm{P}\left(Z_{n+1}=k \mid \boldsymbol{Z}_{1: n}\right) \propto \begin{cases}n_{k}\left(\boldsymbol{Z}_{1: n}\right) & \text { if } k \leq m=\max \left(\boldsymbol{Z}_{1: n}\right) \\ \alpha & \text { if } k=m+1\end{cases}
$$

Labeled Chinese Restaurant Process (0)

- Table \rightarrow label mapping $\boldsymbol{Y}=$
- Customer \rightarrow table mapping $\boldsymbol{Z}=$
- Output sequence $\boldsymbol{X}=$
- $\mathrm{P}(\boldsymbol{X})=1$
- Base distribution $\mathrm{P}_{0}(Y)$ generates a label Y_{k} for each table k
- All customers sitting at table k (i.e., $Z_{i}=k$) share label Y_{k}
- Customer i sitting at table Z_{i} has label $X_{i}=Y_{Z_{i}}$

Labeled Chinese Restaurant Process (1)

- Table \rightarrow label mapping $\boldsymbol{Y}=$ fish
- Customer \rightarrow table mapping $\boldsymbol{Z}=1$
- Output sequence $\boldsymbol{X}=$ fish
- $\mathrm{P}(\boldsymbol{X})=\alpha / \alpha \times \mathrm{P}_{0}$ (fish)
- Base distribution $\mathrm{P}_{0}(Y)$ generates a label Y_{k} for each table k
- All customers sitting at table k (i.e., $Z_{i}=k$) share label Y_{k}
- Customer i sitting at table Z_{i} has label $X_{i}=Y_{Z_{i}}$

Labeled Chinese Restaurant Process (2)

- Table \rightarrow label mapping $\boldsymbol{Y}=$ fish
- Customer \rightarrow table mapping $\boldsymbol{Z}=1,1$
- Output sequence $\boldsymbol{X}=$ fish,fish
- $\mathrm{P}(\boldsymbol{X})=\mathrm{P}_{0}($ fish $) \times 1 /(1+\alpha)$
- Base distribution $\mathrm{P}_{0}(Y)$ generates a label Y_{k} for each table k
- All customers sitting at table k (i.e., $Z_{i}=k$) share label Y_{k}
- Customer i sitting at table Z_{i} has label $X_{i}=Y_{Z_{i}}$

Labeled Chinese Restaurant Process (3)

- Table \rightarrow label mapping $\boldsymbol{Y}=$ fish, apple
- Customer \rightarrow table mapping $\boldsymbol{Z}=1,1,2$
- Output sequence $\boldsymbol{X}=$ fish,fish,apple
- $\mathrm{P}(\boldsymbol{X})=\mathrm{P}_{0}($ fish $) \times 1 /(1+\alpha) \times \alpha /(2+\alpha) \mathrm{P}_{0}$ (apple)
- Base distribution $\mathrm{P}_{0}(Y)$ generates a label Y_{k} for each table k
- All customers sitting at table k (i.e., $Z_{i}=k$) share label Y_{k}
- Customer i sitting at table Z_{i} has label $X_{i}=Y_{Z_{i}}$

Labeled Chinese Restaurant Process (4)

- Table \rightarrow label mapping $\boldsymbol{Y}=$ fish, apple
- Customer \rightarrow table mapping $\boldsymbol{Z}=1,1,2$
- Output sequence $\boldsymbol{X}=$ fish,fish,apple,fish
- $\mathrm{P}(\boldsymbol{X})=\mathrm{P}_{0}($ fish $) \times 1 /(1+\alpha) \times \alpha /(2+\alpha) \mathrm{P}_{0}($ apple $) \times 2 /(3+\alpha)$
- Base distribution $\mathrm{P}_{0}(Y)$ generates a label Y_{k} for each table k
- All customers sitting at table k (i.e., $Z_{i}=k$) share label Y_{k}
- Customer i sitting at table Z_{i} has label $X_{i}=Y_{Z_{i}}$

Summary: Chinese Restaurant Processes

- Chinese Restaurant Processes (CRPs) generalize Dirichlet-Multinomials to an unbounded number of outcomes
- concentration parameter α controls how likely a new outcome is
- CRPs exhibit a rich get richer power-law behaviour
- Labeled CRPs use a base distribution to label each table
- base distribution can have infinite support
- concentrates mass on a countable subset
- power-law behaviour \Rightarrow Zipfian distributions

Nonparametric extensions of PCFGs

- Chinese restaurant processes are a nonparametric extension of Dirichlet-multinomials because the number of states (occupied tables) depends on the data
- Two obvious nonparametric extensions of PCFGs:
- let the number of nonterminals grow unboundedly
- refine the nonterminals of an original grammar e.g., $\mathrm{S}_{35} \rightarrow \mathrm{NP}_{27} \mathrm{VP}_{17}$
\Rightarrow infinite PCFG
- let the number of rules grow unboundedly
- "new" rules are compositions of several rules from original grammar
- equivalent to caching tree fragments
\Rightarrow adaptor grammars
- No reason both can't be done together ...

Outline

Review of Probabilistic Context-Free Grammars
 Chinese Restaurant Processes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation
Bayesian inference for adaptor grammars
Biased priors for learning syllabification
Adaptor grammars for Sesotho morphology
LDA Topic models as PCFGs
Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion

Adaptor grammars: informal description

- The trees generated by an adaptor grammar are defined by CFG rules as in a CFG
- A subset of the nonterminals are adapted
- Unadapted nonterminals expand by picking a rule and recursively expanding its children, as in a PCFG
- Adapted nonterminals can expand in two ways:
- by picking a rule and recursively expanding its children, or
- by generating a previously generated tree (with probability proportional to the number of times previously generated)
- Implemented by having a CRP for each adapted nonterminal
- The CFG rules of the adapted nonterminals determine the base distributions of these CRPs

Adaptor grammar for stem-suffix morphology (0)

Word \rightarrow Stem Suffix

$\underline{\text { Suffix }} \rightarrow$ Phoneme ${ }^{\star}$

Generated words:

Adaptor grammar for stem-suffix morphology (1a)

$\underline{\text { Suffix }} \rightarrow$ Phoneme*

Generated words:

Adaptor grammar for stem-suffix morphology (1b)

$\underline{\text { Suffix }} \rightarrow$ Phoneme ${ }^{\star}$

Generated words:

Adaptor grammar for stem-suffix morphology (1c)

Generated words:

Adaptor grammar for stem-suffix morphology (1d)

Generated words: cats

Adaptor grammar for stem-suffix morphology (2a)

Generated words: cats

Adaptor grammar for stem-suffix morphology (2b)

Generated words: cats

Adaptor grammar for stem-suffix morphology (2c)

Generated words: cats

Adaptor grammar for stem-suffix morphology (2d)

Generated words: cats, dogs

Adaptor grammar for stem-suffix morphology (3)

Generated words: cats, dogs, cats

Adaptor grammars as generative processes

- The sequence of trees generated by an adaptor grammar are not independent
- it learns from the trees it generates
- if an adapted subtree has been used frequently in the past, it's more likely to be used again
- but the sequence of trees is exchangable (important for sampling)
- An unadapted nonterminal A expands using $A \rightarrow \beta$ with probability $\theta_{A \rightarrow \beta}$
- Each adapted nonterminal A is associated with a CRP (or PYP) that caches previously generated subtrees rooted in A
- An adapted nonterminal A expands:
- to a subtree t rooted in A with probability proportional to the number of times t was previously generated
- using $A \rightarrow \beta$ with probability proportional to $\alpha_{A} \theta_{A \rightarrow \beta}$

Properties of adaptor grammars

- Possible trees are generated by CFG rules but the probability of each adapted tree is learned separately
- Probability of adapted subtree t is proportional to:
- the number of times t was seen before \Rightarrow "rich get richer" dynamics (Zipf distributions)
- plus α_{A} times prob. of generating it via PCFG expansion
\Rightarrow Useful compound structures can be more probable than their parts
- PCFG rule probabilities estimated from table labels
\Rightarrow effectively learns from types, not tokens
\Rightarrow makes learner less sensitive to frequency variation in input

Bayesian hierarchy inverts grammatical hierarchy

- Grammatically, a Word is composed of a Stem and a Suffix, which are composed of Chars
- To generate a new Word from an adaptor grammar
- reuse an old Word, or
- generate a fresh one from the base distribution, i.e., generate a Stem and a Suffix
- Lower in the tree

\Rightarrow higher in Bayesian hierarchy

Outline

> Review of Probabilistic Context-Free Grammars
> Chinese Restaurant Processes
> Adaptor grammars
> Adaptor grammars for unsupervised word segmentation Bayesian inference for adaptor grammars
> Biased priors for learning syllabification
> Adaptor grammars for Sesotho morphology
> LDA Topic models as PCFGs
> Adaptor grammars for words and their referents
> Adaptor grammars for learning structure in names
> Bayesian inference for adaptor grammars
> Conclusion

Unsupervised word segmentation

- Input: phoneme sequences with sentence boundaries (Brent)
- Task: identify word boundaries, and hence words

$$
y_{\Delta} u_{\Delta} w_{\Delta} a_{\Delta} n_{\Delta} t_{\Delta} t_{\Delta} u_{\Delta} s_{\Delta} i_{\Delta} D_{\Delta} 6_{\Delta} b_{\Delta} U_{\Delta} k
$$

- Useful cues for word segmentation:
- Phonotactics (Fleck)
- Inter-word dependencies (Goldwater)

Word segmentation with PCFGs (1)

Sentence \rightarrow Word $^{+}$
Word \rightarrow Phoneme
which abbreviates

Sentence \rightarrow Words
Words \rightarrow Word Words
Word \rightarrow Phonemes
Phonemes \rightarrow Phoneme Phonemes
Phonemes \rightarrow Phoneme
Phoneme $\rightarrow a|\ldots| z$

Word segmentation with PCFGs (1)

Sentence \rightarrow Word $^{+}$
Word \rightarrow all possible phoneme strings

- But now there are an infinite number of PCFG rules!
- once we see our (finite) training data, only finitely many are useful
\Rightarrow the set of parameters (rules) should be chosen based on training data

Unigram word segmentation adaptor grammar

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Word }^{+} \\
& \underline{\text { Word }} \rightarrow \text { Phoneme }^{+}
\end{aligned}
$$

- Adapted nonterminals depicted in blue

- Adapting Words means that the grammar learns the probability of each Word subtree independently
- Unigram word segmentation on Brent corpus: 56% token f-score

Adaptor grammar learnt from Brent corpus

- Initial grammar

1	Sentence \rightarrow Word Sentence	1	Sentence \rightarrow Word
1	Word \rightarrow Phons		
1	Phons \rightarrow Phon Phons	1	Phons \rightarrow Phon
1	Phon \rightarrow D	1	Phon \rightarrow G
1	Phon \rightarrow A	1	Phon $\rightarrow \mathrm{E}$

- A grammar learnt from Brent corpus

16625	Sentence \rightarrow Word Sentence	9791	Sentence \rightarrow Word
1	Word \rightarrow Phons		
4962	Phons \rightarrow Phon Phons	1575	Phons \rightarrow Phon
134	Phon $\rightarrow \mathrm{D}$	41	Phon $\rightarrow \mathrm{G}$
180	Phon \rightarrow A	152	Phon $\rightarrow \mathrm{E}$
460	Word $\rightarrow($ Phons (Phon $y)($ Phons $($ Phon $u)))$		
446	Word $\rightarrow($ Phons (Phon w) (Phons (Phon A) (Phons (Phon $t))))$		
374	Word $\rightarrow($ Phons (Phon D) (Phons (Phon 6)))		
372	Word $\rightarrow($ Phons (Phon \&) (Phons (Phon $n)($ Phons $($ Phon $d))))$		

Words (unigram model)

$$
\text { Sentence } \rightarrow \text { Word }^{+} \quad \text { Word } \rightarrow \text { Phoneme }^{+}
$$

- Unigram word segmentation model assumes each word is generated independently
- But there are strong inter-word dependencies (collocations)
- Unigram model can only capture such dependencies by analyzing collocations as words (Goldwater 2006)

- Note: unadapted nodes suppressed in this and later trees

Collocations \Rightarrow Words

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Colloc }^{+} \\
& \text {Colloc } \rightarrow \text { Word }^{+} \\
& \underline{\text { Word }} \rightarrow \text { Phon }^{+}
\end{aligned}
$$

- A Colloc(ation) consists of one or more words
- Both Words and Collocs are adapted (learnt)
- Significantly improves word segmentation accuracy over unigram model (76% f-score; \approx Goldwater's bigram model)

Collocations \Rightarrow Words \Rightarrow Syllables

Sentence \rightarrow Colloc $^{+}$
Word \rightarrow Syllable
Word \rightarrow Syllable Syllable Syllable
Onset \rightarrow Consonant ${ }^{+}$
Nucleus \rightarrow Vowel $^{+}$

Colloc \rightarrow Word $^{+}$
Word \rightarrow Syllable Syllable
Syllable \rightarrow (Onset) Rhyme
Rhyme \rightarrow Nucleus (Coda)
Coda \rightarrow Consonant ${ }^{+}$

- With no supra-word generalizations, f-score $=68 \%$
- With 2 Collocation levels, f-score $=82 \%$

Distinguishing internal onsets/codas helps

Sentence \rightarrow Colloc $^{+}$	Colloc \rightarrow Word $^{+}$ $\underline{\text { Word }} \rightarrow$ SyllableIF
Word \rightarrow SyllableI Syllable SyllableF	$\underline{\text { SyllableIF } \rightarrow \text { (OnsetI) RhymeF }}$
$\underline{\text { OnsetI }} \rightarrow$ Consonant	
$\underline{\text { Nucleus }} \rightarrow$ Vowel $^{+}$	$\underline{\text { RhymeF } \rightarrow \text { Nucleus (CodaF) }}$

Word \rightarrow SyllableIF
Word \rightarrow SyllableI Syllable SyllableF
OnsetI \rightarrow Consonant ${ }^{+}$
Nucleus \rightarrow Vowel $^{+}$

CodaF \rightarrow Consonant ${ }^{+}$

- Without distinguishing initial/final clusters, f-score $=82 \%$
- Distinguishing initial/final clusters, f-score $=84 \%$
- With 2 Collocation levels, f-score $=87 \%$

Collocations $^{2} \Rightarrow$ Words \Rightarrow Syllables

Summary: Adaptor grammars for word segmentation

- Word segmentation accuracy depends on the kinds of generalisations learnt.

Generalization	Accuracy
words as units (unigram)	56%
+ associations between words (collocations)	76%
+ syllable structure	87%

- Accuracy improves when you learn more
- explain away potentially misleading generalizations

Outline

Review of Probabilistic Context-Free Grammars
 Chinese Restaurant Processes
 Adaptor grammars
 Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars
Biased priors for learning syllabification
Adaptor grammars for Sesotho morphology
LDA Topic models as PCFGs
Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion

What do we have to learn?

- To learn an adaptor grammar, we need:
- probabilities of grammar rules
- adapted subtrees and their probabilities for adapted non-terminals
- If we knew the true parse trees for a training corpus, we could:
- read off the adapted subtrees from the corpus
- count rules and adapted subtrees in corpus
- compute the rule and subtree probabilities from these counts
- If we aren't given the parse trees:
- there can be infinitely many possible adapted subtrees
\Rightarrow can't track the probability of all of them (as in EM)
- but sample parses of a finite corpus only include finitely many
- Sampling-based methods learn the relevant subtrees as well as their weights

Monte Carlo sampling approaches to inference

- Suppose we'd like to know $\mathrm{P}(y)$, but it's too hard to compute
- Idea: produce samples $y^{(1)}, y^{(2)}, \ldots$ from $\mathrm{P}(y)$
- there are generic methods for producing samples
- Given samples $y^{(1)}, \ldots, y^{(n)}$ from $\mathrm{P}(y)$, we can approximate the expected value of any function f of y by:

$$
\mathrm{E}[f]=\sum_{y \in \mathcal{Y}} f(y) \mathrm{P}(y) \approx \frac{1}{n} \sum_{j=1}^{n} f(y)
$$

- For word segmentation adaptor grammars
- produce sample parses of each sentence
- compute expected value of a word boundary at each possible boundary point

Gibbs sampling

- Gibbs sampling is a generic procedure for producing samples from multi-dimensional variables
- Goal: sample from $\mathrm{P}\left(y_{1}, \ldots, y_{n}\right)$
- generic Gibbs sampler algorithm:
- initialise $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ somehow
- repeat forever:
- pick an index $j \in 1, \ldots, n$ at random
- replace y_{j} with a sample from $\mathrm{P}\left(y_{j} \mid y_{-j}\right)$, where $\boldsymbol{y}_{-j}=\left(y_{1}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{n}\right)$
- For a wide range of distributions, these samples converge on $\mathrm{P}(\boldsymbol{y})$

A Gibbs sampler for adaptor grammars

- We'd like to sample $\mathrm{P}(\boldsymbol{t} \mid \boldsymbol{w})$, where:
- $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$, where each w_{j} is a sequence of terminals
- $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$, where t_{j} is a parse for w_{j}
- Output: a sequence of sample parse trees $\boldsymbol{t}^{(1)}, \boldsymbol{t}^{(2)}, \ldots$ where each $\boldsymbol{t}^{(u)}=\left(t_{1}^{(u)}, \ldots, t_{n}^{(u)}\right)$ contains a parse $t_{j}^{(u)}$ for w_{j}
- Intuition: same as simple incremental algorithm, but re-use sentences in training data
- Assign (random) parse trees to each sentence, and compute rule and subtree counts
- Repeat forever:
- pick a sentence (and corresponding parse) at random
- deduct the counts for the sentence's parse from current rule and subtree counts
- sample a parse for sentence according to updated grammar
- add sampled parse's counts to rule and subtree counts
- Sampled parse trees and grammar converges to Bayesian posterior distribution

Sampling parses from an adaptor grammar

- Sampling a parse tree for a sentence is computationally most demanding part of learning algorithm
- Component-wise Metropolis-within-Gibbs sampler for parse trees:
- adaptor grammar rules and probabilities change on the fly
- construct PCFG proposal grammar from adaptor grammar for previous sentences
- sample a parse from PCFG proposal grammar
- use accept/reject to convert samples from proposal PCFG to samples from adaptor grammar
- For particular adaptor grammars, there are often more efficient algorithms

Details about sampling parses

- Adaptor grammars are not context-free
- The probability of a rule (and a subtree) can change within a single sentence
- breaks standard dynamic programming

- But with moderate or large corpora, the probabilities don't change by much
- use Metropolis-Hastings accept/reject with a PCFG proposal distribution
- Rules of PCFG proposal grammar $G^{\prime}\left(\boldsymbol{t}_{-j}\right)$ consist of:
- rules $A \rightarrow \beta$ from base PCFG: $\theta_{A \rightarrow \beta}^{\prime} \propto \alpha_{A} \theta_{A \rightarrow \beta}$
- A rule $A \rightarrow \operatorname{Yield}(t)$ for each table t in A 's restaurant: $\theta_{A \rightarrow Y \operatorname{IELD}(t)}^{\prime} \propto n_{t}$, the number of customers at table t
- Map parses using $G^{\prime}\left(\boldsymbol{t}_{-j}\right)$ back to adaptor grammar parses

Summary: learning adaptor grammars

- Naive integrated parsing/learning algorithm:
- sample a parse for next sentence
- count how often each adapted structure appears in parse
- Sampling parses addresses exploration/exploitation dilemma
- First few sentences receive random segmentations
\Rightarrow this algorithm does not optimally learn from data
- Gibbs sampler batch learning algorithm
- assign every sentence a (random) parse
- repeatedly cycle through training sentences:
- withdraw parse (decrement counts) for sentence
- sample parse for current sentence and update counts
- Particle filter online learning algorithm
- Learn different versions ("particles") of grammar at once
- For each particle sample a parse of next sentence
- Keep/replicate particles with high probability parses

Outline

```
Review of Probabilistic Context-Free Grammars
Chinese Restaurant Processes
Adaptor grammars
Adaptor grammars for unsupervised word segmentation
Bayesian inference for adaptor grammars
```

Biased priors for learning syllabification
Adaptor grammars for Sesotho morphology
LDA Topic models as PCFGs
Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion

Syllabification learnt by adaptor grammars

- Grammar has no reason to prefer to parse word-internal intervocalic consonants as onsets

$$
1 \text { Syllable } \rightarrow \text { Onset Rhyme } \quad 1 \quad \text { Syllable } \rightarrow \text { Rhyme }
$$

- The learned grammars consistently analyse them as either Onsets or Codas \Rightarrow learns wrong grammar half the time

- Syllabification accuracy is relatively poor Syllabification given true word boundaries: f-score $=83 \%$ Syllabification learning word boundaries: f-score $=74 \%$

Preferring Onsets improves syllabification

$$
2 \text { Syllable } \rightarrow \underline{\text { Onset Rhyme } \quad 1 \quad \text { Syllable } \rightarrow \text { Rhyme }}
$$

- Changing the prior to prefer word-internal Syllables with Onsets dramatically improves segmentation accuracy
- "Rich get richer" property of Chinese Restaurant Processes \Rightarrow all ambiguous word-internal consonants analysed as Onsets

- Syllabification accuracy is much higher than without bias Syllabification given true word boundaries: f-score $=97 \%$ Syllabification learning word boundaries: f-score $=90 \%$

Modelling sonority classes improves syllabification

$$
\begin{array}{ll}
\text { Onset } \rightarrow \text { Onset }_{\text {Stop }} & \text { Onset } \rightarrow \text { Onset }_{\text {Fricative }} \\
\text { Onset }_{\text {Stop }} \rightarrow \text { Stop } & \begin{array}{l}
\text { Onset } \\
\text { Stop }
\end{array} \text { Stop Onset }_{\text {Fricative }} \\
\text { Stop } \rightarrow \mathrm{p} & \text { Stop } \rightarrow \mathrm{t}
\end{array}
$$

- Five consonant sonority classes
- Onsetstop generates a consonant cluster with a Stop at left edge
- Prior prefers transitions compatible with sonority hierarchy (e.g., Onset $_{\text {Stop }} \rightarrow$ Stop Onset $_{\text {Fricative }}$) to transitions that aren't (e.g., Onset $_{\text {Fricative }} \rightarrow$ Fricative Onset ${ }_{\text {Stop }}$)
- Same transitional probabilities used for initial and non-initial Onsets (maybe not a good idea for English?)
- Word-internal Onset bias still necessary
- Syllabification given true boundaries: f -score $=97.5 \%$ Syllabification learning word boundaries: f-score $=91 \%$

Outline

> Review of Probabilistic Context-Free Grammars
> Chinese Restaurant Processes
> Adaptor grammars
> Adaptor grammars for unsupervised word segmentation
> Bayesian inference for adaptor grammars
> Biased priors for learning syllabification
> Adaptor grammars for Sesotho morphology
> LDA Topic models as PCFGs
> Adaptor grammars for words and their referents
> Adaptor grammars for learning structure in names
> Bayesian inference for adaptor grammars
> Conclusion

The Sesotho corpus

- Sesotho is a Bantu language spoken in southern Africa
- Orthography is (roughly) phonemic
\Rightarrow use orthographic forms as broad phonemic representations
- Rich agglutinative morphology (especially in verbs)

$$
\begin{aligned}
& \text { u- e- nk- il- e kae } \\
& \text { SM-OM-take-PERF-IN where } \\
& \text { "You took it from where?" }
\end{aligned}
$$

- The Demuth Sesotho corpus (1992) contains transcripts of child and child-directed speech
- Here used a subset of size roughly comparable to Brent corpus of infant-directed speech

	Brent	Demuth
utterances	9,790	8,503
word tokens	33,399	30,200
phonemes	95,809	100,113

Sesotho verbs are morphologically complex

```
u- e- nk- il- e kae
SM-OM-take-PERF-IN where
"You took it from where?"
```

- Input:

$$
u_{\Delta} e_{\Delta} n_{\Delta} k_{\Delta} i_{\Delta} l_{\Delta} e_{\Delta} k_{\Delta} a_{\Delta} e
$$

- What I'd like to be able to learn someday:

Unigram segmentation grammar - word

u- e- nk- il- e kae
SM-OM-take-PERF-IN where
"You took it from where?"

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Word }^{+} \\
& \underline{\text { Word }} \rightarrow \text { Phoneme }^{+}
\end{aligned}
$$

- The word grammar has a word segmentation f-score of 43%
- Lower than 56\% f-score on the Brent corpus.
- Sesotho words are longer and more complex.

Collocation grammar - colloc

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Colloc }^{+} \\
& \text {Colloc } \rightarrow \text { Word }^{+} \\
& \underline{\text { Word }} \rightarrow \text { Phoneme }^{+}
\end{aligned}
$$

- Goldwater et al (2006) found that modelling bigram dependencies greatly improved English segmentation accuracy
- Johnson (2008) showed similar improvements by learning English collocations
- If we treat lower-level units as Words, f-score $=27 \%$
- If we treat upper-level units as Words, f-score $=48 \%$
- English improves by learning dependencies above words, but Sesotho improves by learning generalizations below words

Adding more levels - colloc2

```
u- e- nk- il- e kae
SM-OM-take-PERF-IN where
"You took it from where?"
```

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Colloc }^{+} \\
& \underline{\text { Colloc }} \rightarrow \text { Word }^{+} \\
& \underline{\underline{\text { Word }} \rightarrow \text { Morph }^{+}} \\
& \underline{\text { Morph }} \rightarrow \text { Phoneme }^{+}
\end{aligned}
$$

- If two levels are good, maybe three would be better?
- Word segmentation f-score drops to 47%
- Doesn't seem to be much value in adding dependencies above Word level in Sesotho

Using syllable structure - word - syll

```
u- e- nk- il- e kae
SM-OM-take-PERF-IN where
"You took it from where?"
```

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Word }^{+} \\
& \text {Word } \rightarrow \text { Syll } \\
& \underline{\text { Syll }} \rightarrow(\text { Onset }) \text { Nuc (Coda) }) \\
& \overline{\text { Syll }} \rightarrow \text { SC } \\
& \text { Onset } \rightarrow \mathrm{C}^{+} \\
& \text {Nuc } \rightarrow \mathrm{V}^{+} \\
& \text {Coda } \rightarrow \mathrm{C}^{+}
\end{aligned}
$$

- SC (syllablic consonants) are ' l ', ' m ' ' n ' and ' r '
- Word segmentation f-score $=50 \%$
- Assuming that words are composed of syllables does improve Sesotho word segmentation

Using syllable structure - colloc - syll

u- e- nk- il- e kae
SM-OM-take-PERF-IN where
"You took it from where?"

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Colloc }^{+} \\
& \text {Colloc } \rightarrow \text { Word }^{+} \\
& \text {Syll } \rightarrow \text { (Onset) Nuc (Coda) } \\
& \overline{\text { Syll }} \rightarrow \text { SC } \\
& \text { Onset } \rightarrow \mathrm{C}^{+} \\
& \text {Nuc } \rightarrow \mathrm{V}^{+} \\
& \text {Coda } \rightarrow \mathrm{C}^{+}
\end{aligned}
$$

- Word segmentation f-score $=48 \%$
- Additional collocation level doesn't help

Morpheme positions - word - morph

u- e- nk- il- e kae
SM-OM-take-PERF-IN where
"You took it from where?"

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Word }^{+} \\
& \text {Word } \rightarrow \mathrm{T} 1(\mathrm{~T} 2(\mathrm{~T} 3(\mathrm{~T} 4(\mathrm{~T} 5)))) \\
& \underline{\mathrm{T} 1} \rightarrow \text { Phoneme }^{+} \\
& \underline{\mathrm{T} 2} \rightarrow \text { Phoneme }^{+} \\
& \underline{\mathrm{T} 3} \rightarrow \text { Phoneme }^{+} \\
& \underline{\mathrm{T} 4} \rightarrow \text { Phoneme }^{+} \\
& \underline{\mathrm{T} 5} \rightarrow \text { Phoneme }^{+}
\end{aligned}
$$

- Each word consists of 1-5 morphemes
- Learn separate morphemes for each position
- Improves word segmentation f-score to 53\%

Building in language-specific information - word - smorph

```
u- e- nk- il- e kae
SM-OM-take-PERF-IN where
"You took it from where?"
```

$$
\begin{aligned}
& \text { Sentence } \rightarrow \text { Word }^{+} \\
& \begin{array}{l}
\text { Word } \rightarrow(\mathrm{P} 1(\mathrm{P} 2(\mathrm{P} 3))) \mathrm{T}(\mathrm{~S}) \\
\underline{\mathrm{P} 1} \rightarrow \text { Phoneme }^{+} \\
\mathrm{P} 2 \rightarrow \text { Phoneme }^{+} \\
\underline{\mathrm{P} 3} \rightarrow \text { Phoneme }^{+} \\
\underline{\mathrm{T}} \rightarrow \text { Phoneme }^{+} \\
\underline{\mathrm{S}} \rightarrow \text { Phoneme }^{+}
\end{array}
\end{aligned}
$$

- In Sesotho many words consist of a stem T, an optional suffix \underline{S} and up to 3 prefixes $\mathrm{P} 1, \underline{\mathrm{P} 2}$ and $\underline{\mathrm{P} 3}$
- Achieves highest f-score $=56 \%$

Outline

> Review of Probabilistic Context-Free Grammars
> Chinese Restaurant Processes
> Adaptor grammars
> Adaptor grammars for unsupervised word segmentation
> Bayesian inference for adaptor grammars
> Biased priors for learning syllabification
> Adaptor grammars for Sesotho morphology
> LDA Topic models as PCFGs
> Adaptor grammars for words and their referents
> Adaptor grammars for learning structure in names
> Bayesian inference for adaptor grammars
> Conclusion

LDA topic models as PCFGs

- Each document i generates a distribution over m topics
- Each topic j generates a (unigram) distribution over vocabulary \mathcal{X}.
- Preprocess input by prepending a document id to every sentence

$$
\begin{array}{ll}
\text { Sentence } \rightarrow \text { Doc }_{i} & i \in 1, \ldots, n \\
\text { Doc }_{i} \rightarrow-i & i \in 1, \ldots, n \\
\text { Doc }_{i} \rightarrow \text { Doc }_{i} \text { Topic }_{j} & i \in 1, \ldots, n ; j \in 1, \ldots, m \\
\text { Topic }_{j} \rightarrow x & j \in 1, \ldots, m ; x \in \mathcal{X}
\end{array}
$$

Left spine identifies document

- Left spine passes document id throughout sentence

Document \rightarrow topic rules

- Document \rightarrow topic rules specify probability of topic within document

Topic \rightarrow word rules

- Topic \rightarrow word rules specify probability of word within topic

```
```

Sentence }->\mp@subsup{\mathrm{ Doci}}{i}{}\quadi\in1,···,

```
```

Sentence }->\mp@subsup{\mathrm{ Doci}}{i}{}\quadi\in1,···,
Doc}\mp@subsup{i}{i}{}->-i\quadi\in1,···,
Doc}\mp@subsup{i}{i}{}->-i\quadi\in1,···,
Doc};->\mp@subsup{\mathrm{ Doci}}{i}{}\mp@subsup{\mathrm{ Topic}}{j}{}\quadi\in1,···,n;j\in1,···,
Doc};->\mp@subsup{\mathrm{ Doci}}{i}{}\mp@subsup{\mathrm{ Topic}}{j}{}\quadi\in1,···,n;j\in1,···,
Topic }\mp@subsup{j}{}{->}x\quadj\in1,···,m;x\in\mathcal{X

```
```

Topic }\mp@subsup{j}{}{->}x\quadj\in1,···,m;x\in\mathcal{X

```
```


Bayesian inference for LDA PCFGs

- Dirichlet priors on Document \rightarrow Topic and Topic \rightarrow Word distributions
- General-purpose PCFG parsing/estimation algorithms require time cubic in length of sentence
- not a good idea for long documents!
- More efficient algorithms for these kinds of grammars
- (standard LDA inference algorithms)
- predictive (e.g., Earley) parsing algorithms
- identify compositions finite state automata/transducers that these grammars encode

Outline

> Review of Probabilistic Context-Free Grammars
> Chinese Restaurant Processes
> Adaptor grammars
> Adaptor grammars for unsupervised word segmentation
> Bayesian inference for adaptor grammars
> Biased priors for learning syllabification
> Adaptor grammars for Sesotho morphology
> LDA Topic models as PCFGs

Adaptor grammars for words and their referents
Adaptor grammars for learning structure in names
Bayesian inference for adaptor grammars
Conclusion

Learning words and their referents

$\mathrm{PIG} \mid \mathrm{DOG} \quad \mathrm{I}_{\Delta} \mathrm{z}_{\Delta} \mathrm{D} \Delta \& \Delta \mathrm{t} \Delta \mathrm{D}_{\Delta} 6 \underbrace{\mathrm{p}_{\Delta} \mathrm{I}_{\Delta} \mathrm{g}}_{\text {PIG }}$

- Input to learner:
- unsegmented phoneme sequence, and
- objects in nonlinguistic context
- Learning objectives:
- segment utterances into words, and
- learn word-object relationship

AG for (unigram) segmentation and reference

- Each sentence is associated with a single referent from the non-linguistic context or a "null referent"
- Each word is either generated by the sentence's referent-specific distribution or the null referent distribution
- Given possible referents \mathcal{R}, the grammar contains rules:

$$
\begin{array}{ll}
\text { Sentence } \rightarrow \text { Referent }_{r} & \text { for each } r \in \mathcal{R} \\
\text { Referent }_{r} \rightarrow s & \text { for each } r \in \mathcal{R}, r \in s \in 2^{\mathcal{R}} \\
\text { Referent }_{r} \rightarrow \text { Referent }_{r} \text { Word }_{r} & \text { for each } r \in \mathcal{R} \\
\text { Referent }_{r} \rightarrow \text { Referent }_{r} \text { Word }_{\emptyset} & \text { for each } r \in \mathcal{R} \\
\text { Word }_{r} \rightarrow \text { Phonemes }_{r} & \text { for each } r \in \mathcal{R} \cup\{\emptyset\} \\
\text { Phonemes }_{r} \rightarrow \text { Phoneme }^{+} & \text {for each } r \in \mathcal{R} \cup\{\emptyset\} \\
& \\
& \text { T_dog } 1 \text { pig (Word I z D \& t) (Word_dog D 6 d O g i) } \\
\text { - Sample parses: } & \text { T_dog } \mid \text { pig (Word D E r z) (Word_dog D 6 d O g i) } \\
& \text { T_dog pig (Word D \& t s 6) (Word_pig p I g) }
\end{array}
$$

Joint segmentation and reference results

- Referents have much stronger effect on collocation model than on unigram model
- Best results with collocation grammar requiring zero or one referential word per sentence
- requiring that referential words are surrounded by non-referential words may be as good
- Simultaneously learning word segmentation and reference does not improve average word segmentation
(Tcolloc1 72\% with real labels, 70% with permuted labels)
- non-linguistic context is very impoverished
- relatively few words are referential
- Referential words are segmented better when referents are provided (Tcolloc1 74\% with real labels, 52% with permuted labels)

Outline

> Review of Probabilistic Context-Free Grammars
> Chinese Restaurant Processes
> Adaptor grammars
> Adaptor grammars for unsupervised word segmentation
> Bayesian inference for adaptor grammars
> Biased priors for learning syllabification
> Adaptor grammars for Sesotho morphology
> LDA Topic models as PCFGs
> Adaptor grammars for words and their referents
> Adaptor grammars for learning structure in names
> Bayesian inference for adaptor grammars
> Conclusion

Adaptor grammars for learning structure in names

- Many different kinds of names
- Person names, e.g., Mr. Sam Spade Jr.
- Company names, e.g., United Motor Manufacturing Corp.
- Other names, e.g., United States of America
- At least some of these are structured; e.g., Mr is an honorific, Sam is first name, Spade is a surname, etc.
- Penn treebanks assign flat structures to base NPs (including names)
- Data set: 10,787 unique lowercased sequences of base NP proper nouns, containing 23,392 words
- Can we automatically learn the structure of these names?

Adaptor grammar for names

$$
\begin{array}{ll}
\mathrm{NP} \rightarrow \text { Unordered }^{+} & \underline{\text { Unordered }} \rightarrow \text { Word }^{+} \\
\mathrm{NP} \rightarrow(\mathrm{~A} 0)(\mathrm{A} 1) \ldots(\mathrm{A} 6) & \mathrm{NP} \rightarrow(\mathrm{~B} 0)(\mathrm{B} 1) \ldots \\
\underline{\mathrm{A} 0} \rightarrow \text { Word }^{+} & \underline{\mathrm{B} 0} \rightarrow \text { Word }^{+} \\
\ldots & \ldots \\
\underline{\mathrm{A} 6} \rightarrow \text { Word }^{+} & \underline{\mathrm{B} 6} \rightarrow \text { Word }^{+}
\end{array}
$$

- Sample output:
(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B 0 aim) (B 1 prime rate) (B 2 plus) (B 5 fund) (B 6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 Itd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

Outline

> Review of Probabilistic Context-Free Grammars
> Chinese Restaurant Processes
> Adaptor grammars
> Adaptor grammars for unsupervised word segmentation
> Bayesian inference for adaptor grammars
> Biased priors for learning syllabification
> Adaptor grammars for Sesotho morphology
> LDA Topic models as PCFGs
> Adaptor grammars for words and their referents
> Adaptor grammars for learning structure in names
> Bayesian inference for adaptor grammars

Conclusion

What do we have to learn?

- To learn an adaptor grammar, we need:
- probabilities of grammar rules
- adapted subtrees and their probabilities for adapted non-terminals
- If we knew the true parse trees for a training corpus, we could:
- read off the adapted subtrees from the corpus
- count rules and adapted subtrees in corpus
- compute the rule and subtree probabilities from these counts
- simple computation (smoothed relative frequencies)
- If we aren't given the parse trees:
- there can be infinitely many possible adapted subtrees
\Rightarrow can't track the probability of all of them (as in EM)
- but sample parses of a finite corpus only include finitely many
- Sampling-based methods learn the relevant subtrees as well as their weights

If we had infinite data ...

- A simple incremental learning algorithm:
- Repeat forever:
- get next sentence
- sample a parse tree for sentence according to current grammar
- increment rule and adapted subtree counts with counts from sampled parse tree
- update grammar according to these counts
- Particle filter learners update multiple versions of the grammar at each sentence

A Gibbs sampler for learning adaptor grammars

- Intuition: same as simple incremental algorithm, but re-use sentences in training data
- Assign (random) parse trees to each sentence, and compute rule and subtree counts
- Repeat forever:
- pick a sentence (and corresponding parse) at random
- deduct the counts for the sentence's parse from current rule and subtree counts
- sample a parse for sentence according to updated grammar
- add sampled parse's counts to rule and subtree counts
- Sampled parse trees and grammar converges to Bayesian posterior distribution

Sampling parses from an adaptor grammar

- Sampling a parse tree for a sentence is computationally most demanding part of learning algorithm
- Component-wise Metropolis-within-Gibbs sampler for parse trees:
- adaptor grammar rules and probabilities change on the fly
- construct PCFG proposal grammar from adaptor grammar for previous sentences
- sample a parse from PCFG proposal grammar
- use accept/reject to convert samples from proposal PCFG to samples from adaptor grammar
- For particular adaptor grammars, there are often more efficient algorithms

Details about sampling parses

- Adaptor grammars are not context-free
- The probability of a rule (and a subtree) can change within a single sentence
- breaks standard dynamic programming

- But with moderate or large corpora, the probabilities don't change by much
- use Metropolis-Hastings accept/reject with a PCFG proposal distribution
- Rules of PCFG proposal grammar $G^{\prime}\left(\boldsymbol{t}_{-j}\right)$ consist of:
- rules $A \rightarrow \beta$ from base PCFG: $\theta_{A \rightarrow \beta}^{\prime} \propto \alpha_{A} \theta_{A \rightarrow \beta}$
- A rule $A \rightarrow \operatorname{Yield}(t)$ for each table t in A 's restaurant: $\theta_{A \rightarrow Y \operatorname{IELD}(t)}^{\prime} \propto n_{t}$, the number of customers at table t
- Map parses using $G^{\prime}\left(\boldsymbol{t}_{-j}\right)$ back to adaptor grammar parses

Summary: learning adaptor grammars

- Naive integrated parsing/learning algorithm:
- sample a parse for next sentence
- count how often each adapted structure appears in parse
- Sampling parses addresses exploration/exploitation dilemma
- First few sentences receive random segmentations
\Rightarrow this algorithm does not optimally learn from data
- Gibbs sampler batch learning algorithm
- assign every sentence a (random) parse
- repeatedly cycle through training sentences:
- withdraw parse (decrement counts) for sentence
- sample parse for current sentence and update counts
- Particle filter online learning algorithm
- Learn different versions ("particles") of grammar at once
- For each particle sample a parse of next sentence
- Keep/replicate particles with high probability parses

Outline

> Review of Probabilistic Context-Free Grammars
> Chinese Restaurant Processes
> Adaptor grammars
> Adaptor grammars for unsupervised word segmentation
> Bayesian inference for adaptor grammars
> Biased priors for learning syllabification
> Adaptor grammars for Sesotho morphology
> LDA Topic models as PCFGs
> Adaptor grammars for words and their referents
> Adaptor grammars for learning structure in names
> Bayesian inference for adaptor grammars

Conclusion

Conclusion

- Adaptor Grammars (AG) "adapt" to the strings they generate
- The "rules" AGs generalise over are subtrees of base grammar
- cached subtrees depend on data \Rightarrow non-parametric
- AGs inherit "rich get richer" property from Chinese Restaurant Processes
\Rightarrow learning generalises over types rather than tokens
\Rightarrow generate Zipfian distributions
- AGs can describe a variety of linguistic inference problems
- Accuracy often improves as models become more realistic
- Sampling methods are a natural approach to AG inference

Interested in applying Bayesian inference to language?

- We're looking for:
- graduate students and
- post-doctoral reseachers
with good mathematical/computational skills
- Cotutelle (joint PhD) support also available
- Please contact me if you're interested:

Prof. Mark Johnson
Department of Computing
Macquarie University
Sydney
Australia
mjohnson@science.mq.edu.au

Issues with adaptor grammars

- Recursion through adapted nonterminals seems problematic
- New tables are created as each node is encountered top-down
- But the tree labeling the table is only known after the whole subtree has been completely generated
- If adapted nonterminals are recursive, might pick a table whose label we are currently constructing. What then?
- Extend adaptor grammars so adapted fragments can end at nonterminals a la DOP (currently always go to terminals)
- Adding "exit probabilities" to each adapted nonterminal
- In some approaches, fragments can grow "above" existing fragments, but can't grow "below" (O'Donnell)
- Adaptor grammars conflate grammatical and Bayesian hierarchies
- Might be useful to disentangle them with meta-grammars

Context-free grammars

A context-free grammar (CFG) consists of:

- a finite set N of nonterminals,
- a finite set W of terminals disjoint from N,
- a finite set R of rules $A \rightarrow \beta$, where $A \in N$ and $\beta \in(N \cup W)^{\star}$
- a start symbol $S \in N$.

Each $A \in N \cup W$ generates a set \mathcal{T}_{A} of trees.
These are the smallest sets satisfying:

- If $A \in W$ then $\mathcal{T}_{A}=\{A\}$.
- If $A \in N$ then:

$$
\mathcal{T}_{A}=\bigcup \quad \operatorname{TrEE}_{A}\left(\mathcal{T}_{B_{1}}, \ldots, \mathcal{T}_{B_{n}}\right)
$$

where $R_{A}=\{A \rightarrow \beta: A \rightarrow \beta \in R\}$, and

$$
\operatorname{TrEE}_{\mathcal{A}}\left(\mathcal{T}_{B_{1}}, \ldots, \mathcal{T}_{B_{n}}\right)=\left\{\begin{array}{ll}
A & \begin{array}{l}
t_{i} \in \mathcal{I}_{B_{i}} \\
t_{1} \ldots t_{n}
\end{array} \\
i=1, \ldots, n
\end{array}\right\}
$$

The set of trees generated by a CFG is \mathcal{T}_{S}.

Probabilistic context-free grammars

A probabilistic context-free grammar (PCFG) is a CFG and a vector $\boldsymbol{\theta}$, where:

- $\theta_{A \rightarrow \beta}$ is the probability of expanding the nonterminal A using the production $A \rightarrow \beta$.
It defines distributions G_{A} over trees \mathcal{T}_{A} for $A \in N \cup W$:

$$
G_{A}= \begin{cases}\delta_{A} & \text { if } A \in W \\ \sum_{A \rightarrow B_{1} \ldots B_{n} \in R_{A}} \theta_{A \rightarrow B_{1} \ldots B_{n}} \mathrm{TD}_{A}\left(G_{B_{1}}, \ldots, G_{B_{n}}\right) & \text { if } A \in N\end{cases}
$$

where δ_{A} puts all its mass onto the singleton tree A, and:

$$
\mathrm{TD}_{A}\left(G_{1}, \ldots, G_{n}\right)\left(\frac{A}{t_{1} \ldots t_{n}}\right)=\prod_{i=1}^{n} G_{i}\left(t_{i}\right)
$$

$\mathrm{TD}_{A}\left(G_{1}, \ldots, G_{n}\right)$ is a distribution over \mathcal{T}_{A} where each subtree t_{i} is generated independently from G_{i}.

DP adaptor grammars

An adaptor grammar $(G, \boldsymbol{\theta}, \boldsymbol{\alpha})$ is a PCFG $(G, \boldsymbol{\theta})$ together with a parameter vector α where for each $A \in N, \alpha_{A}$ is the parameter of the Dirichlet process associated with A.

$$
\begin{aligned}
G_{A} & \sim \mathrm{DP}\left(\alpha_{A}, H_{A}\right) \\
& \text { if } \alpha_{A}>0 \\
& =H_{A} \quad \text { if } \alpha_{A}=0 \\
H_{A} & =\sum_{A \rightarrow B_{1} \ldots B_{n} \in R_{A}} \theta_{A \rightarrow B_{1} \ldots B_{n}} \operatorname{TD}_{A}\left(G_{B_{1}}, \ldots, G_{B_{n}}\right)
\end{aligned}
$$

The grammar generates the distribution G_{S}. One Dirichlet Process for each adapted non-terminal A (i.e., $\alpha_{A}>0$).

Recursion in adaptor grammars

- The probability of joint distributions $(\boldsymbol{G}, \boldsymbol{H})$ is defined by:

$$
\begin{array}{rlr}
G_{A} & \sim \operatorname{DP}\left(\alpha_{A}, H_{A}\right) & \text { if } \alpha_{A}>0 \\
& =H_{A} \quad \text { if } \alpha_{A}=0 \\
H_{A} & =\sum_{A \rightarrow B_{1} \ldots B_{n} \in R_{A}} \theta_{A \rightarrow B_{1} \ldots B_{n}} \operatorname{TD}_{A}\left(G_{B_{1}}, \ldots, G_{B_{n}}\right)
\end{array}
$$

- This holds even if adaptor grammar is recursive
- Question: when does this define a distribution over $(\boldsymbol{G}, \boldsymbol{H})$?

Interested in statistical models for computational linguistics?
We're recruiting $P h D$ students and post-docs.
Contact Mark.Johnson@mq.edu.au for more information.

