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Main claims
• Setting grammatical parameters can be viewed as a parametric
statistical inference problem

▶ e.g., learn whether language has verb raising
▶ if parameters are local in the derivation tree (e.g., lexical entries,

including empty functional categories) then there is an efficient
parametric statistical for identifying them

▶ only requires primary linguistic data contains positive example
sentences

• Learning a lexicon can be viewed as a nonparametric statistical
inference problem

▶ number of possible words ⇒ number of degrees of freedom is
unbounded: learning a lexicon is a non-trivial problem!

▶ probabilistic models can integrate multiple sources of information,
including information from the non-linguistic context

• In statistical inference usually parameters have continuous values,
but is this linguistically reasonable?

2/77



Outline

Statistics and probabilistic models

Parameter-setting as parametric statistical inference

An example of syntactic parameter learning

Learning the lexicon as non-parametric inference

Synergies with syllabification

Grounded learning and learning word-topic associations

The role of social cues in word learning

Conclusions, and where do we go from here?

3/77



Statistical inference and probabilistic models
• A statistic is any function of the data

▶ usually chosen to summarise the data

• Statistical inference usually exploits not just the occurrence of
phenomena, but also their frequency

• Probabilistic models predict the frequency of phenomena
⇒ very useful for statistical inference

▶ inference usually involves setting parameters to minimise difference
between model’s expected value of a statistic and its value in data

▶ statisticans have shown certain procedures are optimal for wide
classes of inference problems

• Probabilistic extensions for virtually all theories of grammar
⇒ no inherent conflict between grammar and statistical inference
⇒ technically, statistical inference can be used under virtually any

theory of grammar
▶ but is anything gained by doing so?
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Do “linguistic frequencies” make sense?

• Frequencies of many surface linguistic phenomena vary
dramatically with non-linguistic context

▶ arguably, word frequencies aren’t part of “knowledge of English”

• Perhaps humans only use robust statistics
▶ e.g., closed-class words are often orders of magnitude more

frequent than open-class words
▶ e.g., the conditional distribution of surface forms given meanings

P(SurfaceForm | Meaning) may be robust, perhaps almost
categorical (Uniqueness principle)
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Why exploit frequencies when learning?

• Human learning shows frequency effects
▶ usually higher frequency ⇒ faster learning

⇏ statistical learning (e.g., trigger models show frequency effects)

• Frequency statistics provide potentially valuable information
▶ parameter settings may need updating if expected frequency is

significantly higher than empirical frequency
⇒ avoid “no negative evidence” problems

• Statistical inference seems to work better for many aspects of
language than other methods

▶ scales up to larger, more realistic data
▶ produces more accurate results
▶ more robust to noise in the input
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Some theoretical results about statistical grammar

inference
• statistical learning can succeed when categorical learning fails (e.g.,
PCFGs can be learnt from positive examples alone, but CFGs
can’t) (Horning 1969, Gold 1967)

▶ statistical learning assumes more about the input (independent
and identically-distributed)

▶ and has a weaker notion of success (convergence in distribution)

• learning PCFG parameters from positive examples alone is
computationally intractable (Cohen et al 2012)

▶ this is a “worst-case” result, typical problems (or “real” problems)
may be easy

▶ result probably generalises to Minimalist Grammars (MGs) as well
⇒ MG inference algorithm sketched here will run slowly, or will

converge to wrong parameter estimates, for some MGs on some
data
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Parametric and non-parametric inference

• A parametric model is one with a finite number of prespecified
parameters

▶ Principle-and-parameters grammars are parametric models

• Parametric inference is inference for the parameter values of a
parametric model

• A non-parametric model is one which can’t be defined using a
bounded number of parameters

▶ a lexicon is a non-parametric model if there’s no universal bound
on possible lexical entries (e.g., phonological forms)

• Non-parametric inference is inference for (some properties of)
nonparametric models

8/77



Outline

Statistics and probabilistic models

Parameter-setting as parametric statistical inference

An example of syntactic parameter learning

Learning the lexicon as non-parametric inference

Synergies with syllabification

Grounded learning and learning word-topic associations

The role of social cues in word learning

Conclusions, and where do we go from here?

9/77



Statistical inference for MG parameters
• Claim: there is a statistical algorithm for inferring parameter values
of Minimalist Grammars (MGs) from positive example sentences
alone, assuming:

▶ MGs are efficiently parsable
▶ MG derivations (not parses!) have a context-free structure
▶ parameters are associated with subtree-local configurations in

derivations (e.g., lexical entries)
▶ a probabilistic version of MG with real-valued parameters

• Example: learning verb-raising parameters from toy data
▶ e.g., learn language has V>T movement from examples like Sam

sees often Sasha
▶ truth in advertising: this example uses an equivalent CFG instead

of an MG to generate derivations

• Not tabula rasa learning: we estimate parameter values (e.g., that
a language has V>T movement); the possible parameters and their
linguistic implications are prespecified (e.g., innate)
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Outline of the algorithm

• Use a “MaxEnt” probabilistic version of MGs

• Although MG derived structures are not context-free (because of
movement) they have context-free derivation trees (Stabler and
Keenan 2003)

• Parametric variation is subtree-local in derivation tree
▶ e.g., availability of specific empty functional categories triggers

different movements

⇒ The partition function and its derivatives can be efficiently
calculated (Hunter and Dyer 2013)

⇒ Standard “hill-climbing” methods for context-free grammar
parameter estimation generalise to MGs
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Maximum likelihood statistical inference procedures

• If we have:
▶ a probabilistic model P that depends on parameter values w , and
▶ data D we want to use to infer w

the Principle of Maximum Likelihood is: select the w that makes
the probability of the data P(D) as large as possible

• Maximum likelihood inference is asymptotically optimal in several
ways

• Maximising likelihood is an optimisation problem

• Calculating P(D) (or something related to it) is necessary
▶ need the derivative of the partition function for hill-climbing search
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Maximum Likelihood and the Subset Principle
• The Maximum Likelihood Principle entails a probabilistic version of
the Subset Principle (Berwick 1985)

• Maximum Likelihood Principle: select parameter weights w to
make the probability of data P(D) as large as possible

• P(D) is the product of the probabilities of the sentences in D

⇒ w assigns each sentence in D relatively large probability
⇒ w generates at least the sentences in D

• Probabilities of all sentences must sum to 1

⇒ can assign higher probability to sentences in D if w generates
fewer sentences outside of D

▶ e.g., if w generates 100 sentences, then each can have prob. 0.01
if w generates 1,000 sentences, then each can have prob. 0.001

⇒ Maximum likelihood estimation selects w so sentences in D have
high prob., and few sentences not in D have high prob.
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The utility of continuous-valued parameters

• Standardly, linguistic parameters are discrete (e.g., Boolean)

• Most statistical inference procedures use continuous parameters

• In the models presented here, parameters and lexical entries are
associated with real-valued weights

▶ E.g., if wV>T ≪ 0 then a derivation containing V-to-T movement
will be much less likely than one that does not

▶ E.g., if wwill:V ≪ 0 then a derivation containing the word will with
syntactic category V will be much less likely

• Continuous parameter values and probability models:
▶ can represent partial or incomplete knowledge with intermediate

values (e.g., when learner isn’t sure)
▶ define a gradient that enables incremental “hill climbing” search
▶ but also might allow “zombie” parameter settings that don’t

correspond to possible human languages
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Derivations in Minimalist Grammars

• Grammar has two fundamental operations: external merge
(head-complement combination) and internal merge (movement)

• Both operations are driven by feature checking
▶ derivation terminates when all formal features have been checked

or cancelled

• MG as formalised by Stabler and Keenan (2003):
▶ the string and derived tree languages MGs generate are not

context-free, but
▶ MG derivations are specified by a derivation tree, which abstracts

over surface order to reflect the structure of internal and external
merges, and

▶ the possible derivation trees have a context-free structure (c.f.
TAG)
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Example MG derived tree
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Example MG derivation tree
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Calculating the probability P(D) of data D
• If data D is a sequence of independently generated sentences
D = (s1, . . . , sn), then:

P(D) = P(s1)× . . .× P(sn)

• If a sentence s is ambiguous with derivations τ1, . . . , τm then:

P(s) = P(τ1) + . . .+ P(τm)

• These are standard formal language theory assumptions
▶ which does not mean they are correct!
▶ Luong et al (2013) shows learning can improve by modeling

dependencies between si and si+1

• Key issue: how do we define the probability P(τ) of derivation τ?

• If s is very ambiguous (as is typical during learning), need to
calculate P(s) without enumerating all its derivations
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Parsing Minimalist Grammars

• For Maximum Likelihood inference we need to calculate the MG
derivations of the sentences in the training data D

• Stabler (2012) describes several algorithms for parsing with MGs
▶ MGs can be translated to equivalent Multiple CFGs (MCFGs)
▶ while MCFGs are strictly more expressive than CFGs, for any given

sentence there is a CFG that generates an equivalent set of parses
(Ljunglöf 2012)

⇒ CFG methods for efficient parsing (Lari and Young 1990) should
generalise to MGs
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MaxEnt probability distributions on MG derivations
• Associate each parameter π with a function from derivations τ to
the number of times some configuration appears in τ

▶ e.g., +wh(τ) is the number of WH-movements in τ
▶ same as constraints in Optimality Theory

• Each parameter π has a real-valued weight wπ

• The probability P(τ) of derivation τ is:

P(τ) =
1

Z
exp

(∑
π

wπ π(τ)

)
where π(τ) is the number of times the configuration π occurs in τ

• wπ generalises a conventional binary parameter value:
▶ if wπ > 0 then each occurence of π increases P(τ)
▶ if wπ < 0 then each occurence of π decreases P(τ)

• Essentially the same as Abney (1996) and Harmonic Grammar
(Smolensky et al 1993)
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The importance of the partition function Z

• Probability P(τ) of a derivation τ :

P(τ) =
1

Z
exp

(∑
π

wπ π(τ)

)

• The partition function Z is crucial for statistical inference
▶ inference algorithms for learning wπ without Z are more heuristic

• Calculating Z naively involves summing over all possible
derivations of all possible strings, but this is usually infeasable

• But if the possible derivations τ have a context-free structure and
the π configurations are “local”, it is possible to calculate Z
without exhaustive enumeration

21/77



Calculating the partition function Z for MGs
• Hunter and Dyer (2013) observe that the partition function Z for
MGs can be efficiently calculated generalising the techniques of
Nederhof and Satta (2008) if:

▶ the parameters π are functions of local subtrees of the derivation
tree τ , and

▶ the possible MG derivations have a context-free structure

• Stabler (2012) suggests that empty functional categories control
parametric variation in MGs

▶ e.g., if lexicon contains “ε::=V +wh C” then language has
WH-movement

▶ the number of occurences of each empty functional category is a
function of local subtrees

⇒ If we define a parameter πλ for each lexical entry λ where:
▶ πλ(τ) = number of times λ occurs in derivation τ
▶ then the partition function Z can be efficiently calculated.
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A “toy” example

• Involves verb movement and inversion (Pollock 1989)

• 3 different sets of about 25 input sentences
▶ (“English”) Sam often sees Sasha, Q will Sam see Sasha, . . .
▶ (“French”) Sam sees often Sasha, Sam will often see Sasha, . . .
▶ (“German”) Sees Sam often Sasha, Will Sam Sasha see, . . .

• Syntactic parameters: V>T, T>C, T>Q, XP>SpecCP, Vinit, Vfin

• Lexical parameters associating all words with all categories (e.g.,
will:I, will:V, will:D)

• Hand-written CFG instead of MG; parameters associated with CF
rules rather than empty categories

▶ grammar inspired by MG analyses
▶ calculates same parameter functions π as MG would
▶ could use a MG parser if one were available
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“English”: no V-to-T movement
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“French”: V-to-T movement
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“English”: T-to-C movement in questions
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“French”: T-to-C movement in questions
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“German”: V-to-T and T-to-C movement
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“German”: V-to-T, T-to-C and XP-to-SpecCP

movement
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Input to parameter inference procedure

• A CFG designed to mimic MG derivations, with parameters
associated with rules

• About 25 sentences, such as:
▶ (“English”) Sam often sees Sasha, Q will Sam see Sasha
▶ (“French”) Sam sees often Sasha, Q see Sam Sasha
▶ (“German”) Sam sees Sasha, sees Sam Sasha, will Sam Sasha see

• Identifying parameter values is easy if we know lexical categories

• Identifying lexical entries is easy if we know parameter values

• Learning both jointly faces a “chicken-and-egg” problem

31/77



Algorithm for statistical parameter estimation
• Parameter estimation algorithm:

Initialise parameter weights somehow
Repeat until converged:

calculate likelihood and its derivatives
update parameter weights to increase likelihood

• Very simple parameter weights updates suffice

• Computationally most complex part of procedure is parsing the
data to calculate likelihood and its derivatives

⇒ learning is a by-product of parsing

• Straight-forward to develop incremental on-line versions of this
algorithm (e.g., stochastic gradient ascent)

▶ an advantage of explicit probabilistic models is that there are
standard techniques for developing algorithms with various
properties
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Lexical parameters for English
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Learning English parameters
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Learning English lexical and syntactic parameters
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Learning “often” in English
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Relation to other work

• Many other “toy” parameter-learning systems:
▶ E.g., Yang (2002) describes an error-driven learner with templates

triggering parameter value updates
▶ we jointly learn lexical categories and syntactic parameters

• Error-driven learners like Yang’s can be viewed as an approximation
to the algorithm proposed here:

▶ on-line error-driven parameter updates are a stochastic
approximation to gradient-based hill-climbing

▶ MG parsing is approximated with template matching
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Relation to Harmonic Grammar and Optimality

Theory

• Harmonic Grammars are MaxEnt models that associate weights
with configurations much as we do here (Smolensky et al 1993)

▶ because no constraints are placed on possible parameters or
derivations, little detail about computation for parameter
estimation

• Optimality Theory can be viewed as a discretised version of
Harmonic Grammar in which all parameter weights must be
negative

• MaxEnt models like these are widely used in phonology (Goldwater
and Johnson 2003, Hayes and Wilson 2008)
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Why is learning the lexicon interesting?

• Tens/hundreds of thousands of arbitrary form-meaning pairs (as
well as non-predictable syntactic properties)

⇒ Orders of magnitude more lexical parameters than syntactic
parameters (?)

▶ perhaps learning a language is mainly learning its vocabulary?

• Lexicalising some aspect of grammar doesn’t automatically make it
easy to learn
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Why non-parametric models of the lexicon?
• A parametric model has a pre-specified, finite set of parameters
• A non-parametric model is one that can’t be described using a
finite pre-specified set of parameters

• We represent lexical forms as (structured) sequences of phonemes
(ignore meanings for simplicity)

• While every lexicon is finite, there is no universal bound on the
possible lexical forms (and meanings)

• Bayesian non-parametric inference can perform inference about
models that have unboundedly many parameters

▶ mathematically, our models have a parameter for every possible
lexical form

▶ although the models can’t be directly represented, we can still
make inferences about them

▶ obvious idea: lexical entries we currently have no evidence for
aren’t explicitly represented
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Language acquisition as Bayesian inference

P(Grammar | Data)︸ ︷︷ ︸
Posterior

∝ P(Data | Grammar)︸ ︷︷ ︸
Likelihood

P(Grammar)︸ ︷︷ ︸
Prior

• Likelihood measures how well grammar describes data
• Prior expresses knowledge of grammar before data is seen

▶ can be very specific (e.g., Universal Grammar)
▶ can be very general (e.g., third factors, prefer shorter grammars)

• Prior can also express markedness preferences (“soft universals”)
• Posterior is a product of both likelihood and prior

▶ a grammar must do well on both to have high posterior probability
• Priors are especially important in non-parametric inference

▶ “flat” priors are unavailable

• Bayesian inference is almost same as Minimum Description Length
(MDL)
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Nonparametric Bayesian inference with adaptor

grammars

• Many of our models have a very similar structure:
▶ a generator specifies possible entities (e.g., lexical entries)
▶ the entries are composed to form the observed data
▶ each entry’s frequency is adapted based on the data

• “Adaptor grammars” are a framework for nonparametric Bayesian
inference that uses probabilistic context-free grammars to specify
the possible entities and the way they combine
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Unsupervised word segmentation: a simplified

lexical acquisition problem

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

j △ u ▲ w △ ɑ △ n △ t ▲ t △ u ▲ s △ i ▲ ð △ ə ▲ b △ ʊ △ k
ju wɑnt tu si ðə bʊk

“you want to see the book”

• Ignoring phonology and morphology, this involves learning the
pronunciations of the lexical items in the language

46/77



An attempt at a PCFG for word segmentation

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
Phon → a | b | . . .

• CFG trees can describe
segmentation, but

• PCFGs can’t distinguish good
segmentations from bad ones

▶ PCFG rules are too small a unit of generalisation
▶ need to learn e.g., probability that bʊk is a Word
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Unigram adaptor grammar (Brent)

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
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• The trees generated are
defined by CFG rules as in a CFG

• A subset of the nonterminals are adapted
• Unadapted nonterminals expand by picking
a rule and recursively expanding its children

• Adapted nonterminals can expand in two ways:
▶ by picking a rule and recursively expanding its children, or
▶ by generating a previously generated tree (with probability

proportional to the number of times previously generated)
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Monte Carlo sampling from the posterior
• The number of possible words grows quickly as a function of the
size of the training data

▶ explicitly representing all possible words becomes infeasible
▶ problem becomes worse as lexical entries become more complicated

⇒ Sample from the posterior distribution instead of explicitly
representing all possible words and their parameters

• Gibbs sampler for adaptor grammars:
▶ Initialise parses for each sentence (e.g., randomly) and extract a

lexicon
▶ Repeat until converged:

Pick a sentence at random
Remove the lexical entries in its parse from the lexicon
Parse sentence using lexical entries learnt from other sentences
Add lexical entries from this sentence to lexicon

• There are incremental on-line sampling algorithms as well
(Börschinger and Johnson 2012)
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Adaptor grammar learnt from Brent corpus
• Initial grammar

1 Words → WordWords 1 Words → Word
1 Word → Phon
1 Phons → PhonPhons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

• A grammar learnt from Brent corpus

16625 Words → WordWords 9791 Words → Word
1575 Word → Phons
4962 Phons → PhonPhons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))

50/77



Collocations capture distributional properties

Sentence → Colloc+

Colloc → Word+

Word → Phon+
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• A Colloc(ation) consists of one or more words
• Both Words and Collocs are adapted (learnt)
• Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)
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Jointly learning words and syllables

Sentence → Colloc+ Colloc → Word+

Word → Syllable{1:3} Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+
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• Rudimentary syllable model (improved model does better)

• With 2 Collocation levels, f-score = 84%

53/77



Distinguishing internal onsets/codas helps
Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF SyllableIF → (OnsetI) RhymeF
OnsetI → Consonant+ RhymeF → Nucleus (CodaF)
Nucleus → Vowel+ CodaF → Consonant+
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• With 2 Collocation levels, not distinguishing initial/final clusters,
f-score = 84%

• With 3 Collocation levels, distinguishing initial/final clusters,
f-score = 87%
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Summary of word segmentation

• Word segmentation accuracy depends on the kinds of
generalisations learnt.

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 84%
+ interaction between

segmentation and syllable structure 87%

• Synergies in learning words and syllable structure
▶ joint inference permits the learner to explain away potentially

misleading generalizations

• In recent work we’ve also included stress in English
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Accuracy of Collocation + Syllable model
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F-score of collocation + syllable word segmentation model
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F-score of collocation + syllable word segmentation model
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Mapping words to referents

• Input to learner:
▶ word sequence: Is that the pig?
▶ objects in nonlinguistic context: dog, pig

• Learning objectives:
▶ identify utterance topic: pig
▶ identify word-topic mapping: pig ⇝ pig
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AGs for joint segmentation and topic-mapping
• Combine topic-model PCFG with word segmentation AGs

• Input consists of unsegmented phonemic forms prefixed with
possible topics:

pig|dog ɪ z ð æ t ð ə p ɪ g

• E.g., combination of Frank “topic model”
and unigram segmentation model

▶ equivalent to Jones et al (2010)

• Easy to define other
combinations of topic
models and
segmentation models
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Does non-linguistic context help segmentation?
Model word segmentation

segmentation topics token f-score
unigram not used 0.533
unigram any number 0.537
unigram one per sentence 0.547

collocation not used 0.695
collocation any number 0.726
collocation one per sentence 0.719
collocation one per collocation 0.750

• Not much improvement with unigram model
▶ consistent with results from Jones et al (2010)

• Larger improvement with collocation model
▶ most gain with one topical word per topical collocation

(this constraint cannot be imposed on unigram model)
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Does better segmentation help topic identification?

• Task: identify object (if any) this sentence is about

Model sentence referent
segmentation topics accuracy f-score

unigram not used 0.709 0
unigram any number 0.702 0.355
unigram one per sentence 0.503 0.495

collocation not used 0.709 0
collocation any number 0.728 0.280
collocation one per sentence 0.440 0.493
collocation one per collocation 0.839 0.747

• The collocation grammar with one topical word per topical
collocation is the only model clearly better than baseline
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Does better segmentation help learning

word-to-referent mappings?
• Task: identify head nouns of NPs referring to topical objects
(e.g. pɪg ⇝ pig in input pig | dog ɪ z ð æ t ð ə p ɪ g)

Model topical word
segmentation topics f-score

unigram not used 0
unigram any number 0.149
unigram one per sentence 0.147

collocation not used 0
collocation any number 0.220
collocation one per sentence 0.321
collocation one per collocation 0.636

• The collocation grammar with one topical word per topical
collocation is best at identifying head nouns of referring NPs
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Summary of grounded learning and word

segmentation

• Word to object mapping is learnt more accurately when words are
segmented more accurately

▶ improving segmentation accuracy improves topic detection and
acquisition of topical words

• Word segmentation accuracy improves when exploiting
non-linguistic context information

▶ incorporating word-topic mapping improves segmentation accuracy
(at least with collocation grammars)

⇒ There are synergies a learner can exploit when learning word
segmentation and word-object mappings
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Why study social cues?
• Everyone agrees social interactions are important for children’s
early language acquisition

▶ e.g. children who engage in more joint attention with caregivers
(e.g., looking at toys together) learn words faster (Carpenter 1998)

• Can computational models exploit social cues?
▶ we show this by building models that can exploit social cues, and

show they learn better on data with social cues than on data with
social cues removed

• Many different social cues could be relevant: can our models learn
the importance of different social cues?

▶ our models estimate probability of each cue occuring with “topical
objects” and probability of each cue occuring with “non-topical
objects”

▶ they do this in an unsupervised way, i.e., they are not told which
objects are topical
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Exploiting social cues for learning word topics

• Frank et al (2012) corpus of 4,763 utterances containing:
▶ the orthographic words uttered by the care-giver,
▶ a set of available topics (i.e., objects in the non-linguistic objects),
▶ the values of the social cues, and
▶ a set of intended topics, which the care-giver refers to.

• Social cues annotated in corpus:

Social cue Value
child.eyes objects child is looking at
child.hands objects child is touching
mom.eyes objects care-giver is looking at
mom.hands objects care-giver is touching
mom.point objects care-giver is pointing to

• Frank et al (2012) give extensive information on corpus
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Exploiting social cues in word learning

• In the four different models we tried, social cues improved the
accuracy of:

▶ recovering the utterance topic
▶ identifying the word(s) referring to the topic, and
▶ learning a lexicon (word ⇝ topic mapping)

• kideyes was the most important social cue for each of these tasks
in all of the models

• Social cues don’t seem to improve word segmentation

• Luong, Frank and Johnson (2013) extend the model to capture
topic continuity across sentences

▶ further improves model’s accuracy
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Statistical inference for syntactic parameters

• No inherent contradiction between probabilistic models, statistical
inference and grammars

• Statistical inference can be used to set real-valued parameters
(learn empty functional categories) in Minimalist Grammars (MGs)

▶ parameters are local in context-free derivation structures
⇒ efficient computation

▶ can solve “chicken-and-egg” learning problems
▶ does not need negative evidence

• Not a tabula rasa learner
▶ depends on a rich inventory of prespecified parameters
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Nonparametric Bayesian inference for the lexicon

• Capable of learning word pronunciations from unsegmented input

• Easy to extend model so it exploits additional information:
▶ distributional information (collocations)
▶ syllable structure and stress information
▶ “topic” information about the relationship between words and

objects in the non-linguistic context
▶ social cues (e.g., which object the care-giver is looking at)
▶ intersentential “topic” dependencies

• Produces state-of-the-art accuracies on a variety of languages
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Future directions in word learning

• Word learning models are now well developed:
▶ compare models’ predictions to real developmental profiles
▶ what combination of information sources produces most realistic

results?

• Extend models to handle more realistic input:
▶ phonological variation between underlying and surface form

(Elsner et al 2012, Börschinger et al 2013)
▶ continuous (acoustic?) features as input

• Extend models to incorporate morphology, syntax and semantics:
▶ not difficult in principle
▶ are syntactic theories capable of handling child-directed speech?
▶ will we need “disfluency” models?
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Future directions in syntactic parameter acquisition

• Are real-valued parameters linguistically reasonable?

• Does algorithm “scale up” to realistic grammars and corpora?
▶ parsing and inference components use efficient dynamic

programming algorithms
▶ many informal proposals, but no “universal” MGs (perhaps start

with well-understood families like Romance?)
▶ generally disappointing results scaling up PCFGs (de Marken 1995)
▶ but our grammars lack so much (e.g., LF movement, binding)

• Exploit semantic information in the non-linguistic context
▶ e.g., learn from surface forms paired with their logical form

semantics (Kwiatkowski et al 2012)
▶ but what is the “language of thought”?

• Use a nonparametric Bayesian model to learn the empty functional
categories of a language (c.f., Bisk and Hockenmaier 2013)
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Why probabilistic models?

• Probabilistic models are a computational level description
▶ they define the relevant variables and dependencies between them

• Models are stated at a higher level of abstraction than algorithms:

⇒ easier to see how to incorporate additional dependencies (e.g.,
non-linguistic context)

• There are standard ways of constructing inference algorithms for
probabilistic models:

▶ usually multiple algorithms for same model with different
properties (e.g., incremental, on-line)

• My opinion: it’s premature to focus on algorithms
▶ identify relevant variables and their dependencies first!
▶ optimal inference procedures let us explore consequences of a

model without committing to any particular algorithm
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How might statistics change linguistics?

• Few examples where probabilistic models/statistical inference
provides crucial insights

▶ role of negative evidence in learning
▶ statistical inference compatible with conventional parameter

setting

• Non-parametric inference can learn which parameters are relevant
▶ needs a generative model or “grammar” of possible parameters
▶ but probability theory is generally agnostic as to parameters

• Probabilistic models have more relevance to psycholinguistics and
language acquisition

▶ these are computational processes
▶ explicit computational models can make predictions about the

time course of these processes
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