
A gentle introduction to maximum entropy, log-linear,
exponential, logistic, harmonic, Boltzmann, Markov
Random Fields, Conditional Random Fields, etc.,

models

Mark Johnson

Department of Computing

March, 2013 (updated August 2015)

1 / 67

A gentle introduction to maximum entropy, log-linear,
exponential, logistic, harmonic, Boltzmann, Markov
Random Field, etc., models

• How can we possibly cover so many kinds of models in a single talk?

• Because they are all basically the same

• If an idea is really (really!) good, you can justify it in many different ways!

2 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

3 / 67

Why probabilistic models?

• Problem setup: given a set X of possible items
É e.g., X is the set of all possible English words (sequences of characters)
É e.g., X is the set of all possible sentences (sequences of English words)
É e.g., X is the set of all possible images (256× 256 pixel arrays)

• Our goal is to learn a probability distribution P(X) over X
É P(X) identifies which items x ∈ X are more likely and which ones are less likely
É e.g., if X is the set of possible English sentences, P(X) is called a language
model

É language models are very useful in machine translation and speech recognition
because they identify plausible sentences (e.g., “recognise speech” vs. “wreck a
nice beach”)

• In this talk, we are interested in learning P(X) from data D = (x1, . . . , xn),
which is sampled from the (unknown) P(X)

4 / 67

Motivating exponential models

• Goal: define a probability distribution P(X) over the x ∈ X
• Idea: describe x in terms of weighted features

• Let S(x) ⊆ S be the set of x’s features
• Let vs be the weight of feature s ∈ S

É if vs > 1 then s makes x more probable
É if vs < 1 then s makes x less probable

• If S(x) = {s1, . . . , sn}, then

P(X=x) ∝ vs1 . . . vsn

=
∏

s∈S(x)
vs

• Generalises many well-known models (e.g., HMMs, PCFGs)
É what are the features and the feature weights in an HMM or a PCFG?

� In generative models defined as a product of conditional distributions as
factors, factors cannot be greater than 1

5 / 67

The partition function
• Probability distributions must sum to 1, i.e.,

∑

x∈X
P(X=x) = 1

• But in general

∑

x∈X





∏

s∈S(x)
vs



 6= 1

⇒ Normalise the weighted feature products

Z =
∑

x∈X





∏

s∈S(x)
vs





Z is called the partition function
• Then define:

P(X=x) =
1
Z

∏

s∈S(x)
vs

Q: Why is Z called a partition function? What is it a function of?
6 / 67

Feature functions

• Functions are often notationally easier to deal with than sets

• For each feature s ∈ S define a feature function fs : X 7→ 2

fs(x) = 1 if s ∈ S(x), and 0 otherwise

• Then we can rewrite

P(X=x) =
1
Z

∏

s∈S(x)
vs

=
1
Z

∏

s∈S
vs fs(x)

• Now we can have real-valued feature functions

• From here on assume we have a vector of m feature functions

f = (f1, . . . , fm), and

f(x) = (f1(x), . . . , fm(x))

7 / 67

Exponential form
• The feature weights vj must be non-negative because probabilities are
non-negative

• An easy way to ensure that feature weights are positive is to work in log
space. Let wj = log(vj) or equivalently vj = exp(wj).
É If wj > 0 then having feature j makes x more probable
É If wj < 0 then having feature j makes x less probable

P(X=x) =
1
Z

m
∏

j=1

vj
fj (x)

=
1
Z
exp

m
∑

j=1

wj fj (x)

!

=
1
Z
exp (w · f(x))

where: w = (w1, . . . ,wm)

f(x) = (f1(x), . . . , fm(x))

Z =
∑

x ′∈X
exp

�

w · f(x ′)
�

8 / 67

The exponential function

0

100

0−4 4

y = ex

9 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

10 / 67

Features in Random Fields

w ′

w

w ′

w

w ′

w w

◊

the dog barks

◊DT NN VBZ

P(x) =
1
Z
w
◊,DT w ′DT,the wDT,NN w ′NN,dog wNN,VBZ w

′
VBZ,barks wVBZ,◊

• If V is the set of words and Y is the set of labels, there is a feature for each
combination in Y × V and for each combination in Y × Y.

• If ny ,y ′ is the number of times label y precedes label y ′ in x , and my ,v is the
number of times label y appears with word v , then:

P(x) =
1
Z

∏

y ,y∈Y×Y
w

ny ,y ′

y ,y ′

!

∏

y ,v∈Y×V
w ′ny ,v

y ,v

!

11 / 67

PCFGs and HMMs as exponential models

• Models like PCFGs and HMMs define the probability of a structure (e.g., a
parse tree) as a product of the probabilities of its components
É In a PCFG, each rule A→ β has a probability pA→β
É The probability of a tree is the product of the probabilities of the rules used in
its derivation

P(x) =
∏

A→β∈R
pnA→β(x)
A→β

where nA→β(x) is the number of times rule A→ β is used in derivation of tree x

⇒ A PCFG can be expressed as an exponential model where:
É define a 1-to-1 mapping from PCFG rules to features (i.e., number the rules)
É define the feature functions: fA→β(x) = nA→β(x), and
É set the feature values: vA→β = pA→β

P(x) =
∏

A→β∈R
v fA→β(x)
A→β

⇒ A PCFG (and an HMM) is an exponential model where Z = 1

12 / 67

Categorical features

• Suppose (g1, . . . , gm) are categorical features, where gk ranges over Gk
É E.g., if X is a set of words, then suffix(x) might be the last letter of x

• “One-hot” encoding of categorical features:
É Define a binary feature fgk=c for each combination of a categorical feature
gk , k = 1, . . . ,m and a possible value c ∈ Gk

fgk=c (x) = 1 if gk (x) = c, and 0 otherwise

⇒ Number of binary features grows extremely rapidly
É reranking parser has about 40 categorical features, but around 2 million binary
features

• But you only need to instantiate feature-value pairs observed in training data
É learning procedures in general set wg=c = 0 if feature-value pair g(x) = c is not
present in training data

13 / 67

Feature redundancy in binary models

• Consider a situation where there are 2 outcomes: X = {a, b}

P(X=x) =
1
Z
exp (w · f(x)) , where:

Z =
∑

x ′∈X
exp

�

w · f(x ′)
�

= exp (w · f(a)) + exp (w · f(b)) , so:

P(X=a) =
exp (w · f(a))

exp (w · f(a)) + exp (w · f(b))

=
1

1+ exp (w · (f(b)− f(a)))
= s(w · (f(a)− f(b))), where:

s(z) =
1

1+ exp(−z)
is the logistic sigmoid function

⇒ In binary models only the difference between feature values matters

14 / 67

The logistic sigmoid function

0

1

0−4 4

y = 1/1+ e−x

15 / 67

Feature redundancy in exponential models

• This result generalises to all exponential models

• Let u = (u1, . . . , um) be any vector of same dimensionality as the features

• Define an exponential model using new feature functions f ′(x) = f(x) + u.
Then:

P(X=x) =
exp (w · f ′(x))

∑

x ′∈X exp (w · f ′(x ′))

=
exp (w · f(x)) exp (w · u)

∑

x ′∈X exp (w · f(x ′)) exp (w · u)

=
exp (w · f(x))

∑

x ′∈X exp (w · f(x ′))

⇒ Adding or subtracting a constant vector to feature values does not change the
distribution defined by an exponential model

• The feature extractor for the reranking parser subtracts the vector u that
makes the feature vectors as sparse as possible

16 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

17 / 67

Methods for learning from data
• Learning or estimating feature weights w from training data D = (x1, . . . , xn),
where each xi ∈ X

• Maximum likelihood: choose w to make D as likely as possible

Òw = argmax
w

LD(w), where:

LD(w) =
n
∏

i=1

Pw(xi)

• Minimising negative log likelihood is mathematically equivalent, and has
mathematical and computational advantages
É negative log likelihood is convex (with fully visible training data)
⇒ single optimum that can be found by “following gradient downhill”
É avoids floating point underflow

• But other learning methods may have advantages
É with a large number of features, a regularisation penalty term (e.g., L1 and/or
L2 prior) helps to avoid overfitting

É optimising a specialised loss function (e.g., expected f-score) can improve
performance on a specific task

18 / 67

Learning as minimising a loss function

• Goal: find the feature weights Òw that minimise the negative log likelihood `D
of feature weights w given data D = (x1, . . . , xn):

Òw = argmin
w

`D(w)

`D(w) = − logLD(w) = − log
n
∏

i=1

Pw(xi)

=
n
∑

i=1

− logPw(xi)

• The negative log likelihood `D is a sum of the losses − logPw(xi) the model
w incurrs on each data item xi

• The maximum likelihood estimator selects the model Òw that minimises the
loss `D on data set D

• Many other machine learning algorithms for estimating w from D can be
understood as minimising some loss function

19 / 67

Why is learning exponential models hard?

• Exponential models are so flexible because the features can have arbitrary
weights

⇒ The partition function Z is required to ensure the distribution P(x) is
normalised

• The partition function Z varies as a function of w

P(X=x) =
1
Z
exp (w · f(x)) , where:

Z =
∑

x ′∈X
exp

�

w · f(x ′)
�

⇒ So we can’t ignore Z , which makes it hard to optimise the likelihood!
É no closed-form solution for the feature weights wj
É learning usually involves numerically optimising the likelihood function or some
other loss function

É calculating Z requires summing over entire space X
É many methods for approximating Z and/or its derivatives;
typically unclear how the approximations affect the estimates of w

20 / 67

The derivative of the negative log likelihood
• Efficient numerical optimisation routines require evaluation of the function to
be minimised (negative log likelihood `D) and its derivatives
É use a standard package; L-BFGS (LMVM), conjugate gradient

• We’ll optimise 1/n times the negative log likelihood of w given data
D = (x1, . . . , xn):

`D(w) = −
1
n

n
∑

i=1

logPw(xi) = logZ −
1
n

n
∑

i=1

w · f(xi)

• The derivative of ` is:
∂`D
∂wj

= Ew[fj]− ED [fj], where:

Ew[fj] =
∑

x ′∈X
fj (x
′)Pw(x ′) (expected value of fj wrt Pw)

ED [fj] =
1
n

n
∑

i=1

fj (xi) (expected value of fj wrt D)

• At optimum ∂`D/∂w = 
⇒ model’s expected feature values equals data’s feature values

21 / 67

Exercise: derive the formulae on the previous slide!

• This is a basic result for exponential models that is the basis of many other
results

• If you want to generalise exponential models, you’ll need to derive similar
formulae

• You’ll need to know:
É that derivatives distribute over sums
É that ∂ log(x)/∂x = 1/x
É the chain rule, i.e., that ∂y/∂x = ∂y/∂u ∂u/∂x

22 / 67

Maximum entropy models

• Idea: given training data D and feature functions f , find the distribution
P′(X) that:
1. EP′ [fj] = ED [fj] for all features fj ,

i.e., P′ agrees with D on the features
2. of all distributions satisfying (1), P′ has maximum entropy

i.e., P′ has the least possible additional information

• Because Òw = argminw `D(w) then

∂`D
∂w

(Òw) = 0

⇒ Ew[fj] = ED [fj] for all features fj
• Theorem: Pw = P′, i.e., for any data D and feature functions f the maximum
likelihood distribution and the maximum entropy distribution are the same
distribution

23 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

24 / 67

Why regularise?

• If every x ∈ D has feature fj and some x ∈ X does not, then cwj =∞
• If no x ∈ D has feature fj and some x ∈ X does, then cwj = −∞
• Infinities cause problems for numerical routines

• Just because a feature always occurs/doesn’t occur in training data doesn’t
mean this will also occur in test data (“accidental zeros”)

• These are extreme examples of overlearning
É overlearning often occurs when the size of the data D is not much greater than
the number of features m

• Idea: add a regulariser (also called a penalty term or prior) to the negative log
likelihood that penalises large feature weights
É Recall that wj = 0 means that feature fj is ignored

25 / 67

L2 regularisation

• Instead of minimising the negative log likelihood `D(w), we optimise

Òw = argmin
w

`D(w) + c R(w), where:

R(w) = ||w||22
= w ·w

=
m
∑

j=1

w2
j

• R is a penalty term that varies with each feature weight wj such that:
É the penalty is zero when wj = 0,
É the penalty is greater than zero whenever wj 6= 0, and
É the penalty grows as wj moves further away from 0

• The regulariser constant c is usually set to optimise performance on held-out
data

26 / 67

Bayesian MAP estimation

• Recall Bayesian belief updating:

P(Hypothesis | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

• In our setting:
É Data = D = (x1, . . . , xn)
É Hypothesis = w = (w1, . . . ,wm)

• If we want the MAP (Maximum Aposteriori) estimate for w:

Òwb = argmax
w

P(w | D)
︸ ︷︷ ︸

Posterior

= argmax
w

P(D | w)
︸ ︷︷ ︸

Likelihood

P(w)
︸︷︷︸

Prior

= argmax
w

� n
∏

i=1

P(xi | w)

�

P(w)

27 / 67

Regularisation as Bayesian MAP estimation
• Restate the MAP estimate in terms of negative log likelihood `D :

Òwb = argmax
w

� n
∏

i=1

P(xi | w)

�

︸ ︷︷ ︸

Likelihood

P(w)
︸︷︷︸

Prior

= argmin
w

�

−
n
∑

i=1

logP(xi | w)

�

− logP(w)

= argmin
w

`D(w)− logP(w), where:

`D(w) = −
n
∑

i=1

logP(xi | w)

⇒ MAP estimate Òwb equals regularised MLE Òw

Òw = argmin
w

`D(w)+c R(w)

if cR(w) = − logP(w), i.e., if the regulariser is the negative log prior

28 / 67

L2 regularisation as a Gaussian prior

• What kind of prior is an L2 regulariser?

• If cR(w) = − logP(w) then

P(w) = exp (−cR(w))

• If R(w) = ||w||22 =
∑m

j=1 w
2
j , then the prior is a zero-mean Gaussian

P(w) ∝ exp

−c
m
∑

j=1

w2
j

!

The additional factors in the Gaussian become constants in log probability
space, and therefore can be ignored when finding Òw

• L2 regularisation is also known as ridge regularisation

29 / 67

L1 regularisation or Lasso regularisation

• The L1 norm is the sum of the absolute values

R(w) = ||w||1

=
m
∑

j=1

|wj |

• L1 regularisation is popular because it produces sparse feature weights
É a feature weight vector w is sparse iff most of its values are zero

• But it’s difficult to optimise L1-regularised log-likelihood because its derivative
is discontinuous at the orthant boundaries

∂R
∂wj

=

�

+1 if wj > 0
−1 if wj < 0

• Specialised versions of standard numerical optimisers have been developed to
optimise L1-regularised log-likelihood

30 / 67

What does regularisation do?

• Regularised negative log likelihood

Òw = argmin
w

`D(w) + cR(w)

• At the optimum weights Òw, for each j :

∂`D
∂wj

+ c
∂R
∂wj

= 0, or equivalently

ED [fj]− Ew[fj] = c
∂R
∂wj

I.e., the regulariser gives the model some “slack” in requiring the empirical
expected feature values equal the model’s predicted expected feature values.

31 / 67

Why does L1 regularisation produce sparse weights?

• Regulariser’s derivative specifies gap between
empirical and model feature expectation

ED [fj]− Ew[fj] = c
∂R
∂wj

• For L2 regularisation,
∂R
∂wj
→ 0 as wj → 0

É little effect on small w
⇒ no reason for feature weights to be zero

• For L1 regularisation,
∂R
∂wj
→ sign(wj) as wj → 0

É regulariser has effect whenever w 6= 0
É regulariser drives feature weights to 0
whenever “expectation gap” < c

x2

2x

|x |

sign(x)

32 / 67

Group sparsity via the Group Lasso

• Sometimes features come in natural groups; e.g., F = (f1, . . . ,fm), where
each fj = (fj ,1, . . . , fj ,vj), j = 1, . . . ,m

• Corresponding weights W = (w1, . . . ,wm), where each wj = (wj ,1, . . . ,wj ,vj)

P(X=x) =
1
Z
exp

m
∑

j=1

vj
∑

k=1

wj ,k fj ,k (x)

!

• We’d like group sparsity, i.e., for “most” j ∈ 1, . . . ,m, wj = 0
• The group Lasso regulariser achieves this:

R(W) =
m
∑

j=1

cj
�

�

�

�wj
�

�

�

�

2

=
m
∑

j=1

cj

� vj
∑

k=1

w2
j ,k

�
1/2

33 / 67

Optimising the regularised log likelihood

• Learning feature weights involves optimising regularised likelihood

Òw = argmin
w

`D(w) + cR(w)

`D(w) = −
1
n

n
∑

i=1

logP(xi) = logZ −
1
n

n
∑

i=1

w · f(xi)

Z =
∑

x ′∈X
exp

�

w · f(x ′)
�

• Challenges in optimisation:
É If regulariser R is not differentiable (e.g., R = L1), then you need a specialised
optimisation algorithm to handle discontinuous derivatives

É if X is large (infinite), calculating Z may be difficult because it involves
summing over X

⇒ just evaluate on the subset X ′ ⊂ X where w · f is largest (assuming you can
find it)

34 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

35 / 67

Why conditional models?
• In a conditional model, each datum is a pair (x , y), where x ∈ X and y ∈ Y
• The goal of a conditional model is to predict y given x
• Usually x is an item or an observation and y is a label for x

É e.g., X is the set of all possible news articles, and Y is a set of topics, e.g.
Y = {finance, sports, politics, . . .}

É e.g., X is the set of all possible 256× 256 images, and Y is a set of labels, e.g.,
Y = {cat, dog, person, . . .}

É e.g., X is the set of all possible Tweets, and Y is a Boolean value indicating
whether x ∈ X expresses a sentiment

É e.g., X is the set of all possible sentiment-expressing Tweets, and Y is a
Boolean value indicating whether x ∈ X has positive or negative sentiment

• We will do this by learning a conditional probability distribution P(Y | X),
which is the probability of Y given X

• We estimate P(Y | X) from data D = ((x1, y1), . . . , (xn, yn)), that consists of
pairs of items xi and their labels yj (supervised learning)
É in unsupervised learning we are only given the data items xi , but not their labels
yi (clustering)

É in semi-supervised learning we are not given the labels yi for all data items xi
(we might be given only some labels, or the labels might only be partially
identified)

36 / 67

Conditional exponential models

• Data D = ((x1, y1), . . . , (xn, yn)) consists of (x , y) pairs, where x ∈ X and
y ∈ Y

• Want to predict y from x , for which we only need conditional distribution
P(Y | X), not the joint distribution P(X ,Y)

• Features are now functions f (x , y) over (x , y) pairs

• Conditional exponential model:

P(y | x) =
1

Z (x)
exp (w · f(x , y)) , where:

Z (x) =
∑

y ′∈Y
exp

�

w · f(x , y ′)
�

• Big advantage: Z (x) only requires a sum over Y, while “joint” partition
function Z requires a sum over all X × Y pairs
É in many applications label set Y is small
É size of X doesn’t affect computational effort to compute Z(x)

37 / 67

Features in conditional models

• In a conditional model, changing the feature function f(x , y) to
f ′(x , y) = f(x , y) + u(x) does not change the distribution P(y | x)
⇒ adding or subtracting a function that only depends on x does not affect a

conditional model
⇒ to be useful in a conditional model, a feature must be a non-constant function

of y

• A feature f (x , y) = f (y) that only depends on y behaves like a bias node in a
neural net
É it’s often a good idea to have a “one-hot” feature for each c ∈ Y:

fy=c (y) = 1 if y = c, and 0 otherwise

• If X is a set of discrete categories, it’s often useful to have pairwise “one-hot”
features for each c ∈ X and c ′ ∈ Y

fx=c,y=c ′(x , y) = 1 if x = c and y = c ′, and 0 otherwise

38 / 67

Using a conditional model to make predictions

• Labelling problem: we have feature weights w and want to predict label y for
some x

• The most probable label by(x) given x is:

by(x) = argmax
y ′∈Y

Pw(Y=y ′ | X=x)

= argmax
y ′∈Y

1
Z (x)

exp
�

w · f(x , y ′)
�

= argmax
y ′∈Y

w · f(x , y ′)

• Partition function Z (x) is a constant here, so drops out

39 / 67

Logistic regression

• Suppose Y = {0, 1}, i.e., our labels are Boolean

P(Y=1 | X=x) =
exp (w · f(x , 1))

exp (w · f(x , 0)) + exp (w · f(x , 1))

=
1

1+ exp (w · (f(x , 0)− f(x , 1)))

=
1

1+ exp (−w · g(x))
, where:

gj (x) = fj (x , 1)− fj (x , 0), for all j ∈ 1, . . . ,m

⇒ Only relative feature differences matter in a conditional model

• Logistic sigmoid function:

0

1

0−2 2

y = 1/1+ e−x

40 / 67

Estimating conditional exponential models
• Compute maximum conditional likelihood estimator by minimizing negative log
conditional likelihood

Òw = argmin
w

`D(w), where:

`D(w) = −
n
∑

i=1

logPw(yi | xi)

=
n
∑

i=1

(logZ (xi)−w · f(xi , yi))

• Derivatives are differences of conditional expectations and empirical feature
values

∂`D
∂wj

=
n
∑

i=1

�

Ew[fj | xi]− fj (xi , yi)
�

, where:

Ew[fj | x] =
∑

y ′∈Y
fj (x , y

′)Pw(y | x) (expected value of fj given x)

41 / 67

Regularising conditional exponential models

• Calculating derivatives of conditional likelihood only requires summing over Y,
and not X
É not too expensive if |Y| is small
É if Y has a regular structure (e.g., a sequence), then there may be efficient
algorithms for summing over Y

• Regularisation adds a penalty term to objective function we seek to optimise
• Important to regularise (unless number of features is small)

É L1 (Lasso) regularisation produces sparse feature weights
É L2 (ridge) regularisation produces dense feature weights
É Group lasso regularisation produces group-level sparsity in feature weights

42 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

43 / 67

Why stochastic gradient descent?

• For small/medium data sets, “batch” methods using standard numerical
optimisation procedures (such as L-BFGS) can work very well
É these directly minimise the negative log likelihood `D
É to calculate the negative log likelihood and its derivatives requires a pass
through the entire training data

• But for very large data sets (e.g., data sets that don’t fit into memory), or
with very large models (such as neural nets), these can be too slow

• Stochastic gradient descent calculates a noisy gradient from a small subset of
the training data, so it can learn considerably faster
É but the solution it finds is often less accurate

44 / 67

Gradient descent and mini-batch algorithms

• Idea: to minimise `D(w), move in direction of negative gradient ∂`D/∂w

• If Òw(t) is current estimate of w, update as follows:

Òw(t+1) = Òw(t) − ε
∂`D
∂w

(Òw(t))

= Òw(t) − ε
n
∑

i=1

�

E
Òw(t) [f | xi]− f(xi , yi)

�

• ε is step size; can be difficult to find a good value for it!

• This is not a good optimisation algorithm, as it zig-zags across valleys
• Update is difference between expected and empirical feature values

É Each update requires a full pass through D ⇒ relatively slow

• “Mini-batch algorithms”: calculate expectations on a small sample of D to
determine weight updates

45 / 67

Stochastic gradient descent as mini-batch of size 1
• Stochastic Gradient Descent (SGD) is the mini-batch algorithm with a
mini-batch of size 1

• If Òw(t) is current estimate of w, training data D = ((x1, y1), . . . , (xn, yn)), and
rt is a random number in 1, . . . , n then:

Òw(t+1) = Òw(t) − ε
�

E
Òw(t) [f | xrt]− f(xrt , yrt)

�

, where:

Ew[f | x] =
∑

y ′∈Y
f(x , y ′)Pw(y ′ | x)

Pw(y | x) =
1

Z (x)
exp (w · f (x , y))

Z (x) =
∑

y ′∈Y
exp

�

w · f (x , y ′)
�

• Stochastic gradient descent updates estimate of w after seeing each training
example

⇒ Learning can be very fast; might not even need a full pass over D

• Perhaps the most widely used learning algorithm today

46 / 67

The Perceptron algorithm as approximate SGD

• Idea: assume Pw(y | x) is peaked around byw(x) = argmaxy ′∈Y w · f(x , y ′).
Then:

Ew[f | x] =
∑

y ′∈Y
f(x , y ′)Pw(y ′ | x)

≈ f(x , by(x))

• Plugging this into the SGD algorithm, we get:

Òw(t+1) = Òw(t) − ε
�

E
Òw(t) [f | xrt]− f(xrt , yrt)

�

≈ Òw(t) − ε
�

f(xrt , by
Òw(t)(x))− f(xrt , yrt)

�

• This is an error-driven learning rule, since no update is made on iteration t if
by(xrt) = yrt

47 / 67

Regularisation as weight decay in SGD and Perceptron

• Regularisation: minimise a penalised negative log likelihood

Òw = argmin
w

`D(w) + cR(w), where:

R(w) =

�
∑m

j=1 w
2
j with an L2 regulariser

∑m
j=1 |wj | with an L1 regulariser

• Adding L2 regularisation in SGD and Perceptron introduces multiplicative
weight decay:

Òw(t+1) = Òw(t) − ε
�

E
Òw(t) [f | xrt]− f(xrt , yrt) + 2c Òw(t)

�

• Adding L1 regularisation in SGD and Perceptron introduces additive weight
decay:

Òw(t+1) = Òw(t) − ε
�

E
Òw(t) [f | xrt]− f(xrt , yrt) + c sign(Òw(t))

�

48 / 67

Stabilising SGD and the Perceptron

• The Perceptron is guaranteed to converge to a weight vector that correctly
classifies all training examples if the training data is separable

• Most of our problems are non-separable
⇒ SGD and the Perceptron never converge to a weight vector
⇒ final weight vector depends on last examples seen

• Reducing learning rate ε in later iterations can stabilise weight vector Òw
É if learning rate is too low, SGD takes a long time to converge
É if learning rate is too high, Òw can over-shoot
É selecting appropriate learning rate is almost “black magic”

• Bagging can be used to stabilise SGD and perceptron
É construct multiple models by running SGD or perceptron many times on
random permutations of training data

É combine predictions of models at run time by averaging or voting

• The averaged perceptron is a fast approximate version of bagging
É train a single perceptron as usual
É at end of training, average the weights from all iterations
É use these averaged weights at run-time

49 / 67

ADAGRAD and ADADELTA
• There are many methods that attempt to automatically set the learning rate ε
• ADAGRAD and ADADELTA are two of the currently most popular methods
• ADAGRAD estimates a separate learning rate εj for each feature weight wj

• If g(t)j is the derivative of the regularised negative log likelihood `D w.r.t.
feature weight wj at step t, then the ADADGRAD update rule is:

Òw (t+1)
j = Òw (t)

j −
η

r

∑t
t ′=1 g

(t)
j

g(t)j , where:

g(t)j =
∂`D(w(t))

∂wj

• This effectively scales the learning rate so features with large derivatives or
with fluctuating signs have a slower learning rate

• If a group of features are known to have the same scale, it may make sense
for them to share the same learning rate

• The ADADELTA rule is newer and only slightly more complicated
• Both ADAGRAD and ADADELTA only require you to store the sum of the
previous derivatives

50 / 67

Momentum

• Intuition: a ball rolling down a surface will settle at a (local) minimum

• Update should be a mixture of the previous update and derivative of
regularised log likelihood `D

Òw(t+1) = Òw(t) + v(t+1)

v(t+1) = αv(t) − (1− α) ε
∂`D(Òw(t)

∂w

• Momentum can smooth statistical fluctuations in SGD derivatives
• If derivatives all point in roughly same direction, updates v can become quite
large
⇒ set learning rate ε to much lower than without momentum
É typical value for momentum hyper-parameter α = 0.9

51 / 67

Perceptron vs. L-BFGS in reranking parser

 0.898

 0.9

 0.902

 0.904

 0.906

 0.908

 0.91

 0.898 0.9 0.902 0.904 0.906 0.908 0.91

f-
sc

or
e

on
 s

ec
tio

n
24

f-score on sections 20-21

Averaged perceptron (randomised data)
Exponential model, adjusting regularizer constant c

52 / 67

Comments on SGD and the Perceptron

• Widely used because easy to implement and fast to train
É in my experience, not quite as good as numerical optimisation with L-BFGS

• Overlearning can be a problem
É regularisation becomes weight decay
É L2 regularisation is multiplicative weight decay
É L1 regularisation is subtractive weight decay
É often more or less ad hoc methods are used instead of or in addition to
regularisation

– averaging (bagging, averaged perceptron, etc.)
– early stopping

• If you’re using either SGD or Perceptron, try ADAGRAD and ADADELTA
learning rules
É these methods automatically change the learning rate ε during learning
É they can identify different learning rates for different features
⇒ much faster learning that with SGD or Perceptron alone

53 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

54 / 67

Challenges when Y is large

• The SGD update rule:

Òw(t+1) = Òw(t) − ε
�

E
Òw(t) [f | xrt]− f(xrt , yrt)

�

, where:

Ew[f | x] =
∑

y ′∈Y
f(x , y ′)Pw(y ′ | x)

Pw(y | x) =
1

Z (x)
exp (w · f (x , y))

Z (x) =
∑

y ′∈Y
exp

�

w · f (x , y ′)
�

• Each update step requires calculating the partition function Z (x)
and its derivatives E

Òw(t) [f | xrt]
• These require summing over Y, which can dominate the computation time if
Y is large
É in modern speech recognition and machine translation systems, Y is the
vocabulary of a natural language, so |Y| ≈ 105

55 / 67

Factoring P(Y | X)

• Produce a hierarchical clustering of Y, which defines a tree over the Y.

•

•

y1 y2

•

y3 y4
• Train a separate model for each internal node in the tree

É the probability of a leaf (output) node is the product of probabilities of each
decision on the root to leaf path

• This usually does not produce a very good model

• Conjecture: bagging (e.g., averaging) the output of many such tree models
would improve accuracy

56 / 67

Estimating expected feature counts by sampling

• SGD update rule:

Òw(t+1) = Òw(t) − ε
�

E
Òw(t) [f | xrt]− f(xrt , yrt)

�

, where:

Ew[f | x] =
∑

y ′∈Y
f(x , y ′)Pw(y ′ | x)

• Idea: use a sampling method to estimate the expected feature counts
E
Òw(t) [f | xrt]

• Importance sampling:
É draw samples from a proposal distribution over Y (e.g., unigram distribution)
É calculate expectation from samples reweighted according to importance weights
(which don’t require partition function)

• May require a large number of samples to accurately estimate expectations

57 / 67

Noise-contrastive estimation

• Noise-contrastive estimation can be viewed as importance sampling with only
two samples (and where importance weights are ignored)

• Suppose the training item at iteration t is (xrt , y
+
rt).

• Set y−t ∈ Y to a random sample from a proposal distribution (e.g., unigram
distribution over Y)

• We approximate:

E
Òw(t) [f | xrt] ≈

f(xrt , y
+
rt) exp(w

(t) · f(xrt , y+rt)) + f(xrt , y
−
t) exp(w(t) · f(xrt , y−t))

exp(w(t) · f(xrt , y+rt)) + exp(w(t) · f(xrt , y−t))

• If y−t is less probable than y+rt the expectation E
Òw(t) [f | xrt] ≈ f(xrt , y

+
rt), so

the expectations will cancel, and there won’t be a large weight update

• If y−t is more probable than y+rt the expectation E
Òw(t) [f | xrt] ≈ f(xrt , y

−
t), so

there can be a large weight update

• Widely used in the neural net community today

58 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

59 / 67

Ambiguous or weakly labelled training data as partial
observations

• Suppose our training data doesn’t tell us the true label yi for each example xi ,
but only provides us with a set of labels Yi that contains the unknown true
label yi

D = ((x1,Y1), . . . , (xn,Yn)) where:

yi ∈ Yi ⊆ Y

• Idea: learn a model that maximizes
∏n

i=1 P(Yi | xi)
• Example: in reranking the gold parse might not be in the beam, so train model
to select one of the best parses available in beam; we don’t care which is
chosen

• Example: in arc-eager dependency parsing, several different moves can lead to
same gold parse; we don’t care which the parser chooses

60 / 67

Partially-observed conditional exponential models
• Data D = (((x1,Y1), . . . , (xn,Yn)), where Yi ⊆ Y and Yi 6= ∅
• Compute maximum conditional likelihood estimator by minimizing negative log
conditional likelihood

Òw = argmin
w

`D(w), where:

`D(w) = −
n
∑

i=1

logPw(Yi | xi)

=
n
∑

i=1

(logZ (xi ,Y)− logZ (xi ,Yi)) , where:

Z (x ,Y ′) =
∑

y ′∈Y ′
exp

�

w · f(x , y ′)
�

• Intuition: logZ (xi ,Y)− logZ (xi ,Yi) will be small when most mass is assigned
to Yi

• If Yi = Y, then example i has no information
• Warning: `D is usually not convex ⇒ local minima

É hidden data problems usually have non-convex log likelihoods
61 / 67

Derivatives for partially-observed conditional models

• Negative log likelihood:

`D(w) =
n
∑

i=1

(logZ (xi ,Y)− logZ (xi ,Yi)) , where:

Z (x ,Y ′) =
∑

y ′∈Y ′
exp

�

w · f(x , y ′)
�

• Derivatives are differences of two conditional expectations

∂`D
∂wj

=
n
∑

i=1

�

Ew[fj | xi ,Y]− Ew[fj | xi ,Yi]
�

, where:

Ew[fj | x ,Y ′] =
∑

y ′∈Y ′
fj (x , y

′)Pw(y ′ | x) (expected value given x and Y ′)

• These derivatives are no harder to compute than for the fully-observed case

• SGD and perceptron algorithms generalise straight-forwardly to
partially-observed data

62 / 67

Partially-observed data in the reranker

• Training data consists of a sequence of training data items (sentences)
• Each data item consists of a sequence of candidates (parses)

É the number of candidates per data item can vary

• Each candidate consists of a sequence of feature-value pairs
• Each feature is an integer, and each value is a floating-point number

É feature value 1 is special-cased because it’s so common in “one-hot”
representations

• To allow partially-observed training data, each candidate has a gold weight
É for a standard MaxEnt model, the gold candidate in each data item has gold
weight 1, all others have gold weight 0

É with partially-observed data, more than one candidate has weight 1

63 / 67

Other interesting things the reranker can do

• Data items (sentences) and candidates (parses) can be given “costs” so the
reranker can calculate f-scores
É can optimise expected f-score instead of log likelihood
É useful with skewed data (e.g., in disfluency detection, where most words are
fluent)

• The reranker uses L1 and/or L2 regularisation
É can optimise regulariser constants to maximise log likelihood or f-score of
heldout data

• Features are organised into feature classes
É each feature class can have its own regulariser constant
É these feature constants can be optimised can be on heldout data

• Standard optimiser is L-BFGS-OWLQN, but can also use Averaged
Perceptron
É Averaged Perceptron is not quite as good as L-BFGS, but much faster
É Averaged Perceptron can be used to search for subset of feature classes that
optimise f-score on heldout data

64 / 67

Outline

Introducing exponential models

Features in exponential models

Learning exponential models

Regularisation

Conditional models

Stochastic gradient descent and error-driven learning

Avoiding the partition function and its derivatives

Weakly labelled training data

Summary

65 / 67

Summary

• Maximum entropy models capture the intuition that features interact
multiplicatively, i.e., can increase or decrease the probability of an outcome

• Calculating the partition function Z and its derivatives is usually the central
challenge in MaxEnt modelling

• Conditional MaxEnt models, which model P(y | x), often have simpler
partition functions than joint models, which model P(y ,x).

• Regularisation is often essential to avoid over-learning
É L1 regularisation produces sparse feature weight vectors w at the individual
feature level

É the group Lasso produces sparse feature weight vectors w at the feature group
level

• Stochastic Gradient Descent (SGD) is an easy and fast way to learn MaxEnt
models (but less accurate?)

• The Perceptron is SGD for conditional MaxEnt with a Viterbi approximation

66 / 67

Where we go from here

• Conditional Random Fields are conditional MaxEnt models that use dynamic
programming to calculate the partition function and their derivatives
É generally requires Y to have some kind of regular structure, e.g., a sequence
(sequence labelling) or a tree (parsing)

• Neural networks use MaxEnt models as components (they are networks of
MaxEnt models, but “neural net” sounds better!)
É Boltzmann machines are MaxEnt models where the data items are graphs
É feed-forward networks use conditional MaxEnt models as components

67 / 67

	Introducing exponential models
	Features in exponential models
	Learning exponential models
	Regularisation
	Conditional models
	Stochastic gradient descent and error-driven learning
	Avoiding the partition function and its derivatives
	Weakly labelled training data
	Summary

