A gentle introduction to maximum entropy, log-linear, exponential, logistic, harmonic, Boltzmann, Markov Random Fields, Conditional Random Fields, etc., models

Mark Johnson

Department of Computing

March, 2013 (updated August 2015)

A gentle introduction to maximum entropy, log-linear, exponential, logistic, harmonic, Boltzmann, Markov Random Field, etc., models

- How can we possibly cover so many kinds of models in a single talk?
- Because they are all basically the same
- If an idea is really (really!) good, you can justify it in many different ways!

Outline

Introducing exponential models

- Features in exponential models
- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Why probabilistic models?

- Problem setup: given a set ${\mathcal X}$ of possible items
 - e.g., \mathcal{X} is the set of all possible English words (sequences of characters)
 - e.g., \mathcal{X} is the set of all possible sentences (sequences of English words)
 - e.g., \mathcal{X} is the set of all possible images (256 × 256 pixel arrays)
- Our goal is to learn a probability distribution P(X) over \mathcal{X}
 - P(X) identifies which items $x \in \mathcal{X}$ are more likely and which ones are less likely
 - e.g., if X is the set of possible English sentences, P(X) is called a *language* model
 - language models are very useful in machine translation and speech recognition because they identify plausible sentences (e.g., "recognise speech" vs. "wreck a nice beach")
- In this talk, we are interested in learning P(X) from data $D = (x_1, ..., x_n)$, which is sampled from the (unknown) P(X)

Motivating exponential models

- **Goal:** define a probability distribution P(X) over the $x \in \mathcal{X}$
- Idea: describe x in terms of weighted features
- Let $\mathcal{S}(x) \subseteq \mathcal{S}$ be the set of x's features
- Let v_s be the weight of feature $s \in \mathcal{S}$
 - if $v_s > 1$ then s makes x more probable
 - if $v_s < 1$ then s makes x less probable

• If
$$S(x) = \{s_1, ..., s_n\}$$
, then

$$P(X=x) \propto v_{s_1} \dots v_{s_n}$$
$$= \prod_{s \in \mathcal{S}(x)} v_s$$

- Generalises many well-known models (e.g., HMMs, PCFGs)
 - what are the features and the feature weights in an HMM or a PCFG?

. In generative models defined as a product of conditional distributions as factors, factors cannot be greater than $1\,$

The partition function

• Probability distributions must sum to 1, i.e.,

$$\sum_{x \in \mathcal{X}} \mathsf{P}(X = x) = 1$$

• But in general

$$\sum_{\mathbf{x}\in\mathcal{X}}\left(\prod_{s\in\mathcal{S}(\mathbf{x})}v_s\right)\neq 1$$

 \Rightarrow *Normalise* the weighted feature products

$$Z = \sum_{x \in \mathcal{X}} \left(\prod_{s \in \mathcal{S}(x)} v_s \right)$$

Z is called the *partition function*

• Then define:

$$\mathsf{P}(X=x) = \frac{1}{Z} \prod_{s \in \mathcal{S}(x)} v_s$$

Q: Why is Z called a partition *function*? What is it a function of?

Feature functions

- Functions are often notationally easier to deal with than sets
- For each feature $s \in S$ define a *feature function* $f_s : \mathcal{X} \mapsto 2$

 $f_s(x) = 1$ if $s \in \mathcal{S}(x)$, and 0 otherwise

• Then we can rewrite

$$P(X=x) = \frac{1}{Z} \prod_{s \in S} v_s$$
$$= \frac{1}{Z} \prod_{s \in S} v_s^{f_s(x)}$$

- Now we can have real-valued feature functions
- From here on assume we have a vector of m feature functions

$$f = (f_1, ..., f_m)$$
, and
 $f(x) = (f_1(x), ..., f_m(x))$

Exponential form

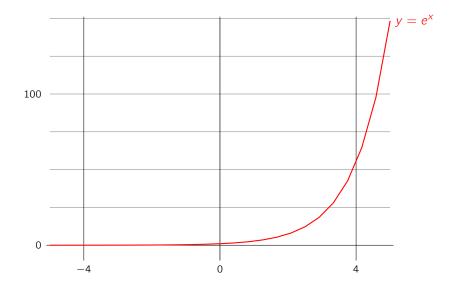
- The feature weights *v_j* must be non-negative because probabilities are non-negative
- An easy way to ensure that feature weights are positive is to work in log space. Let w_j = log(v_j) or equivalently v_j = exp(w_j).
 - If $w_j > 0$ then having feature j makes x more probable
 - If $w_j < 0$ then having feature j makes x less probable

$$P(X=x) = \frac{1}{Z} \prod_{j=1}^{m} v_j f_j(x)$$

$$= \frac{1}{Z} \exp\left(\sum_{j=1}^{m} w_j f_j(x)\right)$$

$$= \frac{1}{Z} \exp\left(\boldsymbol{w} \cdot \boldsymbol{f}(x)\right)$$
where: $\boldsymbol{w} = (w_1, \dots, w_m)$
 $\boldsymbol{f}(x) = (f_1(x), \dots, f_m(x))$
 $Z = \sum_{x' \in \mathcal{X}} \exp\left(\boldsymbol{w} \cdot \boldsymbol{f}(x')\right)$

The exponential function



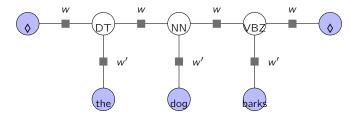
Outline

Introducing exponential models

Features in exponential models

- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Features in Random Fields



$$\mathbf{P}(x) = \frac{1}{Z} w_{\diamond, \text{DT}} w'_{\text{DT,the}} w_{\text{DT,NN}} w'_{\text{NN,dog}} w_{\text{NN,VBZ}} w'_{\text{VBZ,barks}} w_{\text{VBZ,\diamond}}$$

- If \mathcal{V} is the set of words and \mathcal{Y} is the set of labels, there is a feature for each combination in $\mathcal{Y} \times \mathcal{V}$ and for each combination in $\mathcal{Y} \times \mathcal{Y}$.
- If $n_{y,y'}$ is the number of times label y precedes label y' in x, and $m_{y,v}$ is the number of times label y appears with word v, then:

$$\mathbf{P}(x) = \frac{1}{Z} \left(\prod_{y,y \in \mathcal{Y} \times \mathcal{Y}} w_{y,y'}^{n_{y,y'}} \right) \left(\prod_{y,v \in \mathcal{Y} \times \mathcal{V}} w_{y,v'}^{n_{y,v}} \right)$$

PCFGs and HMMs as exponential models

- Models like PCFGs and HMMs define the probability of a structure (e.g., a parse tree) as a product of the probabilities of its components
 - ▶ In a PCFG, each rule $A \rightarrow \beta$ has a probability $p_{A \rightarrow \beta}$
 - The probability of a tree is the product of the probabilities of the rules used in its derivation

$$\mathsf{P}(x) = \prod_{A \to \beta \in \mathcal{R}} p_{A \to \beta}^{n_{A \to \beta}(x)}$$

where $n_{A \to \beta}(x)$ is the number of times rule $A \to \beta$ is used in derivation of tree x

- \Rightarrow A PCFG can be expressed as an exponential model where:
 - ▶ define a 1-to-1 mapping from PCFG rules to features (i.e., number the rules)
 - define the feature functions: $f_{A \to \beta}(x) = n_{A \to \beta}(x)$, and
 - set the feature values: $v_{A \to \beta} = p_{A \to \beta}$

$$\mathsf{P}(x) = \prod_{A \to \beta \in \mathcal{R}} v_{A \to \beta}^{f_{A \to \beta}(x)}$$

 \Rightarrow A PCFG (and an HMM) is an exponential model where Z = 1

Categorical features

- Suppose (g_1, \ldots, g_m) are *categorical features*, where g_k ranges over \mathcal{G}_k
 - E.g., if \mathcal{X} is a set of words, then suffix(x) might be the last letter of x
- "One-hot" encoding of categorical features:
 - Define a binary feature $f_{g_k=c}$ for each combination of a categorical feature $g_k, k = 1, ..., m$ and a possible value $c \in \mathcal{G}_k$

 $f_{g_k=c}(x) = 1$ if $g_k(x) = c$, and 0 otherwise

- \Rightarrow Number of binary features grows extremely rapidly
 - reranking parser has about 40 categorical features, but around 2 million binary features
 - But you only need to instantiate feature-value pairs observed in training data
 - ▶ learning procedures in general set $w_{g=c} = 0$ if feature-value pair g(x) = c is not present in training data

Feature redundancy in binary models

• Consider a situation where there are 2 outcomes: $\mathcal{X} = \{a, b\}$

$$P(X=x) = \frac{1}{Z} \exp(w \cdot f(x)), \text{ where:}$$

$$Z = \sum_{x' \in \mathcal{X}} \exp(w \cdot f(x')) = \exp(w \cdot f(a)) + \exp(w \cdot f(b)), \text{ so:}$$

$$P(X=a) = \frac{\exp(w \cdot f(a))}{\exp(w \cdot f(a)) + \exp(w \cdot f(b))}$$

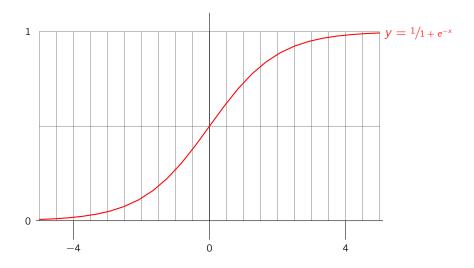
$$= \frac{1}{1 + \exp(w \cdot (f(b) - f(a)))}$$

$$= s(w \cdot (f(a) - f(b))), \text{ where:}$$

$$s(z) = \frac{1}{1 + \exp(-z)} \text{ is the logistic sigmoid function}$$

 \Rightarrow In binary models only the difference between feature values matters

The logistic sigmoid function



Feature redundancy in exponential models

- This result generalises to all exponential models
- Let $u = (u_1, \ldots, u_m)$ be any vector of same dimensionality as the features
- Define an exponential model using *new feature functions* f'(x) = f(x) + u. Then:

$$P(X=x) = \frac{\exp(w \cdot f'(x))}{\sum_{x' \in \mathcal{X}} \exp(w \cdot f'(x'))}$$

=
$$\frac{\exp(w \cdot f(x)) \exp(w \cdot u)}{\sum_{x' \in \mathcal{X}} \exp(w \cdot f(x')) \exp(w \cdot u)}$$

=
$$\frac{\exp(w \cdot f(x))}{\sum_{x' \in \mathcal{X}} \exp(w \cdot f(x'))}$$

- ⇒ Adding or subtracting a constant vector to feature values does not change the distribution defined by an exponential model
 - The feature extractor for the reranking parser subtracts the vector *u* that *makes the feature vectors as sparse as possible*

Outline

- Introducing exponential models
- Features in exponential models
- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Methods for learning from data

- Learning or estimating feature weights w from *training data* $D = (x_1, \ldots, x_n)$, where each $x_i \in \mathcal{X}$
- Maximum likelihood: choose w to make D as likely as possible

$$\widehat{w} = \operatorname{argmax}_{w} L_D(w)$$
, where:
 $L_D(w) = \prod_{i=1}^n \mathsf{P}_w(x_i)$

- *Minimising negative log likelihood* is mathematically equivalent, and has mathematical and computational advantages
 - negative log likelihood is convex (with fully visible training data)
 - $\Rightarrow\,$ single optimum that can be found by "following gradient downhill"
 - avoids floating point underflow
- But other learning methods may have advantages
 - with a large number of features, a *regularisation penalty term* (e.g., L1 and/or L2 prior) helps to avoid overfitting
 - optimising a specialised loss function (e.g., expected f-score) can improve performance on a specific task

Learning as minimising a loss function

• Goal: find the feature weights \widehat{w} that minimise the negative log likelihood ℓ_D of feature weights w given data $D = (x_1, \dots, x_n)$:

$$\widehat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \ell_D(\boldsymbol{w})$$
$$\ell_D(\boldsymbol{w}) = -\log L_D(\boldsymbol{w}) = -\log \prod_{i=1}^n \mathsf{P}_{\boldsymbol{w}}(x_i)$$
$$= \sum_{i=1}^n -\log \mathsf{P}_{\boldsymbol{w}}(x_i)$$

- The negative log likelihood l_D is a sum of the losses log P_w(x_i) the model w incurrs on each data item x_i
- The maximum likelihood estimator selects the model \widehat{w} that minimises the loss ℓ_D on data set D
- Many other machine learning algorithms for estimating \boldsymbol{w} from D can be understood as minimising some loss function

Why is learning exponential models hard?

- Exponential models are so flexible because the features can have arbitrary weights
- ⇒ The partition function Z is required to ensure the distribution P(x) is normalised
 - The partition function Z varies as a function of $oldsymbol{w}$

$$P(X=x) = \frac{1}{Z} \exp(w \cdot f(x)), \text{ where:}$$

$$Z = \sum_{x' \in \mathcal{X}} \exp(w \cdot f(x'))$$

 \Rightarrow So we can't ignore Z, which makes it hard to optimise the likelihood!

- ▶ no closed-form solution for the feature weights w_i
- learning usually involves *numerically optimising* the likelihood function or some other loss function
- calculating Z requires summing over entire space \mathcal{X}
- many methods for approximating Z and/or its derivatives;
 typically unclear how the approximations affect the estimates of w

The derivative of the negative log likelihood

- Efficient numerical optimisation routines require evaluation of the function to be minimised (negative log likelihood ℓ_D) and its derivatives
 - use a standard package; L-BFGS (LMVM), conjugate gradient
- We'll optimise 1/n times the negative log likelihood of \boldsymbol{w} given data $D = (x_1, \dots, x_n)$:

$$\ell_D(\boldsymbol{w}) = -\frac{1}{n} \sum_{i=1}^n \log \mathsf{P}_{\boldsymbol{w}}(x_i) = \log Z - \frac{1}{n} \sum_{i=1}^n \boldsymbol{w} \cdot \boldsymbol{f}(x_i)$$

• The derivative of ℓ is:

$$\frac{\partial \ell_D}{\partial w_j} = \mathsf{E}_{\boldsymbol{w}}[f_j] - \mathsf{E}_D[f_j], \text{ where:}$$
$$\mathsf{E}_{\boldsymbol{w}}[f_j] = \sum_{x' \in \mathcal{X}} f_j(x') \mathsf{P}_{\boldsymbol{w}}(x') \quad (\text{expected value of } f_j \text{ wrt } \mathsf{P}_{\boldsymbol{w}})$$
$$\mathsf{E}_D[f_j] = \frac{1}{n} \sum_{i=1}^n f_j(x_i) \quad (\text{expected value of } f_j \text{ wrt } D)$$

• At optimum $\partial \ell_D / \partial w = \mathbf{0}$

⇒ model's expected feature values equals data's feature values

Exercise: derive the formulae on the previous slide!

- This is a basic result for exponential models that is the basis of many other results
- If you want to generalise exponential models, you'll need to derive similar formulae
- You'll need to know:
 - that derivatives distribute over sums
 - that $\frac{\partial \log(x)}{\partial x} = \frac{1}{x}$
 - the chain rule, i.e., that $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$

Maximum entropy models

- Idea: given training data D and feature functions f, find the distribution P'(X) that:
 - 1. $\mathbf{E}_{\mathbf{P}'}[f_i] = \mathbf{E}_D[f_i]$ for all features f_i ,
 - i.e., \mathbf{P}' agrees with D on the features
 - of all distributions satisfying (1), P' has maximum entropy i.e., P' has the least possible additional information
- Because $\widehat{w} = \operatorname{argmin}_{w} \ell_D(w)$ then

$$rac{\partial \ell_D}{\partial w}(\widehat{w}) = \mathbf{0}$$

- $\Rightarrow \mathsf{E}_{\boldsymbol{w}}[f_j] = \mathsf{E}_D[f_j]$ for all features f_j
 - Theorem: $\mathbf{P}_{w} = \mathbf{P}'$, i.e., for any data D and feature functions f the maximum likelihood distribution and the maximum entropy distribution are the same distribution

Outline

- Introducing exponential models
- Features in exponential models
- Learning exponential models

Regularisation

- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Why regularise?

- If every $x \in D$ has feature f_j and some $x \in \mathcal{X}$ does not, then $\widehat{w_j} = \infty$
- If no $x \in D$ has feature f_j and some $x \in \mathcal{X}$ does, then $\widehat{w_j} = -\infty$
- Infinities cause problems for numerical routines
- Just because a feature always occurs/doesn't occur in training data doesn't mean this will also occur in test data ("accidental zeros")
- These are extreme examples of overlearning
 - \blacktriangleright overlearning often occurs when the size of the data D is not much greater than the number of features m
- Idea: add a *regulariser* (also called a penalty term or prior) to the negative log likelihood that *penalises large feature weights*
 - Recall that $w_j = 0$ means that feature f_j is ignored

L_2 regularisation

• Instead of minimising the negative log likelihood $\ell_D(w)$, we optimise

$$\widehat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \ell_D(\boldsymbol{w}) + c R(\boldsymbol{w}), \text{ where:}$$

$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$

$$= \boldsymbol{w} \cdot \boldsymbol{w}$$

$$= \sum_{j=1}^m w_j^2$$

- *R* is a *penalty term* that varies with each feature weight *w_i* such that:
 - the penalty is zero when $w_i = 0$,
 - the penalty is greater than zero whenever $w_i \neq 0$, and
 - ► the penalty grows as w_j moves further away from 0
- The regulariser constant c is usually set to optimise performance on held-out data

Bayesian MAP estimation

• Recall Bayesian belief updating:

- In our setting:
 - Data = $D = (x_1, ..., x_n)$
 - Hypothesis = $w = (w_1, \ldots, w_m)$
- If we want the MAP (Maximum Aposteriori) estimate for w:

$$\widehat{\boldsymbol{w}} = \operatorname{argmax}_{\boldsymbol{w}} \underbrace{\underbrace{\mathsf{P}(\boldsymbol{w} \mid \boldsymbol{D})}_{\operatorname{Posterior}}}_{\operatorname{Eikelihood}} \underbrace{\underbrace{\mathsf{P}(\boldsymbol{w})}_{\operatorname{Prior}}}_{\operatorname{Prior}}$$
$$= \operatorname{argmax}_{\boldsymbol{w}} \underbrace{\left(\prod_{i=1}^{n} \mathsf{P}(x_i \mid \boldsymbol{w})\right)}_{\mathbf{P}(\boldsymbol{w})} \mathbf{P}(\boldsymbol{w})$$

Regularisation as Bayesian MAP estimation

• Restate the MAP estimate in terms of negative log likelihood ℓ_D :

$$\widehat{\boldsymbol{w}} = \operatorname{argmax}_{\boldsymbol{w}} \underbrace{\left(\prod_{i=1}^{n} \mathsf{P}(x_{i} \mid \boldsymbol{w})\right)}_{\text{Likelihood}} \underbrace{\mathsf{P}(\boldsymbol{w})}_{\text{Prior}}$$

$$= \operatorname{argmin}_{\boldsymbol{w}} \left(-\sum_{i=1}^{n} \log \mathsf{P}(x_{i} \mid \boldsymbol{w})\right) - \log \mathsf{P}(\boldsymbol{w})$$

$$= \operatorname{argmin}_{\boldsymbol{w}} \ell_{D}(\boldsymbol{w}) - \log \mathsf{P}(\boldsymbol{w}), \text{ where:}$$

$$\ell_{D}(\boldsymbol{w}) = -\sum_{i=1}^{n} \log \mathsf{P}(x_{i} \mid \boldsymbol{w})$$

 \Rightarrow MAP estimate $\widehat{oldsymbol{w}}$ equals regularised MLE $\widehat{oldsymbol{w}}$

$$\widehat{w} = rgmin_{oldsymbol{w}} \ell_D(oldsymbol{w}) + c \ R(oldsymbol{w})$$

if $cR(w) = -\log P(w)$, i.e., if the regulariser is the negative log prior

L_2 regularisation as a Gaussian prior

- What kind of prior is an L₂ regulariser?
- If $cR(w) = -\log \mathsf{P}(w)$ then

$$\mathsf{P}(w) = \exp(-cR(w))$$

• If $R(w) = \|w\|_2^2 = \sum_{j=1}^m w_j^2$, then the prior is a zero-mean Gaussian

$$\mathbf{P}(\boldsymbol{w}) \propto \exp\left(-c\sum_{j=1}^{m}w_{j}^{2}\right)$$

The additional factors in the Gaussian become constants in log probability space, and therefore can be ignored when finding \widehat{w}

• L_2 regularisation is also known as *ridge regularisation*

L_1 regularisation or Lasso regularisation

• The L₁ norm is the sum of the absolute values

$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_1$$
$$= \sum_{j=1}^m |w_j|$$

• L₁ regularisation is popular because it produces sparse feature weights

F

- a feature weight vector \boldsymbol{w} is *sparse* iff most of its values are zero
- But it's difficult to optimise *L*₁-regularised log-likelihood because *its derivative is discontinuous at the orthant boundaries*

$$\frac{\partial R}{\partial w_j} = \begin{cases} +1 & \text{if } w_j > 0\\ -1 & \text{if } w_j < 0 \end{cases}$$

• Specialised versions of standard numerical optimisers have been developed to optimise *L*₁-regularised log-likelihood

What does regularisation do?

• Regularised negative log likelihood

$$\widehat{w} = \operatorname*{argmin}_{oldsymbol{w}} \ell_D(oldsymbol{w}) + cR(oldsymbol{w})$$

• At the optimum weights $\widehat{\boldsymbol{w}}$, for each j:

$$\frac{\partial \ell_D}{\partial w_j} + c \frac{\partial R}{\partial w_j} = 0, \text{ or equivalently}$$
$$\mathbf{E}_D[f_j] - \mathbf{E}_{\boldsymbol{w}}[f_j] = c \frac{\partial R}{\partial w_j}$$

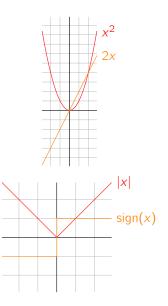
I.e., the regulariser gives the model some "slack" in requiring the empirical expected feature values equal the model's predicted expected feature values.

Why does L_1 regularisation produce sparse weights?

• Regulariser's derivative specifies gap between empirical and model feature expectation

$$\mathsf{E}_{D}[f_{j}] - \mathsf{E}_{\boldsymbol{w}}[f_{j}] = c \frac{\partial R}{\partial w_{j}}$$

- For L_2 regularisation, $\frac{\partial R}{\partial w_j} \rightarrow 0$ as $w_j \rightarrow 0$
 - little effect on small w
 - $\Rightarrow\,$ no reason for feature weights to be zero
- For L_1 regularisation, $\frac{\partial R}{\partial w_j} \rightarrow \operatorname{sign}(w_j)$ as $w_j \rightarrow 0$
 - regulariser has effect whenever $w \neq 0$
 - regulariser drives feature weights to 0 whenever "expectation gap" < c



Group sparsity via the Group Lasso

- Sometimes features come in natural groups; e.g., $F = (f_1, \ldots, f_m)$, where each $f_j = (f_{j,1}, \ldots, f_{j,v_j}), j = 1, \ldots, m$
- Corresponding weights $m{W} = (m{w}_1, \dots, m{w}_m)$, where each $m{w}_j = (w_{j,1}, \dots, w_{j,v_j})$

$$P(X=x) = \frac{1}{Z} \exp\left(\sum_{j=1}^{m} \sum_{k=1}^{v_j} w_{j,k} f_{j,k}(x)\right)$$

- We'd like *group sparsity*, i.e., for "most" $j \in 1, ..., m$, $w_j = \mathbf{0}$
- The group Lasso regulariser achieves this:

$$R(\mathbf{W}) = \sum_{j=1}^{m} c_j \| \mathbf{w}_j \|_2$$
$$= \sum_{j=1}^{m} c_j \left(\sum_{k=1}^{v_j} w_{j,k}^2 \right)^{1/2}$$

Optimising the regularised log likelihood

• Learning feature weights involves optimising regularised likelihood

$$\widehat{w} = \operatorname{argmin}_{w} \ell_{D}(w) + cR(w)$$
$$\ell_{D}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log \mathsf{P}(x_{i}) = \log Z - \frac{1}{n} \sum_{i=1}^{n} w \cdot f(x_{i})$$
$$Z = \sum_{x' \in \mathcal{X}} \exp (w \cdot f(x'))$$

- Challenges in optimisation:
 - If regulariser R is not differentiable (e.g., $R = L_1$), then you need a specialised optimisation algorithm to handle discontinuous derivatives
 - if \mathcal{X} is large (infinite), calculating Z may be difficult because it involves summing over \mathcal{X}
 - \Rightarrow just evaluate on the subset $\mathcal{X}'\subset\mathcal{X}$ where $w\cdot f$ is largest (assuming you can find it)

Outline

- Introducing exponential models
- Features in exponential models
- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Why conditional models?

- In a conditional model, each datum is a pair (x, y), where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$
- The goal of a conditional model is to *predict y given x*
- Usually x is an item or an observation and y is a *label* for x
 - e.g., \mathcal{X} is the set of all possible news articles, and \mathcal{Y} is a set of topics, e.g. $\mathcal{Y} = \{\text{finance, sports, politics, ...}\}$
 - e.g., \mathcal{X} is the set of all possible 256 × 256 images, and \mathcal{Y} is a set of labels, e.g., $\mathcal{Y} = \{\text{cat, dog, person, } \ldots\}$
 - e.g., \mathcal{X} is the set of all possible Tweets, and \mathcal{Y} is a Boolean value indicating whether $x \in \mathcal{X}$ expresses a sentiment
 - ▶ e.g., \mathcal{X} is the set of all possible sentiment-expressing Tweets, and \mathcal{Y} is a Boolean value indicating whether $x \in \mathcal{X}$ has positive or negative sentiment
- We will do this by learning a *conditional probability distribution* P(Y | X), which is the probability of Y given X
- We estimate **P**(*Y* | *X*) from data *D* = ((*x*₁, *y*₁), ..., (*x_n*, *y_n*)), that consists of pairs of items *x_i* and their labels *y_i* (*supervised learning*)
 - ▶ in *unsupervised learning* we are only given the data items x_i, but not their labels y_i (clustering)
 - ▶ in semi-supervised learning we are not given the labels y_i for all data items x_i (we might be given only some labels, or the labels might only be partially identified)

Conditional exponential models

- Data $D = ((x_1, y_1), \dots, (x_n, y_n))$ consists of (x, y) pairs, where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$
- Want to predict y from x, for which we only need conditional distribution P(Y | X), not the joint distribution P(X, Y)
- Features are now functions f(x, y) over (x, y) pairs
- Conditional exponential model:

$$P(y \mid x) = \frac{1}{Z(x)} \exp(\boldsymbol{w} \cdot \boldsymbol{f}(x, y)), \text{ where:}$$

$$Z(x) = \sum_{y' \in \mathcal{Y}} \exp(\boldsymbol{w} \cdot \boldsymbol{f}(x, y'))$$

- Big advantage: *Z*(*x*) only requires a sum over *Y*, while "joint" partition function *Z* requires a sum over all *X* × *Y* pairs
 - \blacktriangleright in many applications label set ${\mathcal Y}$ is small
 - size of \mathcal{X} doesn't affect computational effort to compute Z(x)

Features in conditional models

- In a conditional model, changing the feature function f(x, y) to f'(x, y) = f(x, y) + u(x) does not change the distribution P(y | x)
 - ⇒ adding or subtracting a function that only depends on x does not affect a conditional model
 - ⇒ to be useful in a conditional model, a feature must be a non-constant function of y
- A feature f(x, y) = f(y) that only depends on y behaves like a *bias node* in a neural net
 - it's often a good idea to have a "one-hot" feature for each $c \in \mathcal{Y}$:

$$f_{y=c}(y) = 1$$
 if $y = c$, and 0 otherwise

 If X is a set of discrete categories, it's often useful to have pairwise "one-hot" features for each c ∈ X and c' ∈ Y

$$f_{x=c,y=c'}(x,y) = 1$$
 if $x = c$ and $y = c'$, and 0 otherwise

Using a conditional model to make predictions

- Labelling problem: we have feature weights \boldsymbol{w} and want to predict label \boldsymbol{y} for some \boldsymbol{x}
- The most probable label $\hat{y}(x)$ given x is:

$$\widehat{y}(x) = \operatorname{argmax}_{y' \in \mathcal{Y}} \mathbf{P}_{w}(Y = y' \mid X = x)$$

$$= \operatorname{argmax}_{y' \in \mathcal{Y}} \frac{1}{Z(x)} \exp\left(w \cdot f(x, y')\right)$$

$$= \operatorname{argmax}_{y' \in \mathcal{Y}} w \cdot f(x, y')$$

• Partition function Z(x) is a constant here, so drops out

Logistic regression

• Suppose $\mathcal{Y} = \{0, 1\}$, i.e., our labels are Boolean

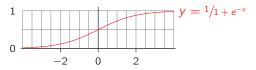
$$P(Y=1 \mid X=x) = \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{f}(x, 1))}{\exp(\boldsymbol{w} \cdot \boldsymbol{f}(x, 0)) + \exp(\boldsymbol{w} \cdot \boldsymbol{f}(x, 1))}$$

$$= \frac{1}{1 + \exp(\boldsymbol{w} \cdot (\boldsymbol{f}(x, 0) - \boldsymbol{f}(x, 1)))}$$

$$= \frac{1}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{g}(x))}, \text{ where:}$$

$$g_j(x) = f_j(x, 1) - f_j(x, 0), \text{ for all } j \in 1, \dots, m$$

- ⇒ Only relative feature differences matter in a conditional model
 - Logistic sigmoid function:



Estimating conditional exponential models

• Compute *maximum conditional likelihood estimator* by minimizing negative log conditional likelihood

$$\widehat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \ell_D(\boldsymbol{w}), \text{ where:}$$

$$\ell_D(\boldsymbol{w}) = -\sum_{i=1}^n \log \mathsf{P}_{\boldsymbol{w}}(y_i \mid x_i)$$

$$= \sum_{i=1}^n (\log Z(x_i) - \boldsymbol{w} \cdot \boldsymbol{f}(x_i, y_i))$$

• Derivatives are differences of *conditional expectations* and *empirical feature* values

$$\frac{\partial \ell_D}{\partial w_j} = \sum_{i=1}^n \left(\mathsf{E}_{\boldsymbol{w}}[f_j \mid x_i] - f_j(x_i, y_i) \right), \text{ where:}$$
$$\mathsf{E}_{\boldsymbol{w}}[f_j \mid x] = \sum_{y' \in \mathcal{Y}} f_j(x, y') \mathsf{P}_{\boldsymbol{w}}(y \mid x) \quad (\text{expected value of } f_j \text{ given } x)$$

Regularising conditional exponential models

- Calculating derivatives of conditional likelihood only requires summing over $\mathcal{Y},$ and not \mathcal{X}
 - not too expensive if $|\mathcal{Y}|$ is small
 - if ${\cal Y}$ has a regular structure (e.g., a sequence), then there may be efficient algorithms for summing over ${\cal Y}$
- Regularisation adds a *penalty term* to objective function we seek to optimise
- Important to regularise (unless number of features is small)
 - ► L₁ (Lasso) regularisation produces *sparse feature weights*
 - ► L₂ (ridge) regularisation produces dense feature weights
 - Group lasso regularisation produces group-level sparsity in feature weights

Outline

- Introducing exponential models
- Features in exponential models
- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Why stochastic gradient descent?

- For small/medium data sets, "batch" methods using standard numerical optimisation procedures (such as L-BFGS) can work very well
 - these directly minimise the negative log likelihood ℓ_D
 - to calculate the negative log likelihood and its derivatives requires a pass through the entire training data
- But for very large data sets (e.g., data sets that don't fit into memory), or with very large models (such as neural nets), these can be too slow
- *Stochastic gradient descent* calculates a noisy gradient from a small subset of the training data, so it can learn considerably faster
 - but the solution it finds is often less accurate

Gradient descent and mini-batch algorithms

- Idea: to minimise $\ell_D(w)$, move in direction of negative gradient $\frac{\partial \ell_D}{\partial w}$
- If $\widehat{w}^{(t)}$ is current estimate of w, update as follows:

$$\begin{aligned} \widehat{\boldsymbol{w}}^{(t+1)} &= \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \; \frac{\partial \ell_D}{\partial \boldsymbol{w}} (\widehat{\boldsymbol{w}}^{(t)}) \\ &= \; \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \sum_{i=1}^n \bigl(\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}} [\boldsymbol{f} \mid \boldsymbol{x}_i] - \boldsymbol{f}(\boldsymbol{x}_i, \boldsymbol{y}_i) \bigr) \end{aligned}$$

- ε is *step size*; can be difficult to find a good value for it!
- This is not a good optimisation algorithm, as it zig-zags across valleys
- Update is difference between expected and empirical feature values
 - Each update requires a full pass through $D \Rightarrow$ relatively slow
- "Mini-batch algorithms": calculate expectations on *a small sample of D* to determine weight updates

Stochastic gradient descent as mini-batch of size 1

- Stochastic Gradient Descent (SGD) is the mini-batch algorithm with a mini-batch of size 1
- If $\widehat{w}^{(t)}$ is current estimate of w, training data $D = ((x_1, y_1), \dots, (x_n, y_n))$, and r_t is a random number in $1, \dots, n$ then:

$$\widehat{\boldsymbol{w}}^{(t+1)} = \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \left(\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}}[\boldsymbol{f} \mid \boldsymbol{x}_{r_t}] - \boldsymbol{f}(\boldsymbol{x}_{r_t}, \boldsymbol{y}_{r_t}) \right), \text{ where:}$$

$$\mathsf{E}_{\boldsymbol{w}}[\boldsymbol{f} \mid \boldsymbol{x}] = \sum_{\boldsymbol{y}' \in \mathcal{Y}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}') \mathsf{P}_{\boldsymbol{w}}(\boldsymbol{y}' \mid \boldsymbol{x})$$

$$\mathsf{P}_{\boldsymbol{w}}(\boldsymbol{y} \mid \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x})} \exp\left(\boldsymbol{w} \cdot \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})\right)$$

$$Z(\boldsymbol{x}) = \sum_{\boldsymbol{y}' \in \mathcal{Y}} \exp\left(\boldsymbol{w} \cdot \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}')\right)$$

- Stochastic gradient descent updates estimate of \boldsymbol{w} after seeing each training example
- \Rightarrow Learning can be very fast; might not even need a full pass over D
 - Perhaps the most widely used learning algorithm today

The Perceptron algorithm as approximate SGD

• Idea: assume $P_w(y \mid x)$ is peaked around $\hat{y}_w(x) = \operatorname{argmax}_{y' \in \mathcal{Y}} w \cdot f(x, y')$. Then:

$$\begin{aligned} \mathsf{E}_{\boldsymbol{w}}[\boldsymbol{f} \mid \boldsymbol{x}] &= \sum_{\boldsymbol{y}' \in \mathcal{Y}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}') \, \mathsf{P}_{\boldsymbol{w}}(\boldsymbol{y}' \mid \boldsymbol{x}) \\ &\approx \boldsymbol{f}(\boldsymbol{x}, \widehat{\boldsymbol{y}}(\boldsymbol{x})) \end{aligned}$$

• Plugging this into the SGD algorithm, we get:

$$\begin{aligned} \widehat{\boldsymbol{w}}^{(t+1)} &= \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \left(\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}}[\boldsymbol{f} \mid \boldsymbol{x}_{r_t}] - \boldsymbol{f}(\boldsymbol{x}_{r_t}, \boldsymbol{y}_{r_t}) \right) \\ &\approx \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \left(\boldsymbol{f}(\boldsymbol{x}_{r_t}, \widehat{\boldsymbol{y}}_{\widehat{\boldsymbol{w}}^{(t)}}(\boldsymbol{x})) - \boldsymbol{f}(\boldsymbol{x}_{r_t}, \boldsymbol{y}_{r_t}) \right) \end{aligned}$$

• This is an error-driven learning rule, since no update is made on iteration t if $\hat{y}(x_{r_t}) = y_{r_t}$

Regularisation as weight decay in SGD and Perceptron

• Regularisation: minimise a *penalised negative log likelihood*

$$\widehat{w} = \operatorname{argmin}_{w} \ell_D(w) + cR(w), \text{ where:} \\ R(w) = \begin{cases} \sum_{j=1}^m w_j^2 & \text{with an } L_2 \text{ regulariser} \\ \sum_{j=1}^m |w_j| & \text{with an } L_1 \text{ regulariser} \end{cases}$$

• Adding L₂ regularisation in SGD and Perceptron introduces *multiplicative weight decay*:

$$\widehat{\boldsymbol{w}}^{(t+1)} = \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \left(\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}}[\boldsymbol{f} \mid \boldsymbol{x}_{r_t}] - \boldsymbol{f}(\boldsymbol{x}_{r_t}, \boldsymbol{y}_{r_t}) + 2\varepsilon \widehat{\boldsymbol{w}}^{(t)} \right)$$

• Adding L₁ regularisation in SGD and Perceptron introduces *additive weight decay*:

$$\widehat{\boldsymbol{w}}^{(t+1)} = \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \left(\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}}[\boldsymbol{f} \mid \boldsymbol{x}_{r_t}] - \boldsymbol{f}(\boldsymbol{x}_{r_t}, \boldsymbol{y}_{r_t}) + c \operatorname{sign}(\widehat{\boldsymbol{w}}^{(t)}) \right)$$

Stabilising SGD and the Perceptron

- The Perceptron is guaranteed to converge to a weight vector that correctly classifies all training examples *if the training data is separable*
- Most of our problems are *non-separable*
 - $\Rightarrow\,$ SGD and the Perceptron never converge to a weight vector
 - $\Rightarrow\,$ final weight vector depends on last examples seen
- Reducing learning rate arepsilon in later iterations can stabilise weight vector \widehat{w}
 - ▶ if learning rate is too low, SGD takes a long time to converge
 - if learning rate is too high, \widehat{w} can over-shoot
 - selecting appropriate learning rate is almost "black magic"
- Bagging can be used to stabilise SGD and perceptron
 - construct multiple models by running SGD or perceptron many times on random permutations of training data
 - combine predictions of models at run time by averaging or voting
- The averaged perceptron is a fast approximate version of bagging
 - train a single perceptron as usual
 - at end of training, average the weights from all iterations
 - use these averaged weights at run-time

ADAGRAD and ADADELTA

- There are many methods that attempt to automatically set the learning rate arepsilon
- ADAGRAD and ADADELTA are two of the currently most popular methods
- ADAGRAD estimates a separate learning rate ε_j for each feature weight w_j
- If $g_j^{(t)}$ is the derivative of the regularised negative log likelihood ℓ_D w.r.t. feature weight w_j at step t, then the ADADGRAD update rule is:

$$\widehat{w}_{j}^{(t+1)} = \widehat{w}_{j}^{(t)} - \frac{\eta}{\sqrt{\sum_{t'=1}^{t} g_{j}^{(t)}}} g_{j}^{(t)}, \text{ where:}$$

$$g_{j}^{(t)} = \frac{\partial \ell_{D}(\boldsymbol{w}^{(t)})}{\partial w_{j}}$$

- This effectively scales the learning rate so features with large derivatives or with fluctuating signs have a slower learning rate
- If a group of features are known to have the same scale, it may make sense for them to share the same learning rate
- The ADADELTA rule is newer and only slightly more complicated
- Both ADAGRAD and ADADELTA only require you to store the sum of the previous derivatives

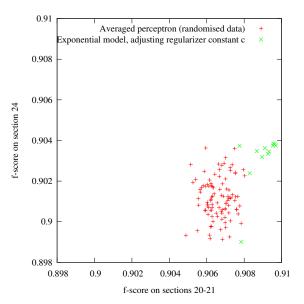
Momentum

- Intuition: a ball rolling down a surface will settle at a (local) minimum
- Update should be a mixture of the previous update and derivative of regularised log likelihood ℓ_D

$$egin{array}{rcl} \widehat{w}^{(t+1)} &=& \widehat{w}^{(t)} + v^{(t+1)} \ v^{(t+1)} &=& lpha v^{(t)} - (1-lpha) arepsilon rac{\partial \ell_D(\widehat{w}^{(t)})}{\partial w} \end{array}$$

- Momentum can smooth statistical fluctuations in SGD derivatives
- If derivatives all point in roughly same direction, updates \boldsymbol{v} can become quite large
 - $\Rightarrow\,$ set learning rate ε to much lower than without momentum
 - typical value for momentum hyper-parameter $\alpha = 0.9$

Perceptron vs. L-BFGS in reranking parser



Comments on SGD and the Perceptron

- Widely used because easy to implement and fast to train
 - in my experience, not quite as good as numerical optimisation with L-BFGS
- Overlearning can be a problem
 - regularisation becomes weight decay
 - ► L₂ regularisation is *multiplicative weight decay*
 - ► *L*₁ regularisation is *subtractive weight decay*
 - often more or less ad hoc methods are used instead of or in addition to regularisation
 - averaging (bagging, averaged perceptron, etc.)
 - early stopping
- If you're using either SGD or Perceptron, *try ADAGRAD and ADADELTA learning rules*
 - these methods automatically change the learning rate ε during learning
 - they can identify different learning rates for different features
 - $\Rightarrow\,$ much faster learning that with SGD or Perceptron alone

Outline

- Introducing exponential models
- Features in exponential models
- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Challenges when $\mathcal Y$ is large

• The SGD update rule:

$$\begin{aligned} \widehat{\boldsymbol{w}}^{(t+1)} &= \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \left(\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}}[\boldsymbol{f} \mid \boldsymbol{x}_{r_t}] - \boldsymbol{f}(\boldsymbol{x}_{r_t}, \boldsymbol{y}_{r_t}) \right), \text{ where:} \\ \mathsf{E}_{\boldsymbol{w}}[\boldsymbol{f} \mid \boldsymbol{x}] &= \sum_{\boldsymbol{y}' \in \mathcal{Y}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}') \mathsf{P}_{\boldsymbol{w}}(\boldsymbol{y}' \mid \boldsymbol{x}) \\ \mathsf{P}_{\boldsymbol{w}}(\boldsymbol{y} \mid \boldsymbol{x}) &= \frac{1}{Z(\boldsymbol{x})} \exp\left(\boldsymbol{w} \cdot \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})\right) \\ Z(\boldsymbol{x}) &= \sum_{\boldsymbol{y}' \in \mathcal{Y}} \exp\left(\boldsymbol{w} \cdot \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}')\right) \end{aligned}$$

- Each update step requires calculating the *partition function* Z(x) and its derivatives $\mathsf{E}_{\widehat{w}^{(t)}}[f \mid x_{r_t}]$
- These require summing over $\mathcal Y,$ which can dominate the computation time if $\mathcal Y$ is large
 - ▶ in modern speech recognition and machine translation systems, \mathcal{Y} is the vocabulary of a natural language, so $|\mathcal{Y}| \approx 10^5$

Factoring $\mathbf{P}(Y \mid X)$

• Produce a hierarchical clustering of \mathcal{Y} , which defines a tree over the \mathcal{Y} .

- Train a separate model for each internal node in the tree
 - the probability of a leaf (output) node is the *product* of probabilities of each decision on the root to leaf path
- This usually does not produce a very good model
- Conjecture: bagging (e.g., averaging) the output of many such tree models would improve accuracy

Estimating expected feature counts by sampling

• SGD update rule:

$$\widehat{\boldsymbol{w}}^{(t+1)} = \widehat{\boldsymbol{w}}^{(t)} - \varepsilon \left(\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}}[\boldsymbol{f} \mid x_{r_t}] - \boldsymbol{f}(x_{r_t}, y_{r_t}) \right), \text{ where:} \\ \mathsf{E}_{\boldsymbol{w}}[\boldsymbol{f} \mid x] = \sum_{\boldsymbol{y}' \in \mathcal{Y}} \boldsymbol{f}(x, \boldsymbol{y}') \mathsf{P}_{\boldsymbol{w}}(\boldsymbol{y}' \mid x)$$

- Idea: use a sampling method to estimate the expected feature counts $\mathsf{E}_{\widehat{\bm{w}}^{(t)}}[\bm{f}\mid x_{r_t}]$
- Importance sampling:
 - draw samples from a *proposal distribution* over \mathcal{Y} (e.g., unigram distribution)
 - calculate expectation from samples reweighted according to *importance weights* (which don't require partition function)
- May require a large number of samples to accurately estimate expectations

Noise-contrastive estimation

- Noise-contrastive estimation can be viewed as *importance sampling with only two samples* (and where importance weights are ignored)
- Suppose the training item at iteration t is $(x_{r_t}, y_{r_t}^+)$.
- Set $y_t^- \in \mathcal{Y}$ to a random sample from a *proposal distribution* (e.g., unigram distribution over \mathcal{Y})
- We approximate:

$$\mathsf{E}_{\widehat{\boldsymbol{w}}^{(t)}}[\boldsymbol{f} \mid x_{r_{t}}] \approx \\ \frac{\boldsymbol{f}(x_{r_{t}}, y_{r_{t}}^{+}) \exp(\boldsymbol{w}^{(t)} \cdot \boldsymbol{f}(x_{r_{t}}, y_{r_{t}}^{+})) + \boldsymbol{f}(x_{r_{t}}, y_{t}^{-}) \exp(\boldsymbol{w}^{(t)} \cdot \boldsymbol{f}(x_{r_{t}}, y_{t}^{-}))}{\exp(\boldsymbol{w}^{(t)} \cdot \boldsymbol{f}(x_{r_{t}}, y_{r_{t}}^{+})) + \exp(\boldsymbol{w}^{(t)} \cdot \boldsymbol{f}(x_{r_{t}}, y_{t}^{-}))}}$$

- If y_t^- is less probable than $y_{r_t}^+$ the expectation $\mathsf{E}_{\widehat{w}^{(t)}}[f \mid x_{r_t}] \approx f(x_{r_t}, y_{r_t}^+)$, so the expectations will cancel, and there won't be a large weight update
- If y_t⁻ is more probable than y_t⁺ the expectation E_{ŵ(t)}[f | x_t] ≈ f(x_t, y_t⁻), so there can be a large weight update
- Widely used in the neural net community today

Outline

- Introducing exponential models
- Features in exponential models
- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Ambiguous or weakly labelled training data as partial observations

• Suppose our training data doesn't tell us the *true label* y_i for each example x_i , but only provides us with a set of labels \mathcal{Y}_i that contains the unknown true label y_i

$$D = ((x_1, \mathcal{Y}_1), \dots, (x_n, \mathcal{Y}_n)) \text{ where:} y_i \in \mathcal{Y}_i \subseteq \mathcal{Y}$$

- Idea: learn a model that maximizes $\prod_{i=1}^{n} \mathsf{P}(\mathcal{Y}_i \mid x_i)$
- Example: in reranking the gold parse might not be in the beam, so train model to select one of the best parses available in beam; we don't care which is chosen
- Example: in arc-eager dependency parsing, several different moves can lead to same gold parse; we don't care which the parser chooses

Partially-observed conditional exponential models

- Data $D = (((x_1, \mathcal{Y}_1), \dots, (x_n, \mathcal{Y}_n)))$, where $\mathcal{Y}_i \subseteq \mathcal{Y}$ and $\mathcal{Y}_i \neq \mathcal{O}$
- Compute *maximum conditional likelihood estimator* by minimizing negative log conditional likelihood

$$\begin{aligned} \widehat{\boldsymbol{w}} &= \operatorname{argmin} \ \ell_D(\boldsymbol{w}), \text{ where:} \\ \ell_D(\boldsymbol{w}) &= -\sum_{i=1}^n \log \mathsf{P}_{\boldsymbol{w}}(\mathcal{Y}_i \mid x_i) \\ &= \sum_{i=1}^n (\log Z(x_i, \mathcal{Y}) - \log Z(x_i, \mathcal{Y}_i)), \text{ where:} \\ Z(x, \mathcal{Y}') &= \sum_{y' \in \mathcal{Y}'} \exp \left(\boldsymbol{w} \cdot \boldsymbol{f}(x, y') \right) \end{aligned}$$

- Intuition: log Z(x_i, Y) log Z(x_i, Y_i) will be small when most mass is assigned to Y_i
- If $\mathcal{Y}_i = \mathcal{Y}$, then example *i* has no information
- Warning: ℓ_D is usually *not convex* \Rightarrow local minima
 - hidden data problems usually have non-convex log likelihoods

Derivatives for partially-observed conditional models

• Negative log likelihood:

$$\ell_D(\boldsymbol{w}) = \sum_{i=1}^n (\log Z(x_i, \mathcal{Y}) - \log Z(x_i, \mathcal{Y}_i)), \text{ where:}$$

$$Z(x, \mathcal{Y}') = \sum_{y' \in \mathcal{Y}'} \exp (\boldsymbol{w} \cdot \boldsymbol{f}(x, y'))$$

• Derivatives are differences of two conditional expectations

$$\frac{\partial \ell_{D}}{\partial w_{j}} = \sum_{i=1}^{n} \left(\mathsf{E}_{\boldsymbol{w}}[f_{j} \mid x_{i}, \mathcal{Y}] - \mathsf{E}_{\boldsymbol{w}}[f_{j} \mid x_{i}, \mathcal{Y}_{i}] \right), \text{ where:}$$

$$\mathsf{E}_{\boldsymbol{w}}[f_{j} \mid x, \mathcal{Y}'] = \sum_{\boldsymbol{y}' \in \mathcal{Y}'} f_{j}(x, \boldsymbol{y}') \mathsf{P}_{\boldsymbol{w}}(\boldsymbol{y}' \mid \boldsymbol{x}) \quad (\text{expected value given } \boldsymbol{x} \text{ and } \mathcal{Y}')$$

- These derivatives are no harder to compute than for the fully-observed case
- SGD and perceptron algorithms generalise straight-forwardly to partially-observed data

Partially-observed data in the reranker

- Training data consists of a sequence of *training data items* (sentences)
- Each data item consists of a sequence of *candidates* (parses)
 - the number of candidates per data item can vary
- Each candidate consists of a sequence of *feature-value pairs*
- Each feature is an integer, and each value is a floating-point number
 - feature value 1 is special-cased because it's so common in "one-hot" representations
- To allow partially-observed training data, each candidate has a gold weight
 - for a standard MaxEnt model, the gold candidate in each data item has gold weight 1, all others have gold weight 0
 - with partially-observed data, more than one candidate has weight 1

Other interesting things the reranker can do

- Data items (sentences) and candidates (parses) can be given "costs" so the reranker can calculate f-scores
 - can optimise expected f-score instead of log likelihood
 - useful with skewed data (e.g., in disfluency detection, where most words are fluent)
- The reranker uses L1 and/or L2 regularisation
 - can optimise regulariser constants to maximise log likelihood or f-score of heldout data
- Features are organised into *feature classes*
 - each feature class can have its own regulariser constant
 - these feature constants can be optimised can be on heldout data
- Standard optimiser is L-BFGS-OWLQN, but can also use Averaged Perceptron
 - ► Averaged Perceptron is not quite as good as L-BFGS, but *much faster*
 - Averaged Perceptron can be used to search for subset of feature classes that optimise f-score on heldout data

Outline

- Introducing exponential models
- Features in exponential models
- Learning exponential models
- Regularisation
- Conditional models
- Stochastic gradient descent and error-driven learning
- Avoiding the partition function and its derivatives
- Weakly labelled training data
- Summary

Summary

- Maximum entropy models capture the intuition that *features interact multiplicatively*, i.e., can increase or decrease the probability of an outcome
- Calculating the *partition function* Z and its derivatives is usually the central challenge in MaxEnt modelling
- Conditional MaxEnt models, which model P(y | x), often have simpler partition functions than *joint* models, which model P(y, x).
- Regularisation is often essential to avoid over-learning
 - L1 regularisation produces sparse feature weight vectors \boldsymbol{w} at the individual feature level
 - \blacktriangleright the *group Lasso* produces sparse feature weight vectors \boldsymbol{w} at the feature group level
- Stochastic Gradient Descent (SGD) is an easy and fast way to learn MaxEnt models (but less accurate?)
- The Perceptron is SGD for conditional MaxEnt with a Viterbi approximation

Where we go from here

- *Conditional Random Fields* are conditional MaxEnt models that use dynamic programming to calculate the partition function and their derivatives
 - generally requires Y to have some kind of regular structure, e.g., a sequence (sequence labelling) or a tree (parsing)
- *Neural networks* use MaxEnt models as components (they are networks of MaxEnt models, but "neural net" sounds better!)
 - Boltzmann machines are MaxEnt models where the data items are graphs
 - feed-forward networks use conditional MaxEnt models as components