A gentle introduction to maximum entropy, log-linear,
exponential, logistic, harmonic, Boltzmann, Markov
Random Fields, Conditional Random Fields, etc.,
models

Mark Johnson

Department of Computing

March, 2013 (updated August 2015)

A gentle introduction to maximum entropy, log-linear,
exponential, logistic, harmonic, Boltzmann, Markov
Random Field, etc., models

e How can we possibly cover so many kinds of models in a single talk?
e Because they are all basically the same
e If an idea is really (really!) good, you can justify it in many different ways!

N

Outline

Introducing exponential models

3/67

Why probabilistic models?

e Problem setup: given a set X of possible items
> e.g., X is the set of all possible English words (sequences of characters)
» e.g., X is the set of all possible sentences (sequences of English words)
> e.g., X is the set of all possible images (256 x 256 pixel arrays)

e Our goal is to learn a probability distribution P(X) over X

> P(X) identifies which items x € X’ are more likely and which ones are less likely

» e.g., if X' is the set of possible English sentences, P(X) is called a language
model

» language models are very useful in machine translation and speech recognition
because they identify plausible sentences (e.g., “recognise speech” vs. “wreck a
nice beach”)

e In this talk, we are interested in learning P(X) from data D = (x1, ..., Xn),
which is sampled from the (unknown) P(X)

Motivating exponential models

e Goal: define a probability distribution P(X) over the x € X

Idea: describe x in terms of weighted features
Let S(x) C S be the set of x's features

Let vs be the weight of features € S

> if vs > 1 then s makes x more probable
» if v& < 1 then s makes x less probable

If S(x) ={s1,..., Sn}, then

P(X=x) o vs...vs

- I -

seS(x)

n

Generalises many well-known models (e.g., HMMs, PCFGs)
» what are the features and the feature weights in an HMM or a PCFG?

@ In generative models defined as a product of conditional distributions as
factors, factors cannot be greater than 1

The partition function
e Probability distributions must sum to 1, i.e.,
DIP(X=x) = 1
xeX
e But in general

AIEE

x€X \ seS(x)

= Normalise the weighted feature products

-3

xeX \ seS(x)

Z is called the partition function
e Then define:
1

P(X=x) = > l—[Vs

seS(x)
Q: Why is Z called a partition function? What is it a function of?

Feature functions

Functions are often notationally easier to deal with than sets

For each feature s € S define a feature function fs : X + 2
fs(x) = 1ifse S(x), and 0 otherwise

Then we can rewrite

P(X=x) =

e Now we can have real-valued feature functions

From here on assume we have a vector of m feature functions

F) = (Ax). ... fin(x))

Exponential form
e The feature weights v; must be non-negative because probabilities are
non-negative
e An easy way to ensure that feature weights are positive is to work in log
space. Let w; = log(v;) or equivalently v; = exp(w;).
> If w; > 0 then having feature j makes x more probable
> If w; < 0 then having feature j makes x less probable

m

1
P(X=x) = = \/J-'?(X)
(X=x) ZH
= %exp (Z WJG(X))
=1
= Zen(w f(x)
where: w = (wg,..., W)
Fx) = (Ax)..... fm(x))

Z = Zexp(w-f(x’))

x'eX

The exponential function

100 //

9/67

Outline

Features in exponential models

10/67

Features in Random Fields

1

= / / /
P(x) = 7 W0.DT WD T the WDT NN NN dog WNN.VBZ W\/BZ barks WWBZ.0

e |f V is the set of words and) is the set of labels, there is a feature for each
combination in) X V and for each combination in Y x).

e If n, v/ is the number of times label y precedes label y'in x, and my , is the
number of times label y appears with word v, then:

OIS %([1 wy”%/)([l w%)

y.yeyxy Y. veEYXV

PCFGs and HMMs as exponential models

e Models like PCFGs and HMMs define the probability of a structure (e.g., a
parse tree) as a product of the probabilities of its components

> In a PCFG, each rule A — 3 has a probability pa_,s
» The probability of a tree is the product of the probabilities of the rules used in
its derivation

_ Na-p(X)
P(x) = l_[Pasp
A—BER
where na_,g(x) is the number of times rule A — 3 is used in derivation of tree x
= A PCFG can be expressed as an exponential model where:

» define a 1-to-1 mapping from PCFG rules to features (i.e., number the rules)
» define the feature functions: fa_,g(x) = na_,g(x), and
> set the feature values: va_,53 = pasp

fas,
Pe) =] v
A—BER

= A PCFG (and an HMM) is an exponential model where Z = 1

Categorical features

e Suppose (g1, ...,9m) are categorical features, where gy ranges over Gy
» E.g., if X is a set of words, then suffix(x) might be the last letter of x
e “One-hot” encoding of categorical features:

> Define a binary feature fg,=c for each combination of a categorical feature
9. k=1,..., m and a possible value ¢ € G

fge=c(x) = 1 if gx(x) = c, and O otherwise

= Number of binary features grows extremely rapidly

> reranking parser has about 40 categorical features, but around 2 million binary
features

e But you only need to instantiate feature-value pairs observed in training data

> learning procedures in general set wg=c = O if feature-value pair g(x) = c is not
present in training data

Feature redundancy in binary models

o Consider a situation where there are 2 outcomes: X = {a, b}

P(X=x) = %exp (w- f(x)), where:
zZ = exp(w- f(x) = exp(w- £(a)) + exp (w - f(b)), so:
x'eX

exp (w - f(a))

P(X=a) = exp (w - f(a)) +exp (w - f(b))
1
-1 +exp (w - (f(b) — f(a)))
= s(w-(f(a) — f(b))), where:
s(z) = ; is the logistic sigmoid function

1+ exp(—2)

= In binary models only the difference between feature values matters

The logistic sigmoid function

1 [——F— Yy = 1/1+e‘X

15/67

Feature redundancy in exponential models

e This result generalises to all exponential models

o letu={(uq,..., Um) be any vector of same dimensionality as the features

e Define an exponential model using new feature functions f'(x) = f(x) + u.
Then:

exp (w - f'(x))
P(X=x) Dvex &xp(w- f(x))
exp (w - f(x)) exp (w - u)
2ivex &P (w- f(X)) exp(w - u)
exp (w - f(x))
2vex exp(w- f(X))

= Adding or subtracting a constant vector to feature values does not change the
distribution defined by an exponential model

e The feature extractor for the reranking parser subtracts the vector w that
makes the feature vectors as sparse as possible

Outline

Learning exponential models

17/67

Methods for learning from data

e Learning or estimating feature weights w from training data D = (x1, ..., Xp),
where each x; € X

o Maximum likelihood: choose w to make D as likely as possible

—~

w = argmaxLp(w), where:
w
n
Lo(w) = [Puw(x)
i=1

e Minimising negative log likelihood is mathematically equivalent, and has
mathematical and computational advantages
» negative log likelihood is convex (with fully visible training data)
= single optimum that can be found by “following gradient downhill”
> avoids floating point underflow
e But other learning methods may have advantages
» with a large number of features, a regularisation penalty term (e.g., L1 and/or
L2 prior) helps to avoid overfitting
> optimising a specialised loss function (e.g., expected f-score) can improve
performance on a specific task

LLearning as minimising a loss function

e Goal: find the feature weights w that minimise the negative log likelihood £p

of feature weights w given data D = (xg, ..., Xp):
w = argmin{p(w)
w
n
to(w) = —loglp(w) = —log[[Pu(x)

i=1

n

= Z — log Poy(x;)
i=1

e The negative log likelihood £ is a sum of the Josses — log Py (X;) the model
w incurrs on each data item x;

e The maximum likelihood estimator selects the model w that minimises the
loss £p on data set D

e Many other machine learning algorithms for estimating w from D can be
understood as minimising some loss function

Why is learning exponential models hard?

e Exponential models are so flexible because the features can have arbitrary
weights
= The partition function Z is required to ensure the distribution P(x) is
normalised
e The partition function Z varies as a function of w

P(X=x) = %exp (w- f(x)), where:
Z = Z exp (w - f(x'))
x'eX

= So we can't ignore Z, which makes it hard to optimise the likelihood!
> no closed-form solution for the feature weights w;
> learning usually involves numerically optimising the likelihood function or some
other loss function
» calculating Z requires summing over entire space X
» many methods for approximating Z and/or its derivatives;
typically unclear how the approximations affect the estimates of w

The derivative of the negative log likelihood

e Efficient numerical optimisation routines require evaluation of the function to
be minimised (negative log likelihood £p) and its derivatives
> use a standard package; L-BFGS (LMVM), conjugate gradient

o We'll optimise 1/n times the negative log likelihood of w given data
D=(x,..., Xp):

1< 1<
to(w) = —=>logPu(x) = logZ —— > w- f(x)
i=1 i=1

e The derivative of £ is:

ol
O_MZ = Ew[fj] — Ep[f]. where:
Ewlfi]] = Z fi(x")Pw(x) (expected value of f; wrt Py,)
x'ex
1 n
Eplfi] = - Z fi(xi) (expected value of f; wrt D)
=1

e At optimum %o /aw = 0
= model’s expected feature values equals data’s feature values

Exercise: derive the formulae on the previous slide!

e This is a basic result for exponential models that is the basis of many other
results

e |f you want to generalise exponential models, you'll need to derive similar
formulae
e You'll need to know:

> that derivatives distribute over sums
> that 8l0g(x) fax = 1/x
> the chain rule, i.e., that 8 /ax = 9¥/au 94 /ax

N
N

Maximum entropy models

e |dea: given training data D and feature functions f, find the distribution
P'(X) that:
1. Ep[fj] = Ep[f;] for all features f;,
i.e., P’ agrees with D on the features
2. of all distributions satisfying (1), P’ has maximum entropy
i.e., P’ has the least possible additional information

e Because w = argmin,, £p(w) then

Olp , .
= Ewlfj] = Epl[f;] for all features f;
e Theorem: Py, = P/, i.e., for any data D and feature functions f the maximum
likelihood distribution and the maximum entropy distribution are the same
distribution

Outline

Regularisation

24 /67

Why regularise?

e |f every x € D has feature f; and some x € & does not, then ij =

e If no x € D has feature f; and some x € X' does, then wj = —o0

e Infinities cause problems for numerical routines

e Just because a feature always occurs/doesn’t occur in training data doesn't
mean this will also occur in test data (“accidental zeros”)

e These are extreme examples of overlearning

» overlearning often occurs when the size of the data D is not much greater than
the number of features m

o |dea: add a regulariser (also called a penalty term or prior) to the negative log
likelihood that penalises large feature weights

> Recall that w; = 0 means that feature f; is ignored

L» regularisation

e Instead of minimising the negative log likelihood £p(w), we optimise

w = argmin {p(w) + ¢ R(w), where:
w
R(w) = |wl3
= w-w
m
_ 2
- Z W
J=1

e R s a penalty term that varies with each feature weight w; such that:

> the penalty is zero when w; =0,
> the penalty is greater than zero whenever w; # 0, and
> the penalty grows as w; moves further away from 0

e The regulariser constant c is usually set to optimise performance on held-out
data

Bayesian MAP estimation

e Recall Bayesian belief updating:

P(Hypothesis | Data) o« P(Data | Hypothesis) P(Hypothesis)

Posterior Likelihood Prior

e In our setting:
» Data=D=(xy,..., Xn)
» Hypothesis = w = (wy, ..., Wm)

o If we want the MAP (Maximum Aposteriori) estimate for w:

=

w = argmaxP(w | D)

w ~———

Posterior
= argmaxP(D | w) P(w)
w —_——— —~—
Likelihood Prior

= argmax (l_[P(x; | w)) P(w)

i=1

Regularisation as Bayesian MAP estimation

o Restate the MAP estimate in terms of negative log likelihood £p:

n
w = argmax| [[P(xi | w) | P(w)
w i=1 —~—
—_~— , Prior
Likelihood

= argmin (— Zn: log P(x; | w)) — log P(w)
w i=1

= argmin £{p(w)—log P(w), where:
w
n
to(w) = = logP(x | w)
i=1

= MAP estimate @ equals regularised MLE &

w = argmin {p(w)+c R(w)
w

if cR(w) = —log P(w), i.e., if the regulariser is the negative log prior

L regularisation as a Gaussian prior

e What kind of prior is an L> regulariser?
o If cR(w) = —log P(w) then

P(w) = exp(—cR(w))

o If R(w) = |w]3 =", ij2, then the prior is a zero-mean Gaussian

P(w) « exp(—ciwjz)
j=1

The additional factors in the Gaussian become constants in log probability
space, and therefore can be ignored when finding w

e [, regularisation is also known as ridge regularisation

L1 regularisation or Lasso regularisation

The L1 norm is the sum of the absolute values

Rw) = |wl
m

= >l
J=1

L1 regularisation is popular because it produces sparse feature weights
> a feature weight vector w is sparse iff most of its values are zero

But it's difficult to optimise Li-regularised log-likelihood because its derivative
is discontinuous at the orthant boundaries

OrR +1 ifw; >0

ow; N -1 ifw; <0

Specialised versions of standard numerical optimisers have been developed to
optimise Li-regularised log-likelihood

What does regularisation do?

e Regularised negative log likelihood
w = argmin £p(w) + cR(w)
w

e At the optimum weights w, for each J:

o OR
ow; ow;

Eplfj] — Ewlf]]

= 0, or equivalently

R
Ow;

l.e., the regulariser gives the model some “slack” in requiring the empirical
expected feature values equal the model's predicted expected feature values.

Why does L; regularisation produce sparse weights?

e Regulariser’s derivative specifies gap between

empirical and model feature expectation x2
OR
Eolf] - Eulf]l = 5,

e For L, regularisation,

OR)
a—wj—>oaSVVJ—>O

> little effect on small w
= no reason for feature weights to be zero

e For Li regularisation,
OR

Bw, sign(w;) as w; —
> regulariser has effect whenever w # 0

> regulariser drives feature weights to 0
whenever “expectation gap” < ¢

Group sparsity via the Group Lasso

e Sometimes features come in natural groups; e.g., F = (f1,..., fm), where
each f;i = (fi1...., fiv)ij=1..., m
e Corresponding weights W = (wy, .. ., wm), where each w; = (w1, ..., Wjy,)
1 LA
P(X=x) = = exp Z Z W k fi k()
=1 k=1
e We'd like group sparsity, i.e., for “most” j€1,..., m, wj = 0

e The group Lasso regulariser achieves this:

m

RW) = 2w,

Jj=1

m Vj 1/2
Sio (2]
j=1

k=1

Optimising the regularised log likelihood

e |earning feature weights involves optimising regularised likelihood

w = argmin {p(w) + cR(w)
to(w) = —=3logP(x) = logZ = > w- f(x)
i=1 i=1
Z = Z exp(w - £(x))

x'eX

e Challenges in optimisation:

> If regulariser R is not differentiable (e.g., R = L1), then you need a specialised
optimisation algorithm to handle discontinuous derivatives
» if X is large (infinite), calculating Z may be difficult because it involves
summing over X
= just evaluate on the subset X’ C X where w - f is largest (assuming you can
find it)

Outline

Conditional models

35/67

Why conditional models?

e In a conditional model, each datum is a pair (x, y), where x € X and y € Y
e The goal of a conditional model is to predict y given x
e Usually x is an item or an observation and y is a label for x
> e.dg., X is the set of all possible news articles, and Y is a set of topics, e.g.
Y = {finance, sports, politics, ...}
> e.g., X is the set of all possible 256 x 256 images, and) is a set of labels, e.g.,
Y = {cat, dog, person, . ..}
> e.dg., X is the set of all possible Tweets, and) is a Boolean value indicating
whether x € X' expresses a sentiment
» e.g., X is the set of all possible sentiment-expressing Tweets, and) is a
Boolean value indicating whether x € X’ has positive or negative sentiment
e We will do this by learning a conditional probability distribution P(Y | X),
which is the probability of Y given X
e We estimate P(Y | X) from data D = ((x1, 1), ..., (Xn, ¥n)), that consists of
pairs of items x; and their labels y; (supervised learning)
> in unsupervised learning we are only given the data items x;, but not their labels
yi (clustering)
> in semi-supervised learning we are not given the labels y; for all data items x;
(we might be given only some labels, or the labels might only be partially
identified)

Conditional exponential models

e Data D =((x1,y1)..--, (Xn, ¥n)) consists of (x,y) pairs, where x € X and
ye)y

Want to predict y from x, for which we only need conditional distribution
P(Y | X), not the joint distribution P(X, Y)

e Features are now functions f(x, y) over (x, y) pairs

Conditional exponential model:

Py Ix) = Z(lX) exp (w - f(x,y)), where:
Z(x) = Y. exp(w- f(x.y))
y'ey

Big advantage: Z(x) only requires a sum over Y, while “joint" partition
function Z requires a sum over all X x Y pairs

> in many applications label set) is small

> size of X doesn't affect computational effort to compute Z(x)

Features in conditional models

e In a conditional model, changing the feature function f(x,y) to
I (x.y) = f(x.y) +u(x) does not change the distribution P(y | x)

= adding or subtracting a function that only depends on x does not affect a
conditional model

= to be useful in a conditional model, a feature must be a non-constant function
ofy

o A feature f(x,y) = f(y) that only depends on y behaves like a bias node in a
neural net

> it's often a good idea to have a "one-hot” feature for each ¢ € Y-
fy=c(y) = 1if y=c, and 0 otherwise

e If X is a set of discrete categories, it's often useful to have pairwise “one-hot”
features for each c€e X and ¢/ € Y

fimcy=c(x,y) = lifx=candy= c’, and 0 otherwise

Using a conditional model to make predictions

e Labelling problem: we have feature weights w and want to predict label y for
some x

e The most probable label y¥(x) given x is:

Y(x) = argmaxPy(Y=y'| X=x)
y'ey
1
= argmax —— exp (w - f(x,)
vey Z(x) ()
= argmaxw - f(x,y)
y'ey

e Partition function Z(x) is a constant here, so drops out

Logistic regression

e Suppose YV = {0, 1}, i.e., our labels are Boolean

exp (w - f(x, 1))

P(Y=1]X=x) = exp (w - f(x,0)) +exp(w- f(x,1))
1
T Ttexp(w- (f(x.0)~ f(x.1))
1
= T+ om (—w g0’ where:
gi(x) = fi(x,1)=f(x,0), foralljel,..., m

= Only relative feature differences matter in a conditional model

e |ogistic sigmoid function:

1 e Y = 14 ex

Estimating conditional exponential models

o Compute maximum conditional likelihood estimator by minimizing negative log
conditional likelihood

w = argmin £{p(w), where:
w

lo(w) = = 10gPu(yi | x)
=1

n

= Z(|Og Z(X,‘) —w- f(Xivy/))

=1

e Derivatives are differences of conditional expectations and empirical feature

values
atp n
ow: Z (Ew[ﬂ | xi] — Ij-(x,-,y,-)), where:
v i=1
Ew[ﬁ | X] = Z G(X'y/)Pw(y | X) (expected value of f; given x)

y'ey

Regularising conditional exponential models

e Calculating derivatives of conditional likelihood only requires summing over),
and not X

> not too expensive if | Y| is small
» if) has a regular structure (e.g., a sequence), then there may be efficient
algorithms for summing over)
e Regularisation adds a penalty term to objective function we seek to optimise
e Important to regularise (unless number of features is small)

» L1 (Lasso) regularisation produces sparse feature weights
» L5 (ridge) regularisation produces dense feature weights
» Group lasso regularisation produces group-level sparsity in feature weights

Outline

Stochastic gradient descent and error-driven learning

43 /67

Why stochastic gradient descent?

e For small/medium data sets, “batch” methods using standard numerical
optimisation procedures (such as L-BFGS) can work very well

> these directly minimise the negative log likelihood £p
» to calculate the negative log likelihood and its derivatives requires a pass

through the entire training data
e But for very large data sets (e.g., data sets that don't fit into memory), or
with very large models (such as neural nets), these can be too slow
e Stochastic gradient descent calculates a noisy gradient from a small subset of
the training data, so it can learn considerably faster
» but the solution it finds is often less accurate

Gradient descent and mini-batch algorithms

Idea: to minimise £p(w), move in direction of negative gradient & /ow

o If w(Y) is current estimate of w, update as follows:

oL
ot — 0 — ¢ ZL5(0)
w = w € 3w (')

= @)~ (Eglf | 51— F(x.)
i=1

€ is step size; can be difficult to find a good value for it!

This is not a good optimisation algorithm, as it zig-zags across valleys

Update is difference between expected and empirical feature values
» Each update requires a full pass through D = relatively slow

“Mini-batch algorithms”: calculate expectations on a small sample of D to
determine weight updates

Stochastic gradient descent as mini-batch of size 1

Stochastic Gradient Descent (SGD) is the mini-batch algorithm with a
mini-batch of size 1

If @(1) is current estimate of w, training data D = ((x1, y1). ..., (Xn, yn)), and
re 1s a random number in 1, ..., n then:
@t = @) — e (Egulf [xe] = F y)). where:
Ewlf[x] = D f(x.¥)Puly %)
y'ey
1
w(y [Xx) = 700 &P (w-f(x,y))
Z(x) = Z exp(w - f(x,y"))
y'ey

Stochastic gradient descent updates estimate of w after seeing each training
example

Learning can be very fast; might not even need a full pass over D
Perhaps the most widely used learning algorithm today

The Perceptron algorithm as approximate SGD

e Idea: assume Py (y | x) is peaked around Vi (x) = argmax,cy w - f(x,y’).
Then:

Ewlf|x] = > f(x.y)Puw(y %)
y'ey

~ F(xT(x)
e Plugging this into the SGD algorithm, we get:
@ = @) —e (Egolf | x] = £On. vn))
@O — & (F(x Vg (%)) — F (%0 V)

e This is an error-driven learning rule, since no update is made on iteration t if
Y(Xr) = ¥re

Q

Regularisation as weight decay in SGD and Perceptron

e Regularisation: minimise a penalised negative log likelihood

w = argmin {p(w) + cR(w), where:
w
2 w? with an Ly regulariser
R(w) = e _ ,
2.im1 Iwj| with an Ly regulariser

e Adding L» regularisation in SGD and Perceptron introduces multiplicative
weight decay:

@) = @O — e (Egolf | xa] = FOxn yr) +2cw?)

e Adding L regularisation in SGD and Perceptron introduces additive weight
decay:

@) = @O e (Egolf | %] — £ vr) + ¢ sign(@?))

Stabilising SGD and the Perceptron

e The Perceptron is guaranteed to converge to a weight vector that correctly
classifies all training examples if the training data is separable

Most of our problems are non-separable

= SGD and the Perceptron never converge to a weight vector
= final weight vector depends on last examples seen

Reducing learning rate € in later iterations can stabilise weight vector w
> if learning rate is too low, SGD takes a long time to converge
» if learning rate is too high, w can over-shoot
» selecting appropriate learning rate is almost “black magic”
Bagging can be used to stabilise SGD and perceptron
> construct multiple models by running SGD or perceptron many times on
random permutations of training data
» combine predictions of models at run time by averaging or voting

The averaged perceptron is a fast approximate version of bagging
> train a single perceptron as usual
> at end of training, average the weights from all iterations
> use these averaged weights at run-time

ADAGRAD and ADADELTA

e There are many methods that attempt to automatically set the learning rate €
e ADAGRAD and ADADELTA are two of the currently most popular methods
e ADAGRAD estimates a separate learning rate g; for each feature weight w;

(1)

o If g/ is the derivative of the regularised negative log likelihood £p w.r.t.
feature weight w; at step t, then the ADADGRAD update rule is:

—(t+1) (1) n (1) .
W, = W' - ——————g:"’, where:
J J J
\V P gj(t)
0 _ 0lp(w))
9; = —ij

e This effectively scales the learning rate so features with large derivatives or
with fluctuating signs have a slower learning rate

e If a group of features are known to have the same scale, it may make sense
for them to share the same learning rate

e The ADADELTA rule is newer and only slightly more complicated

e Both ADAGRAD and ADADELTA only require you to store the sum of the
previous derivatives

Momentum

Intuition: a ball rolling down a surface will settle at a (local) minimum

Update should be a mixture of the previous update and derivative of
regularised log likelihood £p

G = GO 4 oD

alp(w(D)

) = gl —(1-a)e 5

v(

Momentum can smooth statistical fluctuations in SGD derivatives

If derivatives all point in roughly same direction, updates v can become quite
large
= set learning rate € to much lower than without momentum
> typical value for momentum hyper-parameter o = 0.9

Perceptron vs. L-BFGS in reranking parser

0.91 T T T T 1
Averaged perceptron (randomised data) ~ +
Exponential model, adjusting regularizer constant ¢
0.908 |- B
< 0906 - B
(o]
=
g
51
2
= 0904 -]
1) + + .
g +
4
2 * + g i
o T
0.902 e 4
o
A
v **ﬁf{ +
Rt
09 - $ ++ 4 3
+ et
+ o
0.898 | | | | |

0.898 0.9 0902 0904 0906 0.908 091

f-score on sections 20-21

Comments on SGD and the Perceptron

e Widely used because easy to implement and fast to train

>

in my experience, not quite as good as numerical optimisation with L-BFGS

e Qverlearning can be a problem

>

>

>

>

regularisation becomes weight decay
L, regularisation is multiplicative weight decay
L1 regularisation is subtractive weight decay
often more or less ad hoc methods are used instead of or in addition to
regularisation
— averaging (bagging, averaged perceptron, etc.)
— early stopping

e If you're using either SGD or Perceptron, try ADAGRAD and ADADELTA
learning rules

>

>

=

these methods automatically change the learning rate € during learning
they can identify different learning rates for different features
much faster learning that with SGD or Perceptron alone

Outline

Avoiding the partition function and its derivatives

54 /67

Challenges when) is large

e The SGD update rule:

@D = @O — e (E_olf | x] — £ vr)), where:
Ewlf1X] = D F(x.¥)Puw(y %)
y'ey
Pw(y|x) = ﬁexp (w-f(x.y))
Z(x) = Z exp(w - f(x,y"))
y'ey

e Each update step requires calculating the partition function Z(x)
and its derivatives E g [f | xr,]
e These require summing over), which can dominate the computation time if
Y is large
> in modern speech recognition and machine translation systems,) is the
vocabulary of a natural language, so || ~ 10°

Factoring P(Y | X)

Produce a hierarchical clustering of), which defines a tree over the).

[}
—
[] []

N N

yi ¥ ¥3 ya
Train a separate model for each internal node in the tree

> the probability of a leaf (output) node is the product of probabilities of each
decision on the root to leaf path

This usually does not produce a very good model

Conjecture: bagging (e.g., averaging) the output of many such tree models
would improve accuracy

Estimating expected feature counts by sampling

SGD update rule:

@D = @O e (Egf | Xl — £ vi)), where;
Eulf 6] = D, F(x¥)Puly %)

y'ey

Idea: use a sampling method to estimate the expected feature counts
Egolf | xq]

Importance sampling:

> draw samples from a proposal distribution over) (e.g., unigram distribution)
» calculate expectation from samples reweighted according to importance weights
(which don't require partition function)

May require a large number of samples to accurately estimate expectations

Noise-contrastive estimation

e Noise-contrastive estimation can be viewed as importance sampling with only
two samples (and where importance weights are ignored)

e Suppose the training item at iteration t is (X,,t,y;f).

e Set y, €) to a random sample from a proposal distribution (e.g., unigram
distribution over)

e \We approximate:

Egolf | x.] =
FOe v) exp(w®) - £, vi)) + £ v) exp(w(D) - £, v7))
exp(w(®) - f(xr,, ¥,1)) + exp(w(®) - f(xr. v;))

e If y,~ is less probable than y,f the expectation Eg [f | x] ~ f(xrt,y;f), SO
the expectations will cancel, and there won't be a large weight update

e If y is more probable than y;! the expectation E g [f | xr] & f(Xr., ¥,). SO
there can be a large weight update

e Widely used in the neural net community today

Outline

Weakly labelled training data

59 /67

Ambiguous or weakly labelled training data as partial
observations

e Suppose our training data doesn't tell us the true label y; for each example X;,
but only provides us with a set of labels)); that contains the unknown true
label y;

D = ((x.)1)..-., (Xn, Yn)) where:
i€ Vil

e Idea: learn a model that maximizes []/_; P(Yi | x;)

e Example: in reranking the gold parse might not be in the beam, so train model
to select one of the best parses available in beam; we don't care which is
chosen

e Example: in arc-eager dependency parsing, several different moves can lead to
same gold parse; we don't care which the parser chooses

Partially-observed conditional exponential models
e Data D = (((x1, Y1), .-, (Xn, Vn)), where Y C Y and)V # @

o Compute maximum conditional likelihood estimator by minimizing negative log
conditional likelihood

w = argmin {p(w), where:
w
n

to(w) = =Y 10gPu (Y| x)
i=1

n
= Z (log Z(x;, V) —log Z(xj, Vi), where:
i=1
Z(x, V) = Z exp(w- f(x,y"))

yleyl

e Intuition: log Z(x;, V) — log Z(x;, Vi) will be small when most mass is assigned
to Y
e If V; =), then example / has no information
e Warning: £p is usually not convex = local minima
> hidden data problems usually have non-convex log likelihoods

Derivatives for partially-observed conditional models

e Negative log likelihood:

Zn: (log Z(x;, V) — log Z(x;, Yi)) . where:
-1
Z(x,Y) = Z exp(w- f(x,y"))

yleyl

{p(w)

e Derivatives are differences of two conditional expectations

0lp a
ow Z;(Ew[ﬂ | xi, V] — Ew[fj | xi, V1), where:
=
Ewlf [x, J/] = Z G(X,y/)Pw(y’ | X) (expected value given x and)')
y/ey/

e These derivatives are no harder to compute than for the fully-observed case

e SGD and perceptron algorithms generalise straight-forwardly to
partially-observed data

Partially-observed data in the reranker

Training data consists of a sequence of training data items (sentences)
Each data item consists of a sequence of candidates (parses)
» the number of candidates per data item can vary

Each candidate consists of a sequence of feature-value pairs
Each feature is an integer, and each value is a floating-point number

» feature value 1 is special-cased because it’'s so common in “one-hot”
representations

To allow partially-observed training data, each candidate has a gold weight
» for a standard MaxEnt model, the gold candidate in each data item has gold
weight 1, all others have gold weight 0
» with partially-observed data, more than one candidate has weight 1

Other interesting things the reranker can do

e Data items (sentences) and candidates (parses) can be given “costs” so the
reranker can calculate f-scores
» can optimise expected f-score instead of log likelihood
» useful with skewed data (e.g., in disfluency detection, where most words are
fluent)
e The reranker uses L1 and/or L2 regularisation

> can optimise regulariser constants to maximise log likelihood or f-score of
heldout data
e Features are organised into feature classes
» each feature class can have its own regulariser constant
» these feature constants can be optimised can be on heldout data
e Standard optimiser is L-BFGS-OWLQN, but can also use Averaged
Perceptron
> Averaged Perceptron is not quite as good as L-BFGS, but much faster

> Averaged Perceptron can be used to search for subset of feature classes that
optimise f-score on heldout data

Outline

Summary

65/67

Summary

e Maximum entropy models capture the intuition that features interact
multiplicatively, i.e., can increase or decrease the probability of an outcome

o Calculating the partition function Z and its derivatives is usually the central
challenge in MaxEnt modelling
e Conditional MaxEnt models, which model P(y | x), often have simpler
partition functions than joint models, which model P(y, x).
e Regularisation is often essential to avoid over-learning
> L1 regularisation produces sparse feature weight vectors w at the individual
feature level
» the group Lasso produces sparse feature weight vectors w at the feature group
level
e Stochastic Gradient Descent (SGD) is an easy and fast way to learn MaxEnt
models (but less accurate?)

o The Perceptron is SGD for conditional MaxEnt with a Viterbi approximation

Where we go from here

e Conditional Random Fields are conditional MaxEnt models that use dynamic
programming to calculate the partition function and their derivatives
» generally requires) to have some kind of regular structure, e.g., a sequence
(sequence labelling) or a tree (parsing)
o Neural networks use MaxEnt models as components (they are networks of
MaxEnt models, but “neural net” sounds better!)

» Boltzmann machines are MaxEnt models where the data items are graphs
> feed-forward networks use conditional MaxEnt models as components

	Introducing exponential models
	Features in exponential models
	Learning exponential models
	Regularisation
	Conditional models
	Stochastic gradient descent and error-driven learning
	Avoiding the partition function and its derivatives
	Weakly labelled training data
	Summary

