
Introduction to

Restricted Boltzmann Machines

Mark Johnson

Department of Computing
Macquarie University

7th October, 2012
(updated September 2015)

1/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

2/38

Boltzmann machines
• Boltzmann machines are Markov Random Fields with pairwise

interaction potentials

• Developed by Smolensky as a probabilistic version of neural nets

• Boltzmann machines are basically MaxEnt models with hidden
nodes

• Boltzmann machines often have a similar structure to multi-layer
neural networks

• Nodes in a Boltzmann machine are (usually) binary valued

• A Boltzmann machine only allows pairwise interactions (cliques)

• Hinton developed sampling-based methods for training and using
Boltzmann machines

• Restricted Boltzmann Machines (RBMs) are Boltzmann machines
with a network architecture that enables efficient sampling

3/38

Applications of Boltzmann machines

• RBMs are used in computer vision for object recognition and scene
denoising

• RBMs can be stacked to produce deep RBMs

• RBMs are generative models

⇒ don’t need labelled training data

• Generative pre-training: a semi-supervised learning approach
I train a (deep) RBM from large amounts of unlabelled data
I use Backprop on a small amount of labelled data to tune the

network weights

4/38

Boltzmann distributions
• Boltzmann distributions were first introduced by Gibbs (!) in

statistical mechanics to describe the distribution of configurations
of particles x as a function of their energy

P(x) =
1

Z
exp(−E (x))

where E (x) is the energy of configuration x
I every MaxEnt model follows a Boltzmann distribution with

E (x) = −θ>f(x) =
∑m

j=1 θj fj(x)

• In statistical mechanics, x is often a configuration of n particles,
and E (x) is approximated by a function of their pairwise
interactions

• If the interaction graph is regular and the interactions are
homogeneous, these are often called Ising models

5/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

6/38

Boltzmann machines
• A Boltzmann machine is a Markov Random Field over (usually)

binary variables and only unary and binary factors
⇒ a Boltzmann machine can be represented by a weighted undirected

graph

x0

b0

x5

b5

x10

b10

x1

b1

x6

b6

x11

b11

x2

b2

x7

b7

x12

b12

x3

b3

x8

b8

x13

b13

x4

b4

x9

b9

x14

b14

W0,5

W5,10

W1,6

W6,11

W2,7

W7,12

W3,8

W8,13

W4,9

W9,14

W0,1 W1,2 W2,3 W3,4

W5,6 W6,7 W7,8 W8,9

W10,11 W11,12 W12,13 W13,14

7/38

Boltzmann machines
• A Boltzmann machine is a Markov Random Field with (usually)

only binary nodes and only unary and binary factors
• If there are n nodes, then x ∈ 2n is a binary vector of length n

I xi = 1 means that node i is “on”, xi = 0 means that node i is
“off”

E (x) = −b>x− x>Wx = −
m∑
j=1

bjxj −
∑
i ,j

xiWi ,jxj

P(x) =
1

Z
exp(−E (x))

Z =
∑
x′

exp(−E (x′))

I b is a vector of length n of bias weights, and
I W is an n × n matrix of connection weights

– Wi,j is the “interaction” when nodes i and j are both “on”

8/38

Visible nodes and hidden nodes
• BMs typically have hidden nodes as well as visible nodes

I BMs are undirected ⇒ input and output nodes are visible nodes

x = v · h
I “·” means concatenation, not dot product!

• Training data D = (v1, . . . , vn) only gives values for visible nodes
• Maximum likelihood estimation: find parameters W and b that

maximise likelihood of training data D

Ŵ, b̂ = argmax
W,b

`D(W,b)

`D(W,b) =
n∏

i=1

P(vi)

P(v) =
∑
h′

P(v · h′) =

∑
h′ exp(−E (v · h′))∑

v′,h′ exp(−E (v′ · h′))

E (x) = −b>x− x>Wx
9/38

Learning BM parameters requires expectations
• Boltzmann machines are typically learnt by minimising negative log

likelihood using stochastic gradient descent
I select a mini-batch from training data (possibly 1 item)
I calculate derivative ∂−log L

∂θ of negative log likelihood − log L wrt
model parameters θ (where θ = (W,b))

I SGD/minibatch update: θ ← θ − ε∂−log L∂θ

• Derivative is a difference of expectations

∂ − logP(v)

∂θ
=

∑
h′

P(h′ | v)
∂E (v · h′)

∂θ
−
∑
h′,v′

P(v′ · h′)∂E (v′ · h′)
∂θ

= E

[
∂E

∂θ

∣∣∣∣ v]− E

[
∂E

∂θ

]
where θ is a parameter such as Wi ,j or bj

• These expectations can’t be calculated analytically, so we estimate
them using sampling

10/38

What derivatives do we need?

E (x) = −b>x− x>Wx, so:

∂E

∂bj
= −xj

∂E

∂wi ,j
= −xi xj , so:

∂ logP(v)

∂bj
= E[xj | v]− E[xj]

∂ logP(v)

∂wi ,j
= E[xi xj | v]− E[xi xj]

⇒ At MLE, feature expectations without data equal feature
expectations with data

11/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

12/38

Why sample?
• Setup: Model has visible variables v, whose value we observe, and

hidden variables h, whose value we don’t know
I in Bayesian estimation, the hidden variables include any

parameters we want to estimate, such as W and b

• Goal: compute the expected value of a function f
I for estimating Boltzmann machines, f = ∂E

∂θ

E[f] =
∑
h′,v′

f (h′ · v′)P(h′ · v′)

E[f | v] =
∑
h′

f (h′ · v)P(h′ | v)

• In the rest of this section, let y be the variables we want to sample
over (e.g., h′ or h′ · v′)

13/38

Using sampling to compute expectations

• Suppose we can produce n samples y (1), . . . , y (n),
where Y (t) ∼ P(Y)

• Then we can estimate:

E[f] =
∑
y

f (y)P(y)

≈ 1

n

n∑
t=1

f (y (t))

• This converges under very general conditions
I the error decreases as the square root of the number of samples n

if the samples are independent

14/38

Markov chains
• A (first-order) Markov chain is a distribution over random variables
S (0), . . . , S (n) all ranging over the same state space S, where:

P(S (0), . . . , S (n)) = P(S (0))
n−1∏
t=0

P(S (t+1) | S (t))

S (t+1) is conditionally independent of S (0), . . . , S (t−1) given S (t)

• A Markov chain in homogeneous or time-invariant iff:

P(S (t+1) = s ′ | S (t) = s) = Ps′,s for all t, s, s ′

The matrix P is called the transition probability matrix (tpm) of
the Markov chain

• If P(S (t) = s) = π
(t)
s (i.e., π(t) is a vector of state probabilities at

time t) then:
I π(t+1) = P π(t)

I π(t) = Pt π(0)

15/38

Ergodicity

• A Markov chain with tpm P is ergodic iff there is a positive integer
m s.t. all elements of Pm are positive (i.e., there is an m-step path
between any two states)

• Informally, an ergodic Markov chain “forgets” its past states

• Theorem: For each homogeneous ergodic Markov chain with tpm
P there is a unique limiting distribution DP , i.e., as n approaches
infinity, the distribution of Sn converges on DP

• DP is called the stationary distribution of the Markov chain

• Let π be the vector representation of DP , i.e., DP(y) = πy . Then:

π = P π, and

π = lim
n→∞

Pnπ(0) for every initial distribution π(0)

16/38

Using a Markov chain to sample from P(Y)

• Set the state space S of the Markov chain to the range of Y
(S may be astronomically large)

• Find a tpm P such that P(Y) ∼ DP

• “Run” the Markov chain, i.e.,
I Pick y(0) somehow
I For t = 0, . . . , n − 1:

– sample y(t+1) from P(Y(t+1) | Y(t) = y(t)), i.e., from P·,y(t)

I After discarding the first burn-in samples, use remaining samples
to calculate statistics

• WARNING: in general the samples y(t) are not independent

17/38

The Gibbs sampler

• The Gibbs sampler is useful when:
I Y is multivariate, i.e., Y = (Y1, . . . ,Ym), and
I easy to sample from P(Yj | Y−j) (where Y−j is Y except Yj)

• The Gibbs sampler for P(Y) is the tpm P =
∏m

j=1 P
(j), where:

P
(j)
y′,y =

{
0 if y′−j 6= y−j
P(Yj = y ′j | Y−j = y−j) if y′−j = y−j

• Informally, the Gibbs sampler cycles through each of the variables
Yj , replacing the current value yj with a sample from
P(Yj | Y−j = y−j)

• There are sequential scan and random scan variants of Gibbs
sampling

18/38

A simple example of Gibbs sampling

P(Y1,Y2) =

{
c if |Y1| < 5, |Y2| < 5 and |Y1 − Y2| < 1
0 otherwise

• The Gibbs sampler for P(Y1,Y2) samples repeatedly from:

P(Y2 | Y1) = Uniform(max(−5,Y1 − 1),min(5,Y1 + 1))

P(Y1 | Y2) = Uniform(max(−5,Y2 − 1),min(5,Y2 + 1))

-5

 0

 5

-5 0 5

Y
2

Y
1

Sample run
Y1 Y2

0 0
0 -0.119

0.363 -0.119
0.363 0.146
-0.681 0.146
-0.681 -1.551

19/38

A non-ergodic Gibbs sampler
P(Y1,Y2) =

{
c if 1 < Y1,Y2 < 5 or −5 < Y1,Y2 < −1
0 otherwise

• The Gibbs sampler for P(Y1,Y2), initialized at (2,2), samples
repeatedly from:

P(Y2 | Y1) = Uniform(1, 5)

P(Y1 | Y2) = Uniform(1, 5)

I.e., never visits the negative values of Y1,Y2

-5

 0

 5

-5 0 5

Y
2

Y
1

Sample run
Y1 Y2

2 2
2 2.72

2.84 2.72
2.84 4.71
2.63 4.71
2.63 4.52
1.11 4.52
1.11 2.46

20/38

Why does the Gibbs sampler work?

• The Gibbs sampler tpm is P =
∏m

j=1 P
(j), where P (j) replaces yj

with a sample from P(Yj | Y−j = y−j) to produce y ′

• But if y is a sample from P(Y), then so is y′,
since y′ differs from y only by replacing yj with a sample from
P(Yj | Y−j = y−j)

• Since P (j) maps samples from P(Y) to samples from P(Y), so
does P

⇒ P(Y) is a stationary distribution for P

• If P is ergodic, then P(Y) is the unique stationary distribution for
P , i.e., the sampler converges to P(Y)

21/38

Gibbs sampling with Boltzmann machines

• Recall: need samples of hidden (and visible)
node values

• Gibbs sampler: update xj with sample from
P(Xj | X−j) ∝ P(Xj ,X−j)

• Only need to evaluate terms in P(Xj ,X−j) that
involve Xj

I these are the neighbours of Xj in the MRF
graph

x0

x3

x6

x9

x12

x1

x4

x7

x10

x13

x2

x5

x8

x11

x14

22/38

The wake-sleep algorithm for Boltzmann machines
• Boltzmann machines are typically learnt by minimising negative log

likelihood using stochastic gradient descent

• Use sampling to compute gradient of log likelihood

∂ logP(v)

∂bj
= E[xj | v]− E[xj]

∂ logP(v)

∂wi ,j
= E[xi xj | v]− E[xi xj]

• The wake-sleep algorithm calculates these using two samplers
I wake step: generate samples h′ from P(h′ | v),

i.e., “clamp” v to visible data
I sleep step: generate samples v′ · h′ from P(v′ · h′),

i.e., let the network “dream”

• At MLE, network’s data-driven expectations = network’s “dreams”

23/38

Advantages and disadvantages of the wake-sleep

algorithm
+ The wake-sleep algorithm doesn’t require us to calculate the

partition function Z
+ It’s easy to sample using Gibbs sampling (sample each node

conditional on its neighbours)
I only requires normalising over the possible values of each node

− It may take many samples to accurately estimate these
expectations, to perform just one SGD update!

⇒ Restricted Boltzmann Machines: constrain network structure so
wake steps (on visible data) don’t require sampling

⇒ Contrastive Divergence: reinitialise sampler after each update so
updates can be computed from just a few samples

⇒ Persistent Contrastive Divergence: don’t reinitialise sampler after
each update

24/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

25/38

Restricted Boltzmann Machines

• A Restricted Boltzmann Machine is a Boltzmann Machine where
all connections are between hidden and visible units

⇒ no hidden-to-hidden or visible-to-visible connections
⇒ an RBM is a Markov Random Field over a bipartite graph

Hidden nodes

Visible nodes

E (v,h) = −b>v − c>h− h>Wv

26/38

Wake-sleep in Restricted Boltzmann Machines
• A Restricted Boltzmann Machine is a Boltzmann Machine where

all connections are between hidden and visible units
Hidden nodes

Visible nodes

• During the wake step, the values of all visible nodes are fixed:
⇒ the hidden nodes are independent given the visible nodes
⇒ wake-step expectations can be calculated exactly (without

sampling)
• Sleep step still requires sampling, but it is more structured

I Blocked Gibbs sampler for sleep step: repeat
– sample hidden nodes conditional on visible nodes
– sample visible nodes conditional on hidden nodes

I each block sampling step can be done in parallel because
– hidden nodes are independent conditional on visible nodes, and
– visible nodes are independent conditional on hidden nodes

27/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

28/38

Contrastive Divergence
• Blocked Gibbs sampler for RBM sleep step: repeat

I sample hidden nodes conditional on visible nodes
I sample visible nodes conditional on hidden nodes

• How do we initialise the sampler?
• Contrastive divergence:

I initialise “dream” with visible data
I don’t run many block sampler iterations (maybe just 1?)

• Intuition: in a “good” model, sampler should stay “close” to
visible data

⇒ Update model parameters to “stop dreams moving away from
reality”

I if dreams are same as visible data ⇒ identical wake and sleep
expectations ⇒ no weight change

I a 1-step contrastive divergence sampler is a bit like a neural net
auto-encoder!

29/38

Persistent Contrastive Divergence

• Contrastive Divergence algorithm reinitialises “sleep” sampler to
data item at each SGD step

• Persistent Contrastive Divergence algorithm initialises “sleep”
sampler with “sleep” samples from last SGD step

I intuition: a single SGD iteration won’t have changed W and b
much, so “sleep” samples probably still have high probability

• Typically maintain multiple “sleep particles” to improve
expectations

I usually number of sleep particles = mini-batch size

• This is regular Gibbs sampling for sleep state, except that the
model parameters W and b are changing

30/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

31/38

Stacking Restricted Boltzmann Machines

• RBMs can be “stacked” to form more complex machines

• Stacked RBMs are trained in layers
I Hidden layer i serves as the visible data for training hidden layer

i + 1

Hidden nodes

Visible nodes

32/38

Using deep RBMs for semi-supervised learning

• Semi-supervised learning:
I large amount of unlabelled data (e.g., images from web)
I much smaller amount of labelled data

• Unsupervised pre-training for semi-supervised learning:
I train a deep RBM from unlabelled data
I add a final output node connected to top hidden layer (and input

as well?)
I use Backprop on labelled data to fine-tune connection weights

33/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

34/38

Representing words in RBMs
• Visible layer uses “one-hot” representation ek of word k

I organise visible nodes into groups binary nodes for each word
I require that exactly one node in each word group is “on”

• Equivalent to MaxEnt multinomial model of words given hidden
variables

P(v(i)=ek | h) =
exp(b(i)>ek + h>W(i)ek)∑
k ′ exp(b(i)>ek ′ + h>W(i)ek ′)

+ This model can give good performance

− But it requires us to sum over the entire vocabulary to compute a
partition function

− This partition function is required to Gibbs sample each visible
node at each iteration of the sleep step in the training algorithm

35/38

Metropolis-Hastings word sampler

• A Metropolis-Hastings (MH) sampler requires a proposal
distribution that can be efficiently sampled

• The MH algorithm: repeat
I sample a proposal from the proposal distribution
I accept the proposal with an acceptance probability that depends

on the ratio of the probability of proposal and probability of
previous value under target distribution

• Because the acceptance probability depends a ratio of target
probabilities, the partition functions cancel

• The efficiency of the MH algorithm depends on how close the
proposal distribution is to the target distribution

I apparently a unigram proposal distribution is good enough

36/38

Outline

How do Boltzmann machines fit into the ML landscape?

Boltzmann machines

Introduction to MCMC and Gibbs sampling

Restricted Boltzmann Machines

(Persistent) Contrastive Divergence

Stacking RBMs to form deep belief networks

RBMs as language models

Conclusion

37/38

Conclusion

• Boltzmann Machines are Markov Random Fields with binary
potentials

• The wake-sleep algorithm can compute SGD gradients

• Restricted Boltzmann Machines only allow connections between
visible and hidden nodes

⇒ expectations required in wake step can be efficiently computed

• Contrastive Divergence initialises sleep step with visible data, and
only runs a few iterations

• RBMs can be stacked just like neural nets, where hidden units of
level i are used as visible units of level i + 1

• Metropolis-Hastings with a unigram proposal can be used to avoid
calculating partition function over words in sleep step of RBM
language models

38/38

	How do Boltzmann machines fit into the ML landscape?
	Boltzmann machines
	Introduction to MCMC and Gibbs sampling
	Restricted Boltzmann Machines
	(Persistent) Contrastive Divergence
	Stacking RBMs to form deep belief networks
	RBMs as language models
	Conclusion

