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Boltzmann machines
• Boltzmann machines are Markov Random Fields with pairwise

interaction potentials

• Developed by Smolensky as a probabilistic version of neural nets

• Boltzmann machines are basically MaxEnt models with hidden
nodes

• Boltzmann machines often have a similar structure to multi-layer
neural networks

• Nodes in a Boltzmann machine are (usually) binary valued

• A Boltzmann machine only allows pairwise interactions (cliques)

• Hinton developed sampling-based methods for training and using
Boltzmann machines

• Restricted Boltzmann Machines (RBMs) are Boltzmann machines
with a network architecture that enables efficient sampling
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Applications of Boltzmann machines

• RBMs are used in computer vision for object recognition and scene
denoising

• RBMs can be stacked to produce deep RBMs

• RBMs are generative models

⇒ don’t need labelled training data

• Generative pre-training: a semi-supervised learning approach
I train a (deep) RBM from large amounts of unlabelled data
I use Backprop on a small amount of labelled data to tune the

network weights
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Boltzmann distributions
• Boltzmann distributions were first introduced by Gibbs (!) in

statistical mechanics to describe the distribution of configurations
of particles x as a function of their energy

P(x) =
1

Z
exp(−E (x) )

where E (x) is the energy of configuration x
I every MaxEnt model follows a Boltzmann distribution with

E (x) = −θ>f(x) =
∑m

j=1 θj fj(x)

• In statistical mechanics, x is often a configuration of n particles,
and E (x) is approximated by a function of their pairwise
interactions

• If the interaction graph is regular and the interactions are
homogeneous, these are often called Ising models
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Boltzmann machines
• A Boltzmann machine is a Markov Random Field over (usually)

binary variables and only unary and binary factors
⇒ a Boltzmann machine can be represented by a weighted undirected

graph
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Boltzmann machines
• A Boltzmann machine is a Markov Random Field with (usually)

only binary nodes and only unary and binary factors
• If there are n nodes, then x ∈ 2n is a binary vector of length n

I xi = 1 means that node i is “on”, xi = 0 means that node i is
“off”

E (x) = −b>x− x>Wx = −
m∑
j=1

bjxj −
∑
i ,j

xiWi ,jxj

P(x) =
1

Z
exp(−E (x) )

Z =
∑
x′

exp(−E (x′) )

I b is a vector of length n of bias weights, and
I W is an n × n matrix of connection weights

– Wi,j is the “interaction” when nodes i and j are both “on”
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Visible nodes and hidden nodes
• BMs typically have hidden nodes as well as visible nodes

I BMs are undirected ⇒ input and output nodes are visible nodes

x = v · h
I “·” means concatenation, not dot product!

• Training data D = (v1, . . . , vn) only gives values for visible nodes
• Maximum likelihood estimation: find parameters W and b that

maximise likelihood of training data D

Ŵ, b̂ = argmax
W,b

`D(W,b)

`D(W,b) =
n∏

i=1

P(vi)

P(v) =
∑
h′

P(v · h′) =

∑
h′ exp(−E (v · h′))∑

v′,h′ exp(−E (v′ · h′))

E (x) = −b>x− x>Wx
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Learning BM parameters requires expectations
• Boltzmann machines are typically learnt by minimising negative log

likelihood using stochastic gradient descent
I select a mini-batch from training data (possibly 1 item)
I calculate derivative ∂−log L

∂θ of negative log likelihood − log L wrt
model parameters θ (where θ = (W,b))

I SGD/minibatch update: θ ← θ − ε∂−log L∂θ

• Derivative is a difference of expectations

∂ − logP(v)

∂θ
=

∑
h′

P(h′ | v)
∂E (v · h′)

∂θ
−
∑
h′,v′

P(v′ · h′)∂E (v′ · h′)
∂θ

= E

[
∂E

∂θ

∣∣∣∣ v]− E

[
∂E

∂θ

]
where θ is a parameter such as Wi ,j or bj

• These expectations can’t be calculated analytically, so we estimate
them using sampling
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What derivatives do we need?

E (x) = −b>x− x>Wx, so:

∂E

∂bj
= −xj

∂E

∂wi ,j
= −xi xj , so:

∂ logP(v)

∂bj
= E[xj | v]− E[xj ]

∂ logP(v)

∂wi ,j
= E[xi xj | v]− E[xi xj ]

⇒ At MLE, feature expectations without data equal feature
expectations with data
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Why sample?
• Setup: Model has visible variables v, whose value we observe, and

hidden variables h, whose value we don’t know
I in Bayesian estimation, the hidden variables include any

parameters we want to estimate, such as W and b

• Goal: compute the expected value of a function f
I for estimating Boltzmann machines, f = ∂E

∂θ

E[f ] =
∑
h′,v′

f (h′ · v′)P(h′ · v′)

E[f | v] =
∑
h′

f (h′ · v)P(h′ | v)

• In the rest of this section, let y be the variables we want to sample
over (e.g., h′ or h′ · v′)
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Using sampling to compute expectations

• Suppose we can produce n samples y (1), . . . , y (n),
where Y (t) ∼ P(Y )

• Then we can estimate:

E[f ] =
∑
y

f (y)P(y)

≈ 1

n

n∑
t=1

f (y (t))

• This converges under very general conditions
I the error decreases as the square root of the number of samples n

if the samples are independent
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Markov chains
• A (first-order) Markov chain is a distribution over random variables
S (0), . . . , S (n) all ranging over the same state space S, where:

P(S (0), . . . , S (n)) = P(S (0))
n−1∏
t=0

P(S (t+1) | S (t))

S (t+1) is conditionally independent of S (0), . . . , S (t−1) given S (t)

• A Markov chain in homogeneous or time-invariant iff:

P(S (t+1) = s ′ | S (t) = s) = Ps′,s for all t, s, s ′

The matrix P is called the transition probability matrix (tpm) of
the Markov chain

• If P(S (t) = s) = π
(t)
s (i.e., π(t) is a vector of state probabilities at

time t) then:
I π(t+1) = P π(t)

I π(t) = Pt π(0)
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Ergodicity

• A Markov chain with tpm P is ergodic iff there is a positive integer
m s.t. all elements of Pm are positive (i.e., there is an m-step path
between any two states)

• Informally, an ergodic Markov chain “forgets” its past states

• Theorem: For each homogeneous ergodic Markov chain with tpm
P there is a unique limiting distribution DP , i.e., as n approaches
infinity, the distribution of Sn converges on DP

• DP is called the stationary distribution of the Markov chain

• Let π be the vector representation of DP , i.e., DP(y) = πy . Then:

π = P π, and

π = lim
n→∞

Pnπ(0) for every initial distribution π(0)
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Using a Markov chain to sample from P(Y )

• Set the state space S of the Markov chain to the range of Y
(S may be astronomically large)

• Find a tpm P such that P(Y) ∼ DP

• “Run” the Markov chain, i.e.,
I Pick y(0) somehow
I For t = 0, . . . , n − 1:

– sample y(t+1) from P(Y(t+1) | Y(t) = y(t)), i.e., from P·,y(t)

I After discarding the first burn-in samples, use remaining samples
to calculate statistics

• WARNING: in general the samples y(t) are not independent
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The Gibbs sampler

• The Gibbs sampler is useful when:
I Y is multivariate, i.e., Y = (Y1, . . . ,Ym), and
I easy to sample from P(Yj | Y−j) (where Y−j is Y except Yj)

• The Gibbs sampler for P(Y ) is the tpm P =
∏m

j=1 P
(j), where:

P
(j)
y′,y =

{
0 if y′−j 6= y−j
P(Yj = y ′j | Y−j = y−j) if y′−j = y−j

• Informally, the Gibbs sampler cycles through each of the variables
Yj , replacing the current value yj with a sample from
P(Yj | Y−j = y−j)

• There are sequential scan and random scan variants of Gibbs
sampling
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A simple example of Gibbs sampling

P(Y1,Y2) =

{
c if |Y1| < 5, |Y2| < 5 and |Y1 − Y2| < 1
0 otherwise

• The Gibbs sampler for P(Y1,Y2) samples repeatedly from:

P(Y2 | Y1) = Uniform(max(−5,Y1 − 1),min(5,Y1 + 1))

P(Y1 | Y2) = Uniform(max(−5,Y2 − 1),min(5,Y2 + 1))

-5

 0

 5

-5  0  5

Y
2

Y
1

Sample run
Y1 Y2

0 0
0 -0.119

0.363 -0.119
0.363 0.146
-0.681 0.146
-0.681 -1.551
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A non-ergodic Gibbs sampler
P(Y1,Y2) =

{
c if 1 < Y1,Y2 < 5 or −5 < Y1,Y2 < −1
0 otherwise

• The Gibbs sampler for P(Y1,Y2), initialized at (2,2), samples
repeatedly from:

P(Y2 | Y1) = Uniform(1, 5)

P(Y1 | Y2) = Uniform(1, 5)

I.e., never visits the negative values of Y1,Y2
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Y
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Sample run
Y1 Y2

2 2
2 2.72

2.84 2.72
2.84 4.71
2.63 4.71
2.63 4.52
1.11 4.52
1.11 2.46
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Why does the Gibbs sampler work?

• The Gibbs sampler tpm is P =
∏m

j=1 P
(j), where P (j) replaces yj

with a sample from P(Yj | Y−j = y−j) to produce y ′

• But if y is a sample from P(Y), then so is y′,
since y′ differs from y only by replacing yj with a sample from
P(Yj | Y−j = y−j)

• Since P (j) maps samples from P(Y) to samples from P(Y), so
does P

⇒ P(Y) is a stationary distribution for P

• If P is ergodic, then P(Y) is the unique stationary distribution for
P , i.e., the sampler converges to P(Y)
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Gibbs sampling with Boltzmann machines

• Recall: need samples of hidden (and visible)
node values

• Gibbs sampler: update xj with sample from
P(Xj | X−j) ∝ P(Xj ,X−j)

• Only need to evaluate terms in P(Xj ,X−j) that
involve Xj

I these are the neighbours of Xj in the MRF
graph
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The wake-sleep algorithm for Boltzmann machines
• Boltzmann machines are typically learnt by minimising negative log

likelihood using stochastic gradient descent

• Use sampling to compute gradient of log likelihood

∂ logP(v)

∂bj
= E[xj | v]− E[xj ]

∂ logP(v)

∂wi ,j
= E[xi xj | v]− E[xi xj ]

• The wake-sleep algorithm calculates these using two samplers
I wake step: generate samples h′ from P(h′ | v),

i.e., “clamp” v to visible data
I sleep step: generate samples v′ · h′ from P(v′ · h′),

i.e., let the network “dream”

• At MLE, network’s data-driven expectations = network’s “dreams”
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Advantages and disadvantages of the wake-sleep

algorithm
+ The wake-sleep algorithm doesn’t require us to calculate the

partition function Z
+ It’s easy to sample using Gibbs sampling (sample each node

conditional on its neighbours)
I only requires normalising over the possible values of each node

− It may take many samples to accurately estimate these
expectations, to perform just one SGD update!

⇒ Restricted Boltzmann Machines: constrain network structure so
wake steps (on visible data) don’t require sampling

⇒ Contrastive Divergence: reinitialise sampler after each update so
updates can be computed from just a few samples

⇒ Persistent Contrastive Divergence: don’t reinitialise sampler after
each update
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Restricted Boltzmann Machines

• A Restricted Boltzmann Machine is a Boltzmann Machine where
all connections are between hidden and visible units

⇒ no hidden-to-hidden or visible-to-visible connections
⇒ an RBM is a Markov Random Field over a bipartite graph

Hidden nodes

Visible nodes

E (v,h) = −b>v − c>h− h>Wv
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Wake-sleep in Restricted Boltzmann Machines
• A Restricted Boltzmann Machine is a Boltzmann Machine where

all connections are between hidden and visible units
Hidden nodes

Visible nodes

• During the wake step, the values of all visible nodes are fixed:
⇒ the hidden nodes are independent given the visible nodes
⇒ wake-step expectations can be calculated exactly (without

sampling)
• Sleep step still requires sampling, but it is more structured

I Blocked Gibbs sampler for sleep step: repeat
– sample hidden nodes conditional on visible nodes
– sample visible nodes conditional on hidden nodes

I each block sampling step can be done in parallel because
– hidden nodes are independent conditional on visible nodes, and
– visible nodes are independent conditional on hidden nodes
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Contrastive Divergence
• Blocked Gibbs sampler for RBM sleep step: repeat

I sample hidden nodes conditional on visible nodes
I sample visible nodes conditional on hidden nodes

• How do we initialise the sampler?
• Contrastive divergence:

I initialise “dream” with visible data
I don’t run many block sampler iterations (maybe just 1?)

• Intuition: in a “good” model, sampler should stay “close” to
visible data

⇒ Update model parameters to “stop dreams moving away from
reality”

I if dreams are same as visible data ⇒ identical wake and sleep
expectations ⇒ no weight change

I a 1-step contrastive divergence sampler is a bit like a neural net
auto-encoder!
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Persistent Contrastive Divergence

• Contrastive Divergence algorithm reinitialises “sleep” sampler to
data item at each SGD step

• Persistent Contrastive Divergence algorithm initialises “sleep”
sampler with “sleep” samples from last SGD step

I intuition: a single SGD iteration won’t have changed W and b
much, so “sleep” samples probably still have high probability

• Typically maintain multiple “sleep particles” to improve
expectations

I usually number of sleep particles = mini-batch size

• This is regular Gibbs sampling for sleep state, except that the
model parameters W and b are changing
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Stacking Restricted Boltzmann Machines

• RBMs can be “stacked” to form more complex machines

• Stacked RBMs are trained in layers
I Hidden layer i serves as the visible data for training hidden layer

i + 1

Hidden nodes

Visible nodes

32/38



Using deep RBMs for semi-supervised learning

• Semi-supervised learning:
I large amount of unlabelled data (e.g., images from web)
I much smaller amount of labelled data

• Unsupervised pre-training for semi-supervised learning:
I train a deep RBM from unlabelled data
I add a final output node connected to top hidden layer (and input

as well?)
I use Backprop on labelled data to fine-tune connection weights
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Representing words in RBMs
• Visible layer uses “one-hot” representation ek of word k

I organise visible nodes into groups binary nodes for each word
I require that exactly one node in each word group is “on”

• Equivalent to MaxEnt multinomial model of words given hidden
variables

P(v(i)=ek | h) =
exp(b(i)>ek + h>W(i)ek)∑
k ′ exp(b(i)>ek ′ + h>W(i)ek ′)

+ This model can give good performance

− But it requires us to sum over the entire vocabulary to compute a
partition function

− This partition function is required to Gibbs sample each visible
node at each iteration of the sleep step in the training algorithm
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Metropolis-Hastings word sampler

• A Metropolis-Hastings (MH) sampler requires a proposal
distribution that can be efficiently sampled

• The MH algorithm: repeat
I sample a proposal from the proposal distribution
I accept the proposal with an acceptance probability that depends

on the ratio of the probability of proposal and probability of
previous value under target distribution

• Because the acceptance probability depends a ratio of target
probabilities, the partition functions cancel

• The efficiency of the MH algorithm depends on how close the
proposal distribution is to the target distribution

I apparently a unigram proposal distribution is good enough
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Conclusion

• Boltzmann Machines are Markov Random Fields with binary
potentials

• The wake-sleep algorithm can compute SGD gradients

• Restricted Boltzmann Machines only allow connections between
visible and hidden nodes

⇒ expectations required in wake step can be efficiently computed

• Contrastive Divergence initialises sleep step with visible data, and
only runs a few iterations

• RBMs can be stacked just like neural nets, where hidden units of
level i are used as visible units of level i + 1

• Metropolis-Hastings with a unigram proposal can be used to avoid
calculating partition function over words in sleep step of RBM
language models
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