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Ben Börschinger, Eugene Charniak, Katherine Demuth,

Michael Frank, Sharon Goldwater, Tom Griffiths,
Bevan Jones and Ed Stabler;

thanks to Bob Berwick, Stephen Crain and Mark Steedman
for comments and suggestions

Macquarie University
Sydney, Australia

Paper and slides available from http://science.MQ.edu.au/˜mjohnson

September 2013

1/58



Main claims

• Setting grammatical parameters can be viewed as a parametric
statistical inference problem

I e.g., learn whether language has verb raising
I if parameters are local in the derivation tree (e.g., lexical entries,

including empty functional categories) then there is an efficient
parametric statistical for identifying them

I only requires primary linguistic data contains positive example
sentences

• In statistical inference usually parameters have continuous values,
but is this linguistically reasonable?
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Unsupervised estimation of globally normalised

models

• The “standard” modelling dichotomy:

Generative models: (e.g., HMMs, PCFGs)

– locally normalised (rule probs expanding same nonterm sum
to 1)

– unsupervised estimation possible (e.g., EM, samplers, etc.)

Discriminative models: (e.g., CRFs, “MaxEnt” CFGs)

– globally normalised (feature weights don’t sum to 1)
– unsupervised estimation generally viewed as impossible

• Claim: unsupervised estimation of globally-normalised models is
computationally feasible if:

1. the set of derivation trees is regular (i.e., generated by a CFG)
2. all features are local (e.g., to a PCFG rule)
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Statistical inference and probabilistic models
• A statistic is any function of the data

I usually chosen to summarise the data

• Statistical inference usually exploits not just the occurrence of
phenomena, but also their frequency

• Probabilistic models predict the frequency of phenomena
⇒ very useful for statistical inference

I inference usually involves setting parameters to minimise difference
between model’s expected value of a statistic and its value in data

I statisticans have shown certain procedures are optimal for wide
classes of inference problems

• Probabilistic extensions for virtually all theories of grammar
⇒ no inherent conflict between grammar and statistical inference
⇒ technically, statistical inference can be used under virtually any

theory of grammar
I but is anything gained by doing so?
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Do “linguistic frequencies” make sense?

• Frequencies of many surface linguistic phenomena vary
dramatically with non-linguistic context

I arguably, word frequencies aren’t part of “knowledge of English”

• Perhaps humans only use robust statistics
I e.g., closed-class words are often orders of magnitude more

frequent than open-class words
I e.g., the conditional distribution of surface forms given meanings

P(SurfaceForm | Meaning) may be almost categorical (Wexler’s
“Uniqueness principle”, Clark’s “Principle of Contrast”)
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Why exploit frequencies when learning?

• Human learning shows frequency effects
I usually higher frequency ⇒ faster learning
6⇒ statistical learning (e.g., trigger models show frequency effects)

• Frequency statistics provide potentially valuable information
I parameter settings may need updating if expected frequency is

significantly higher than empirical frequency
⇒ avoid “no negative evidence” problems

• Statistical inference seems to work better for many aspects of
language than other methods

I scales up to larger, more realistic data
I produces more accurate results
I more robust to noise in the input
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Some theoretical results about statistical grammar

inference
• statistical learning can succeed when categorical learning fails (e.g.,

PCFGs can be learnt from positive examples alone, but CFGs
can’t) (Horning 1969, Gold 1967)

I statistical learning assumes more about the input (independent
and identically-distributed)

I and has a weaker notion of success (convergence in distribution)

• learning PCFG parameters from positive examples alone is
computationally intractable (Cohen et al 2012)

I this is a “worst-case” result, typical problems (or “real” problems)
may be easy

I result probably generalises to Minimalist Grammars (MGs) as well
⇒ MG inference algorithm sketched here will run slowly, or will

converge to wrong parameter estimates, for some MGs on some
data

8/58



Parametric and non-parametric inference

• A parametric model is one with a finite number of prespecified
parameters

I Principle-and-parameters grammars are parametric models

• Parametric inference is inference for the parameter values of a
parametric model

• A non-parametric model is one which can’t be defined using a
bounded number of parameters

I a lexicon is a non-parametric model if there’s no universal bound
on possible lexical entries (e.g., phonological forms)

• Non-parametric inference is inference for (some properties of)
nonparametric models
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Statistical inference for MG parameters
• Claim: there is a statistical algorithm for inferring parameter values

of Minimalist Grammars (MGs) from positive example sentences
alone, assuming:

I MGs are efficiently parsable
I MG derivations (not parses!) have a context-free structure
I parameters are associated with subtree-local configurations in

derivations (e.g., lexical entries)
I a probabilistic version of MG with real-valued parameters

• Example: learning verb-raising parameters from toy data
I e.g., learn language has V>T movement from examples like Sam

sees often Sasha
I truth in advertising: this example uses an equivalent CFG instead

of an MG to generate derivations

• Not tabula rasa learning: we estimate parameter values (e.g., that
a language has V>T movement); the possible parameters and their
linguistic implications are prespecified (e.g., innate)

11/58



Outline of the algorithm

• Use a “MaxEnt” probabilistic version of MGs

• Although MG derived structures are not context-free (because of
movement) they have context-free derivation trees (Stabler and
Keenan 2003)

• Parametric variation is subtree-local in derivation tree (Chiang
2004)

I e.g., availability of specific empty functional categories triggers
different movements

⇒ The partition function can be efficiently calculated (Hunter and
Dyer 2013)

⇒ Standard “hill-climbing” methods for context-free grammar
parameter estimation generalise to MGs
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Maximum likelihood statistical inference procedures

• If we have:
I a probabilistic model P that depends on parameter values w , and
I data D we want to use to infer w

the Principle of Maximum Likelihood is: select the w that makes
the probability of the data P(D) as large as possible

• Maximum likelihood inference is asymptotically optimal in several
ways

• Maximising likelihood is an optimisation problem

• Calculating P(D) (or something related to it) is necessary
I need the derivative of the partition function for hill-climbing search
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Maximum Likelihood and the Subset Principle

• The Maximum Likelihood Principle entails a probabilistic version of
the Subset Principle (Berwick 1985)

• Maximum Likelihood Principle: select parameter weights w to
make the probability of data P(D) as large as possible

• P(D) is the product of the probabilities of the sentences in D

⇒ w assigns each sentence in D relatively large probability
⇒ w generates at least the sentences in D

• Probabilities of all sentences must sum to 1

⇒ can assign higher probability to sentences in D if w generates
fewer sentences outside of D

I e.g., if w generates 100 sentences, then each can have prob. 0.01
if w generates 1,000 sentences, then each can have prob. 0.001

⇒ Maximum likelihood estimation selects w so sentences in D have
high prob., and few sentences not in D have high prob.
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The utility of continuous-valued parameters
• Standardly, linguistic parameters are discrete (e.g., Boolean)

• Most statistical inference procedures use continuous parameters
• In the models presented here, parameters and lexical entries are

associated with real-valued weights
I E.g., if wV>T � 0 then a derivation containing V-to-T movement

will be much less likely than one that does not
I E.g., if wwill:V � 0 then a derivation containing the word will with

syntactic category V will be much less likely

• Continuous parameter values and probability models:
I are a continuous relaxation of discrete parameter space
I define a gradient that enables incremental “hill climbing” search
I can represent partial or incomplete knowledge with intermediate

values (e.g., when learner isn’t sure)
I but also might allow “zombie” parameter settings that don’t

correspond to possible human languages
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Derivations in Minimalist Grammars

• Grammar has two fundamental operations: external merge
(head-complement combination) and internal merge (movement)

• Both operations are driven by feature checking
I derivation terminates when all formal features have been checked

or cancelled

• MG as formalised by Stabler and Keenan (2003):
I the string and derived tree languages MGs generate are not

context-free, but
I MG derivations are specified by a derivation tree, which abstracts

over surface order to reflect the structure of internal and external
merges, and

I the possible derivation trees have a context-free structure (c.f.
TAG)

16/58



Example MG derived tree

C

−wh

=N D −wh

which

N

wine

+wh C

=V +wh C

ε
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D

=N D
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N

queen
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D

which wine the queen prefers
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Example MG derivation tree

◦ C

• +wh C

ε::=V +wh C • V

• =D V

prefers::=D =D V • D −wh

which::=N D −wh wine::N

• D

the::=N D queen::N

which wine the queen prefers
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Calculating the probability P(D) of data D
• If data D is a sequence of independently generated sentences
D = (s1, . . . , sn), then:

P(D) = P(s1)× . . .× P(sn)

• If a sentence s is ambiguous with derivations τ1, . . . , τm then:

P(s) = P(τ1) + . . . + P(τm)

• These are standard formal language theory assumptions
I which does not mean they are correct!
I Luong et al (2013) shows learning can improve by modeling

dependencies between si and si+1

• Key issue: how do we define the probability P(τ) of derivation τ?

• If s is very ambiguous (as is typical during learning), need to
calculate P(s) without enumerating all its derivations
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Parsing Minimalist Grammars

• For Maximum Likelihood inference we need to calculate the MG
derivations of the sentences in the training data D

• Stabler (2012) describes several algorithms for parsing with MGs
I MGs can be translated to equivalent Multiple CFGs (MCFGs)
I while MCFGs are strictly more expressive than CFGs, for any given

sentence there is a CFG that generates an equivalent set of parses
(Ljunglöf 2012)

⇒ CFG methods for “efficient” parsing (Lari and Young 1990) should
generalise to MGs
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MaxEnt probability distributions on MG derivations
• Associate each parameter π with a function from derivations τ to

the number of times some configuration appears in τ
I e.g., +wh(τ) is the number of WH-movements in τ
I same as constraints in Optimality Theory

• Each parameter π has a real-valued weight wπ
• The probability P(τ) of derivation τ is:

P(τ) =
1

Z
exp

(∑
π

wπ π(τ)

)
where π(τ) is the number of times the configuration π occurs in τ

• wπ generalises a conventional binary parameter value:
I if wπ > 0 then each occurence of π increases P(τ)
I if wπ < 0 then each occurence of π decreases P(τ)

• Essentially the same as Abney (1996) and Harmonic Grammar
(Smolensky et al 1993)
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The importance of the partition function Z

• Probability P(τ) of a derivation τ :

P(τ) =
1

Z
exp

(∑
π

wπ π(τ)

)

• The partition function Z is crucial for statistical inference
I inference algorithms for learning wπ without Z are more heuristic

• Calculating Z naively involves summing over all possible
derivations of all possible strings, but this is usually infeasable

• But if the possible derivations τ have a context-free structure and
the π configurations are “local”, it is possible to calculate Z
without exhaustive enumeration
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Calculating the partition function Z for MGs
• Hunter and Dyer (2013) and Chiang (2004) observe that the

partition function Z for MGs can be efficiently calculated
generalising the techniques of Nederhof and Satta (2008) if:

I the parameters π are functions of local subtrees of the derivation
tree τ , and

I the possible MG derivations have a context-free structure

• Stabler (2012) suggests that empty functional categories control
parametric variation in MGs

I e.g., if lexicon contains “ε::=V +wh C” then language has
WH-movement

I the number of occurences of each empty functional category is a
function of local subtrees

⇒ If we define a parameter πλ for each lexical entry λ where:
I πλ(τ) = number of times λ occurs in derivation τ
I then the partition function Z can be efficiently calculated.
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A “toy” example

• Involves verb movement and inversion (Pollock 1989)

• 3 different sets of 25–40 input sentences
I (“English”) Sam often sees Sasha, Q will Sam see Sasha, . . .
I (“French”) Sam sees often Sasha, Sam will often see Sasha, . . .
I (“German”) Sees Sam often Sasha, Will Sam Sasha see, . . .

• Syntactic parameters: V>T, T>C, T>Q, XP>SpecCP, Vinit, Vfin

• Lexical parameters associating all words with all categories (e.g.,
will:I, will:Vi, will:Vt, will:D)

• Hand-written CFG instead of MG; parameters associated with CF
rules rather than empty categories (Chiang 2004)

I grammar inspired by MG analyses
I calculates same parameter functions π as MG would
I could use a MG parser if one were available
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“English”: no V-to-T movement
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“French”: V-to-T movement

TP

DP

Jean

T’

T

a

VP

AP

souvent

VP

V

vu

DP

Paul

TP

DP

Jean

T’

T

voit

VP

AP

souvent

VP

V

t

DP

Paul

27/58



“English”: T-to-C movement in questions
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“French”: T-to-C movement in questions
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“German”: V-to-T and T-to-C movement
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“German”: V-to-T, T-to-C and XP-to-SpecCP

movement
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Input to parameter inference procedure

• A CFG designed to mimic MG derivations, with parameters
associated with rules

• 25–40 sentences, such as:
I (“English”) Sam often sees Sasha, Q will Sam see Sasha
I (“French”) Sam sees often Sasha, Q see Sam Sasha
I (“German”) Sam sees Sasha, sees Sam Sasha, will Sam Sasha see

• Identifying parameter values is easy if we know lexical categories

• Identifying lexical entries is easy if we know parameter values

• Learning both jointly faces a “chicken-and-egg” problem
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Algorithm for statistical parameter estimation

• Parameter estimation algorithm:

Initialise parameter weights somehow
Repeat until converged:

calculate likelihood and its derivatives
update parameter weights to increase likelihood

• Very simple parameter weights updates suffice

• Computationally most complex part of procedure is parsing the
data to calculate likelihood and its derivatives

⇒ learning is a by-product of parsing

• Straight-forward to develop incremental on-line versions of this
algorithm (e.g., stochastic gradient ascent)

I an advantage of explicit probabilistic models is that there are
standard techniques for developing algorithms with various
properties
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Context-free grammars with Features
• A Context-Free Grammar with Features (CFGF) is a “MaxEnt

CFG” in which features are local to local trees (Chiang 2004), i.e.:
I each rule r is assigned feature values f(r) = (f1(r), . . . , fm(r))

– fi (r) is count of ith feature on r (normally 0 or 1)
I features are associated with weights w = (w1, . . . ,wm)

• The feature values of a tree t are the sum of the feature values of
the rules R(t) = (r1, . . . , r`) that generate it:

f(t) =
∑

r∈R(t)

f(r)

• A CFGF assigns probability P(t) to a tree t:

P(t) =
1

Z
exp(w · f(t)), where: Z =

∑
t′∈T

exp(w · f(t ′))

and T is the set of all parses for all strings generated by grammar
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Log likelihood and its derivatives

• Minimise negative log likelihood plus a Gaussian regulariser
I Gaussian mean µ = −1, variance σ2 = 10

• Derivative of log likelihood requires derivative of log partition
function log Z

∂ log Z

∂wj
= E[fj ]

where expectation is calculated over T (set of all parses for all
strings generated by grammar)

• Novel (?) algorithm for calculating E[fj ] combining Inside-Outside
algorithm (Lari and Young 1990) with a Nederhof and Satta
(2009) algorithm for calculating Z (Chi 1999)
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CFGF used here

CP --> C’; ~Q ~XP>SpecCP

CP --> DP C’/DP; ~Q XP>SpecCP

C’ --> TP; ~T>C

C’/DP --> TP/DP; ~T>C

C’ --> T TP/T; T>C

C’/DP --> T TP/T,DP; T>C

C’ --> Vi TP/Vi; V>T T>C

...

• Parser does not handle epsilon rules ⇒ manually “compiled out”
• 24-40 sentences, 44 features, 116 rules, 40 nonterminals, 12

terminals
I while every CFGF distribution can be generated by a PCFG with

the same rules (Chi 1999), it is differently parameterised (Hunter
and Dyer 2013)
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Sample trees generated by CFGF
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English French German
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Lexical parameters for English

Sam will often see sleep
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Learning English parameters

−2

0

2

0 250 500 750 1000
Gradient−ascent iterations

P
ar

am
et

er
 v

al
ue

Vfinal

will:Vt

will:Vi

will:T

will:DP

will:AP

Sam:Vt

Sam:Vi

Sam:T

Sam:DP

Sam:AP

see:Vt

see:Vi

see:T

see:DP

see:AP

sleep:Vt

42/58



Learning English lexical and syntactic parameters
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Learning “often” in English
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Relation to other work

• Many other “toy” parameter-learning systems:
I E.g., Yang (2002) describes an error-driven learner with templates

triggering parameter value updates
I we jointly learn lexical categories and syntactic parameters

• Error-driven learners like Yang’s can be viewed as an approximation
to the algorithm proposed here:

I on-line error-driven parameter updates are a stochastic
approximation to gradient-based hill-climbing

I MG parsing is approximated with template matching
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Relation to Harmonic Grammar and Optimality

Theory

• Harmonic Grammars are MaxEnt models that associate weights
with configurations much as we do here (Smolensky et al 1993)

I because no constraints are placed on possible parameters or
derivations, little detail about computation for parameter
estimation

• Optimality Theory can be viewed as a discretised version of
Harmonic Grammar in which all parameter weights must be
negative

• MaxEnt models like these are widely used in phonology (Goldwater
and Johnson 2003, Hayes and Wilson 2008)
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Unsupervised parsing on WSJ10
• Input: POS tag sequences of all sentences of length 10 or less in

WSJ PTB.

• X ′-style grammar coded as a CFG

XP→ YPXP XP→ XPYP
XP→ YPX′ XP→ X′ YP
XP→ X′

X′ → YPX′ X′ → X′YP
X′ → YPX X′ → XYP
X′ → X

where X and Y range over all 45 Parts of Speech (POS) in corpus

• 9,975 CFG rules in grammar

• PCFG estimation procedures (e.g., EM) do badly on this task
(Klein and Manning 2004)
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Example parse tree generated by XP grammar

VBZP

NNP

DTP

DT’

DT

the

NN’

NN

cat

VBZ’

VBZ

chases

NNP

DTP

DT’

DT

a

N’

N

dog

• Evaluate by unlabelled precision and recall wrt standard treebank
parses
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2 grammars, 4 different parameterisations
1. XP grammar: a PCFG with 9,975 rules

I estimated using Variational Bayes with Dirichlet prior (α = 0.1)
2. DS grammar: a CFG designed by Noah Smith to capture

approximately the same generalisations as DMV model
I 5,250 CFG rules
I also estimated using Variational Bayes with Dirichlet prior

3. XPF0 grammar: same rules as XP grammar, but one feature per
rule

I estimated by maximum likelihood with L2 regulariser (σ = 1)
I same expressive power as XP grammar

4. XPF1 grammar: same rules as XP grammar, but multiple features
per rule

I 12,095 features in grammar
I extra parameters shared across rules for e.g., head direction, etc.,

which couple probabilities of rules
I estimated by maximum likelihood with L2 regulariser (σ = 1)
I same expressive power as XP grammar
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Experimental results
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• Each estimator intialised from 100 different random starting points
• XP PCFG does badly (as Klein and Manning describe)
• XPF0 grammar does as well or better than Smith’s specialised DS

grammar
• Adding additional coupling factors in XP1 grammar reduce

variance in estimated grammar
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Statistical inference for syntactic parameters

• No inherent contradiction between probabilistic models, statistical
inference and grammars

• Statistical inference can be used to set real-valued parameters
(learn empty functional categories) in Minimalist Grammars (MGs)

I parameters are local in context-free derivation structures
⇒ efficient computation

I can solve “chicken-and-egg” learning problems
I does not need negative evidence

• Not a tabula rasa learner
I depends on a rich inventory of prespecified parameters
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Technical challenges in syntactic parameter

estimation

• The partition function Z can become unbounded during estimation
I modify search procedure (for our cases, optimal grammar always

has finite Z )
I use an alternative EM-based training procedure?

• Difficult to write linguistically-interesting CFGFs
I epsilon-removal grammar transform would permit grammars with

empty categories
I MG-to-CFG compiler?
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Future directions in syntactic parameter acquisition
• Are real-valued parameters linguistically reasonable?
• Does approach “scale up” to realistic grammars and corpora?

I parsing and inference components use efficient dynamic
programming algorithms

I many informal proposals, but no “universal” MGs (perhaps start
with well-understood families like Romance?)

I generally disappointing results scaling up PCFGs (de Marken 1995)
I but our grammars lack so much (e.g., LF movement, binding)

• Exploit semantic information in the non-linguistic context
I e.g., learn from surface forms paired with their logical form

semantics (Kwiatkowski et al 2012)
I but what information does child extract from non-linguistic

context?

• Use a nonparametric Bayesian model to learn the empty functional
categories of a language (c.f., Bisk and Hockenmaier 2013)
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Why probabilistic models?

• Probabilistic models are a computational level description
I they define the relevant variables and dependencies between them

• Models are stated at a higher level of abstraction than algorithms:

⇒ easier to see how to incorporate additional dependencies (e.g.,
non-linguistic context)

• There are standard ways of constructing inference algorithms for
probabilistic models:

I usually multiple algorithms for same model with different
properties (e.g., incremental, on-line)

• My opinion: it’s premature to focus on algorithms
I identify relevant variables and their dependencies first!
I optimal inference procedures let us explore consequences of a

model without committing to any particular algorithm
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How might statistics change linguistics?

• Few examples where probabilistic models/statistical inference
provides crucial insights

I role of negative evidence in learning
I statistical inference compatible with conventional parameter

setting

• Non-parametric inference can learn which parameters are relevant
I needs a generative model or “grammar” of possible parameters
I but probability theory is generally agnostic as to parameters

• Probabilistic models have more relevance to psycholinguistics and
language acquisition

I these are computational processes
I explicit computational models can make predictions about the

time course of these processes
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