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Main claims

e Setting grammatical parameters can be viewed as a parametric
statistical inference problem

» e.g., learn whether language has verb raising

» if parameters are local in the derivation tree (e.g., lexical entries,
including empty functional categories) then there is an efficient
parametric statistical for identifying them

» only requires primary linguistic data contains positive example
sentences

e In statistical inference usually parameters have continuous values,
but is this linguistically reasonable?
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Unsupervised estimation of globally normalised
models

e The “standard” modelling dichotomy:
Generative models: (e.g., HMMs, PCFGs)

— locally normalised (rule probs expanding same nonterm sum
to 1)
— unsupervised estimation possible (e.g., EM, samplers, etc.)

Discriminative models: (e.g., CRFs, “MaxEnt" CFGs)

— globally normalised (feature weights don’t sum to 1)
— unsupervised estimation generally viewed as impossible

e Claim: unsupervised estimation of globally-normalised models is
computationally feasible if:

1. the set of derivation trees is regular (i.e., generated by a CFG)
2. all features are local (e.g., to a PCFG rule)
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Outline

Statistics and probabilistic models
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Statistical inference and probabilistic models

e A statistic is any function of the data
» usually chosen to summarise the data

e Statistical inference usually exploits not just the occurrence of
phenomena, but also their frequency

o Probabilistic models predict the frequency of phenomena
= very useful for statistical inference
» inference usually involves setting parameters to minimise difference
between model's expected value of a statistic and its value in data
» statisticans have shown certain procedures are optimal for wide
classes of inference problems
e Probabilistic extensions for virtually all theories of grammar
= no inherent conflict between grammar and statistical inference
= technically, statistical inference can be used under virtually any
theory of grammar
» but is anything gained by doing so?
s @
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Do “linguistic frequencies” make sense?

e Frequencies of many surface linguistic phenomena vary
dramatically with non-linguistic context

» arguably, word frequencies aren’t part of “knowledge of English”
e Perhaps humans only use robust statistics

» e.g., closed-class words are often orders of magnitude more
frequent than open-class words

» e.g., the conditional distribution of surface forms given meanings
P(SurfaceForm | Meaning) may be almost categorical (Wexler's
“Uniqueness principle”, Clark’s “Principle of Contrast”)
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Why exploit frequencies when learning?

e Human learning shows frequency effects
» usually higher frequency = faster learning
= statistical learning (e.g., trigger models show frequency effects)
e Frequency statistics provide potentially valuable information

» parameter settings may need updating if expected frequency is
significantly higher than empirical frequency
= avoid “no negative evidence" problems

e Statistical inference seems to work better for many aspects of
language than other methods

» scales up to larger, more realistic data
» produces more accurate results
» more robust to noise in the input
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Some theoretical results about statistical grammar
inference

e statistical learning can succeed when categorical learning fails (e.g.,
PCFGs can be learnt from positive examples alone, but CFGs
can't) (Horning 1969, Gold 1967)

» statistical learning assumes more about the input (independent
and identically-distributed)
» and has a weaker notion of success (convergence in distribution)

o learning PCFG parameters from positive examples alone is
computationally intractable (Cohen et al 2012)

» this is a “worst-case” result, typical problems (or “real” problems)
may be easy
» result probably generalises to Minimalist Grammars (MGs) as well
= MG inference algorithm sketched here will run slowly, or will
converge to wrong parameter estimates, for some MGs on some
data
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Parametric and non-parametric inference

A parametric model is one with a finite number of prespecified
parameters

» Principle-and-parameters grammars are parametric models

Parametric inference is inference for the parameter values of a
parametric model

A non-parametric model is one which can't be defined using a
bounded number of parameters
» a lexicon is a non-parametric model if there's no universal bound
on possible lexical entries (e.g., phonological forms)

Non-parametric inference is inference for (some properties of)
nonparametric models
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Outline

Parameter-setting as parametric statistical inference

MACQUARIE
UNIVERSITY 0))}

10/58



Statistical inference for MG parameters

e Claim: there is a statistical algorithm for inferring parameter values
of Minimalist Grammars (MGs) from positive example sentences
alone, assuming:

» MGs are efficiently parsable

» MG derivations (not parses!) have a context-free structure

» parameters are associated with subtree-local configurations in
derivations (e.g., lexical entries)

» a probabilistic version of MG with real-valued parameters

e Example: learning verb-raising parameters from toy data

» e.g., learn language has V>T movement from examples like Sam
sees often Sasha

» truth in advertising: this example uses an equivalent CFG instead
of an MG to generate derivations

o Not tabula rasa learning: we estimate parameter values (e.g., that
a language has V>T movement); the possible parameters and their
linguistic implications are prespecified (e.g., innate)

oy
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Outline of the algorithm

e Use a “MaxEnt" probabilistic version of MGs

e Although MG derived structures are not context-free (because of
movement) they have context-free derivation trees (Stabler and
Keenan 2003)

e Parametric variation is subtree-local in derivation tree (Chiang
2004)

» e.g., availability of specific empty functional categories triggers
different movements
= The partition function can be efficiently calculated (Hunter and
Dyer 2013)

= Standard “hill-climbing” methods for context-free grammar
parameter estimation generalise to MGs
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Maximum likelihood statistical inference procedures

If we have:

» a probabilistic model P that depends on parameter values w, and
» data D we want to use to infer w
the Principle of Maximum Likelihood is: select the w that makes
the probability of the data P(D) as large as possible

Maximum likelihood inference is asymptotically optimal in several
ways

Maximising likelihood is an optimisation problem
Calculating P(D) (or something related to it) is necessary
» need the derivative of the partition function for hill-climbing search
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Maximum Likelihood and the Subset Principle

e The Maximum Likelihood Principle entails a probabilistic version of
the Subset Principle (Berwick 1985)

e Maximum Likelihood Principle: select parameter weights w to
make the probability of data P(D) as large as possible
e P(D) is the product of the probabilities of the sentences in D
= w assigns each sentence in D relatively large probability
= w generates at least the sentences in D
¢ Probabilities of all sentences must sum to 1
=- can assign higher probability to sentences in D if w generates
fewer sentences outside of D
» e.g., if w generates 100 sentences, then each can have prob. 0.01
if w generates 1,000 sentences, then each can have prob. 0.001
= Maximum likelihood estimation selects w so sentences in D have
high prob., and few sentences not in D have high prob.
s g
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The utility of continuous-valued parameters

e Standardly, linguistic parameters are discrete (e.g., Boolean)
e Most statistical inference procedures use continuous parameters
e In the models presented here, parameters and lexical entries are
associated with real-valued weights
» E.g., if wys71 < 0 then a derivation containing V-to-T movement
will be much less likely than one that does not
» E.g., if wyjrv < 0 then a derivation containing the word will with
syntactic category V will be much less likely
e Continuous parameter values and probability models:
» are a continuous relaxation of discrete parameter space
» define a gradient that enables incremental “hill climbing” search
» can represent partial or incomplete knowledge with intermediate
values (e.g., when learner isn't sure)
» but also might allow “zombie” parameter settings that don't
correspond to possible human languages
URVRRAITY O)}/
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Derivations in Minimalist Grammars

e Grammar has two fundamental operations: external merge
(head-complement combination) and internal merge (movement)

e Both operations are driven by feature checking

» derivation terminates when all formal features have been checked
or cancelled

e MG as formalised by Stabler and Keenan (2003):

» the string and derived tree languages MGs generate are not
context-free, but

» MG derivations are specified by a derivation tree, which abstracts
over surface order to reflect the structure of internal and external
merges, and

» the possible derivation trees have a context-free structure (c.f.
TAG)
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Example MG derived tree

C
/\

—wh +wh C
/\ /\
=N D —\INh I}I =V +|Wh C V
which wine e D =DV
/\ /\

the queen prefers

which wine the queen prefers
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Example MG derivation tree

o C
[
e +wh C
/\

ci=V4+wh C eV

e =DV oD
A /\

prefers::=D =D V oD —wh the:=ND queen::N
/_\

which::=N D —wh wine::N

which wine the queen prefers
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Calculating the probability P(D) of data D

e If data D is a sequence of independently generated sentences
D =(s1,...,sn), then:

P(D) = P(s;) x...x P(sy)

If a sentence s is ambiguous with derivations 7, ..., 7, then:

P(s) = P(n)+...+P(7m)

These are standard formal language theory assumptions
» which does not mean they are correct!
» Luong et al (2013) shows learning can improve by modeling
dependencies between s; and s;4 1

Key issue: how do we define the probability P(7) of derivation 77

If s is very ambiguous (as is typical during learning), need to
calculate P(s) without enumerating all its derivations
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Parsing Minimalist Grammars

e For Maximum Likelihood inference we need to calculate the MG
derivations of the sentences in the training data D

e Stabler (2012) describes several algorithms for parsing with MGs

» MGs can be translated to equivalent Multiple CFGs (MCFGs)

» while MCFGs are strictly more expressive than CFGs, for any given
sentence there is a CFG that generates an equivalent set of parses
(Ljunglof 2012)

= CFG methods for “efficient” parsing (Lari and Young 1990) should
generalise to MGs
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MaxEnt probability distributions on MG derivations

e Associate each parameter 7 with a function from derivations 7 to
the number of times some configuration appears in 7
» e.g., +wh(7) is the number of WH-movements in 7
» same as constraints in Optimality Theory
e Each parameter 7 has a real-valued weight w;
e The probability P(7) of derivation 7 is:

P(r) = %exp (Z Wy W(T))

where 7(7) is the number of times the configuration 7 occurs in 7
e w, generalises a conventional binary parameter value:
» if wr > 0 then each occurence of 7 increases P(7)
» if wy < 0 then each occurence of 7 decreases P(7)
e Essentially the same as Abney (1996) and Harmonic Grammar
(Smolensky et al 1993)
e
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The importance of the partition function Z

e Probability P(7) of a derivation 7:

P(r) = %exp (Z Wy 7r(7‘)>

e The partition function Z is crucial for statistical inference
» inference algorithms for learning w,, without Z are more heuristic
e Calculating Z naively involves summing over all possible
derivations of all possible strings, but this is usually infeasable

e But if the possible derivations T have a context-free structure and
the m configurations are “local”, it is possible to calculate Z
without exhaustive enumeration
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Calculating the partition function Z for MGs

e Hunter and Dyer (2013) and Chiang (2004) observe that the
partition function Z for MGs can be efficiently calculated
generalising the techniques of Nederhof and Satta (2008) if:

» the parameters 7 are functions of local subtrees of the derivation
tree T, and
» the possible MG derivations have a context-free structure

e Stabler (2012) suggests that empty functional categories control
parametric variation in MGs
» e.g., if lexicon contains “c::=V +wh C" then language has
WH-movement
» the number of occurences of each empty functional category is a
function of local subtrees
= If we define a parameter 7, for each lexical entry A where:
» (7)) = number of times A occurs in derivation T
» then the partition function Z can be efficiently calculated.
URVRRAITY ‘)}/
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Outline

An example of syntactic parameter learning
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A "toy” example

Involves verb movement and inversion (Pollock 1989)

3 different sets of 25—40 input sentences

» ("“English") Sam often sees Sasha, Q will Sam see Sasha, . ..
» ("French") Sam sees often Sasha, Sam will often see Sasha, ...
» ("“German") Sees Sam often Sasha, Will Sam Sasha see, ...

Syntactic parameters: V>T, T>C, T>Q, XP>SpecCP, Vi.it, Viin
Lexical parameters associating all words with all categories (e.g.,
willl, willVi, willVt, will:D)

Hand-written CFG instead of MG; parameters associated with CF
rules rather than empty categories (Chiang 2004)

» grammar inspired by MG analyses
» calculates same parameter functions w as MG would
» could use a MG parser if one were available
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“English”: no V-to-T movement

TP TP
_— T
DP T DP T
Jean T VP Jean T VP
has AP VP e AP VP
| P | T
often Y D|P often Y D|P
seen Paul sees Paul
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“French”: V-to-T movement

TP TP
T T

DP T DP T

Jean T VP Jean T VP

a A|P VP voit AP VP

PR | PN
souvent \|/ D|P WY D|P
vu Paul t Paul
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“English”: T-to-C movement in questions
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“French”: T-to-C movement in questions

C|P C|P
C C
— —
C TP C TP
avez DP T voyez DP T
| T h | T
WT VP vous T VP
t AP VP t AP VP
| T - PN
souvent Y D|P s&@\( D|P
vu Paul t Paul
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“German’: V-to-T and T-to-C movement

C|P C|P C|P
C C C
C TP C TP C TP
daB DP T hat DP T sah DP T
| T IS | T | P
JearVP T \ﬁ&T mT
T | — | N |
DP V hat t t
[ | [ | [ 3
Paul gesehen Paul gesehen Paul t
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“German”: V-to-T, T-to-C and XP-to-SpecCP

movement

CcP CP CcP
DP C DP c AP c
JeanC TP Paul C TP haufig C TP
, | o PN c | —

schlaftDP T’ \sahD T
e [ - P
EVP T %T
N | |
t t
| Ij
Paul gesehen haufigt t DP V}
Pau/ t
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Input to parameter inference procedure

A CFG designed to mimic MG derivations, with parameters
associated with rules

25-40 sentences, such as:

» (“English") Sam often sees Sasha, Q will Sam see Sasha
» ("French") Sam sees often Sasha, Q see Sam Sasha
» (“German”) Sam sees Sasha, sees Sam Sasha, will Sam Sasha see

Identifying parameter values is easy if we know lexical categories

Identifying lexical entries is easy if we know parameter values

Learning both jointly faces a “chicken-and-egg” problem
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Algorithm for statistical parameter estimation

e Parameter estimation algorithm:
Initialise parameter weights somehow
Repeat until converged:
calculate likelihood and its derivatives
update parameter weights to increase likelihood
e Very simple parameter weights updates suffice
e Computationally most complex part of procedure is parsing the
data to calculate likelihood and its derivatives
= learning is a by-product of parsing
e Straight-forward to develop incremental on-line versions of this
algorithm (e.g., stochastic gradient ascent)

» an advantage of explicit probabilistic models is that there are
standard techniques for developing algorithms with various
properties
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Outline

Estimating syntactic parameters using CFGs with Features
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Context-free grammars with Features

e A Context-Free Grammar with Features (CFGF) is a “MaxEnt
CFG" in which features are local to local trees (Chiang 2004), i.e.:

» each rule r is assigned feature values f(r) = (fi(r),. .., fm(r))
— fi(r) is count of ith feature on r (normally 0 or 1)
» features are associated with weights w = (wy, ..., wp)
e The feature values of a tree t are the sum of the feature values of
the rules R(t) = (r1, ..., r;) that generate it:
f(t)= > f(r)
reR(t)

e A CFGF assigns probability P(t) to a tree t:

P(t) = %exp(w-f(t)), where: 7 = 3" exp(w - £(t'))
t'eT

and 7 is the set of all parses for all strings generated by grammar
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Log likelihood and its derivatives

e Minimise negative log likelihood plus a Gaussian regulariser
» Gaussian mean j = —1, variance 02 = 10
e Derivative of log likelihood requires derivative of log partition
function log Z

OdlogZ

Ow;

= Elf]

J

where expectation is calculated over T (set of all parses for all
strings generated by grammar)

e Novel (7) algorithm for calculating E[f;] combining Inside-Outside
algorithm (Lari and Young 1990) with a Nederhof and Satta
(2009) algorithm for calculating Z (Chi 1999)

MACQUARIE )’
UNIVERSITY

36/58



CFGF used here

CP --> C’; "Q "XP>SpecCP

CP --> DP C’/DP; ~Q XP>SpecCP
C’> -—> TP; "T>C

Cc’/DP --> TP/DP; ~T>C

Cc’> -——> T TP/T; T>C

c’/DP --> T TP/T,DP; T>C

C’> --> Vi TP/Vi; V>T T>C

e Parser does not handle epsilon rules = manually “compiled out”
e 24-40 sentences, 44 features, 116 rules, 40 nonterminals, 12
terminals
» while every CFGF distribution can be generated by a PCFG with
the same rules (Chi 1999), it is differently parameterised (Hunter
and Dyer 2013)
URVRRAITY O)}/
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Sample trees generated by CFGF

TP CP CcP
P | T
DP T’ C AP C'/AP
Sam VP Vt  TP/Vt haufig /i TP /Vi AP
PN | | [
A|P V|P voyez D|P T/Vt schlaft D|P
often V' vous VP /Vt Jean
PN
Y D|P A|P VP/Vt
eats fish souvent D|P
Paul
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Il Vinitial 0 V>T
I Vfinal I —vVv>T

N
[
|

o
T
|

|
N

I

|

Estimated parameter value

English French German

MACQUARIE
UNIV%RSITY ‘))/

39/58



I T>C [0 T>Co 1 = XP>SpecCP
It —-T>C It = T>Cq ' XP>SpecCP

o
T

|
N

I

|

Estimated parameter value

English French German
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Lexical parameters for English

IrD I T Al vt T v

B LA |||

Sam will often see sleep

Estimated parameter value
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Learning English parameters
— will:Vt
— will:vi

— will:T
2- / — will:DP

/

/ — wil:AP

//

— Sam:Vt
/
/ — Sam:DP

)
\ — Sam:AP

/
/ -
=
N————
2- \k\f\f = — — see:Vit
\ S0 — seewVi

— see:T

— Sam:Vi

0 — Sam:T

Parameter value

— see:DP

1 1 1 1
0 250 500 750 1000  — See:AP
Gradient—ascent iterations — sleep:Vit
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Learning English lexical and syntactic parameters

3 -
parameter
2- ~— Sam:DP
S — will:T
§ - often:AP
% 1- == ~XP>SpecCP
g — ~V>T
E e — TsC
0- — T>Q
= Vinitial
_1 -
1 1 1 1 1 1
0 50 100 150 200 250
Gradient—ascent iterations
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Learning “often” in English

Parameter value
o
1
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Gradient—ascent iterations

parameter
~ often:Vt
— often:Vi
— often:T
- often:DP
~ often:AP
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Relation to other work

e Many other “toy” parameter-learning systems:
» E.g., Yang (2002) describes an error-driven learner with templates
triggering parameter value updates
» we jointly learn lexical categories and syntactic parameters
e Error-driven learners like Yang's can be viewed as an approximation
to the algorithm proposed here:
» on-line error-driven parameter updates are a stochastic

approximation to gradient-based hill-climbing
» MG parsing is approximated with template matching
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Relation to Harmonic Grammar and Optimality
Theory

e Harmonic Grammars are MaxEnt models that associate weights
with configurations much as we do here (Smolensky et al 1993)
» because no constraints are placed on possible parameters or

derivations, little detail about computation for parameter
estimation

e Optimality Theory can be viewed as a discretised version of
Harmonic Grammar in which all parameter weights must be
negative

e MaxEnt models like these are widely used in phonology (Goldwater
and Johnson 2003, Hayes and Wilson 2008)

MACQUARIE )’
UNIVERSITY

46/58



Outline

Experiments on a larger corpus

MACQUARIE
UNIVERSITY 0))}

47/58



Unsupervised parsing on WSJ10

e Input: POS tag sequences of all sentences of length 10 or less in
WSJ PTB.
e X'-style grammar coded as a CFG

XP—=YPXP XP—=XPYP
XP - YPX XP - X'YP

XP —- X
X - YPX X - X'YP
X' - YPX X — XYP
X — X

where X and Y range over all 45 Parts of Speech (POS) in corpus
e 9,975 CFG rules in grammar

e PCFG estimation procedures (e.g., EM) do badly on this task
(Klein and Manning 2004)
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Example parse tree generated by XP grammar

VBZP
/\
NNP VBZ'

S —
DTP NN' VBZ NNP
| | | P

DIT’ N|N chases D'II'P I\|I
D|T cat

brn
the

D|T dog

a
e Evaluate by unlabelled precision and recall wrt standard treebank
parses
s g

49/58



2 grammars, 4 different parameterisations

1. XP grammar. a PCFG with 9,975 rules
» estimated using Variational Bayes with Dirichlet prior (av = 0.1)
2. DS grammar: a CFG designed by Noah Smith to capture
approximately the same generalisations as DMV model
» 5,250 CFG rules
» also estimated using Variational Bayes with Dirichlet prior
3. XPF0O grammar: same rules as XP grammar, but one feature per
rule
» estimated by maximum likelihood with L2 regulariser (o = 1)
» same expressive power as XP grammar
4. XPF1 grammar: same rules as XP grammar, but multiple features
per rule
» 12,095 features in grammar
» extra parameters shared across rules for e.g., head direction, etc.,
which couple probabilities of rules
» estimated by maximum likelihood with L2 regulariser (¢ = 1)

MACQUARE")jfme expressive power as XP grammar
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Experimental results

150 -

Grammar

3‘100 - XP

2 /s

[a) mXPFO
XPF1

T 1 1 1
0.35 0.40 0.45 0.50 0.55
F-score

e Each estimator intialised from 100 different random starting points
e XP PCFG does badly (as Klein and Manning describe)
e XPFO grammar does as well or better than Smith's specialised DS

grammar
e Adding additional coupling factors in XP1 grammar reduce

variance in estimated grammar
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Outline

Conclusions, and where do we go from here?
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Statistical inference for syntactic parameters

e No inherent contradiction between probabilistic models, statistical
inference and grammars
e Statistical inference can be used to set real-valued parameters
(learn empty functional categories) in Minimalist Grammars (MGs)
» parameters are local in context-free derivation structures
= efficient computation
» can solve “chicken-and-egg” learning problems
» does not need negative evidence
e Not a tabula rasa learner
» depends on a rich inventory of prespecified parameters

MACQUARIE )’
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Technical challenges in syntactic parameter
estimation

e The partition function Z can become unbounded during estimation
» modify search procedure (for our cases, optimal grammar always
has finite Z)
» use an alternative EM-based training procedure?
¢ Difficult to write linguistically-interesting CFGFs
» epsilon-removal grammar transform would permit grammars with
empty categories
» MG-to-CFG compiler?

MACQUARIE )’
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Future directions in syntactic parameter acquisition

o Are real-valued parameters linguistically reasonable?
e Does approach “scale up” to realistic grammars and corpora?
» parsing and inference components use efficient dynamic
programming algorithms
» many informal proposals, but no “universal” MGs (perhaps start
with well-understood families like Romance?)
» generally disappointing results scaling up PCFGs (de Marken 1995)
» but our grammars lack so much (e.g., LF movement, binding)
e Exploit semantic information in the non-linguistic context
» e.g., learn from surface forms paired with their logical form
semantics (Kwiatkowski et al 2012)
» but what information does child extract from non-linguistic
context?
e Use a nonparametric Bayesian model to learn the empty functional
categories of a language (c.f., Bisk and Hockenmaier 2013)
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Why probabilistic models?

e Probabilistic models are a computational level description
» they define the relevant variables and dependencies between them
e Models are stated at a higher level of abstraction than algorithms:
= easier to see how to incorporate additional dependencies (e.g.,
non-linguistic context)
e There are standard ways of constructing inference algorithms for
probabilistic models:
» usually multiple algorithms for same model with different
properties (e.g., incremental, on-line)
e My opinion: it's premature to focus on algorithms
» identify relevant variables and their dependencies first!
» optimal inference procedures let us explore consequences of a
model without committing to any particular algorithm
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How might statistics change linguistics?

e Few examples where probabilistic models/statistical inference
provides crucial insights
» role of negative evidence in learning
» statistical inference compatible with conventional parameter
setting
e Non-parametric inference can learn which parameters are relevant
» needs a generative model or “grammar” of possible parameters
» but probability theory is generally agnostic as to parameters
e Probabilistic models have more relevance to psycholinguistics and
language acquisition
» these are computational processes
» explicit computational models can make predictions about the
time course of these processes
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Interested in computational linguistics and its relationship to linguistics,
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