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Research motivation and strategy
• How are human languages acquired?

▶ Empiricist explanation: languages are learnt from exposure to
linguistic data

▶ Rationalist explanation: the “essential” structure of language is
innate

• Obviously both are correct to varying degrees
⇒ Start with aspects of language everyone agrees are learned:

▶ the pronunciations of words
▶ the mapping between words and meanings

• Even these learning problems are very hard!
• The inference methods we develop have other practical
applications

▶ the same techniques used to learn words and their referents can be
used to learn topical collocations for information extraction and
document summarisation
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Probabilistic context-free grammars
• Probabilistic context-free grammars (PCFGs) define probability
distributions over trees

• Each nonterminal node expands by
▶ choosing a rule expanding that nonterminal, and
▶ recursively expanding any nonterminal children it contains

• Probability of tree is product of probabilities of rules used to
construct it

Probability θr Rule r
1 S → NP VP
0.7 NP → Sam
0.3 NP → Sandy
1 VP → V NP
0.8 V → likes
0.2 V → hates

..
S

.

NP

.

VP

.

Sam

.

V

.

NP

.

likes

.

Sandy

P(Tree) =

1× 0.7× 1× 0.8× 0.3
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PCFGs as models of natural language syntax

• Simple PCFGs are not very good models of natural language
syntax

▶ PCFGs aren’t good parameterisations of natural language
▶ accurate PCFGs need thousands of nonterminal symbols and

hundreds of thousands of rules
⇒ smoothing is an essential “black art”
▶ unsupervised estimators of PCFGs perform very poorly even when

initialised with correct parses

• But PCFGs can model many other interesting things!
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Learning the mapping from words to referents

• Input to learner:
▶ word sequence: Is that the pig?
▶ objects in nonlinguistic context: dog, pig

• Learning objectives:
▶ identify utterance topic: pig
▶ identify word-topic mapping: pig ⇝ pig
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A PCFG for learning word referents

• Prefix sentences with possible
topic marker, e.g., pig|dog

• PCFG rules choose a topic from
topic marker and propagate it
through sentence

• Each word is either generated
from sentence topic or null
topic ∅

..
Sentence

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig

.

Topicpig
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pig|dog

.

Word∅
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is

.

Word∅

.

that

.

Word∅

.

the

.

Wordpig

.

pig

• Input grammar contains all possible rules of form Wordt → w for
each topic t and word w

• PCFG inference procedure learns which words are associated with
each topic
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Modelling social cues in word learning
• Everyone agrees social interactions are important for children’s
early language acquisition

▶ e.g. children who engage in more joint attention with caregivers
(e.g., looking at toys together) learn words faster (Carpenter 1998)

• Can computational models exploit social cues?
▶ we show this by building models that can exploit social cues, and

show they learns better on data with social cues than on data with
social cues removed

• Many different social cues could be relevant: can our models learn
the importance of different social cues?

▶ our models estimate probability of each cue occuring with “topical
objects” and probability of each cue occuring with “non-topical
objects”

▶ they do this in an unsupervised way, i.e., they are not told which
objects are topical
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Exploiting social cues for learning word referents

• Frank et al (2012) corpus of 4,763 utterances with the following
information:

▶ the orthographic words uttered by the care-giver,
▶ a set of available topics (i.e., objects in the non-linguistic objects),
▶ the values of the social cues, and
▶ a set of intended topics, which the care-giver refers to.

• Social cues annotated in corpus:

Social cue Value
child.eyes objects child is looking at
child.hands objects child is touching
mom.eyes objects care-giver is looking at
mom.hands objects care-giver is touching
mom.point objects care-giver is pointing to
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Example utterance and its encoding as a string

Input to learner:
.dog # .pig child.eyes mom.eyes mom.hands # ## wheres the piggie
Intended topic: .pig
Word-topic associations: piggie ⇝ .pig
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Nondeterministically generating a topic
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Propagating topic through utterance
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Choosing which words are topical
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Generating topical words

..
Sentence

.

Topic.pig

.

T.None

.

.dog

.

NotTopical.child.eyes

.

NotTopical.child.hands

.

NotTopical.mom.eyes

.

NotTopical.mom.hands

.

NotTopical.mom.point

.

#

.

Topic.pig

.

T.pig

.

.pig

.

Topical.child.eyes

.

child.eyes

.

Topical.child.hands

.

Topical.mom.eyes

.

Topical.mom.hands

.

mom.hands

.

Topical.mom.point

.

#

.

Topic.None

.

##

.

Words.pig

.

Word.None

.

wheres

.

Words.pig

.

Word.None

.

the

.

Words.pig

.

Word.pig

.

piggie

14/90



Generating non-topical words
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Checking topic is a possible topic
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Generating social cues (child.eyes)
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Generating social cues (child.hands)
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Generating social cues (mom.eyes)
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Generating social cues (mom.hands)
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Generating social cues (mom.point)
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Results for learning social cues

• Because all our models are implemented in the same framework,
comparing their performance lets us study the contributions of
different information sources

• In the four different models we tried, social cues improved the
accuracy of:

▶ recovering the utterance topic
▶ identifying the word(s) referring to the topic, and
▶ learning a lexicon (word ⇝ topic mapping)

• kideyes was the most important social cue for each of these tasks
in all of the models

• We’ve extended this model to account for inter-sentential topic
dependencies

▶ this required new PCFG parsing and inference algorithms that can
parse entire discourses
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Topic models for document processing

• Topic models cluster documents into
one or more topics

▶ usually unsupervised (i.e., topics
aren’t given in training data)

• Important for document analysis and
information extraction

▶ Example: clustering news stories for
information retrieval

▶ Example: tracking evolution of a
research topic over time
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Mixture versus admixture topic models

• In a mixture model, each document has a single topic
▶ all words in the document come from this topic

• In admixture models, each document has a distribution over topics
▶ a single document can have multiple topics (number of topics in a

document controlled by prior)
⇒ can capture more complex relationships between documents than

a mixture model

• Both mixture and admixture topic models typically use a “bag of
words” representation of a document

25/90



Example: documents from NIPS corpus

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): ignore function words

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): mixture topic model

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Example (cont): admixture topic model

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Wray’s and my project: collocation topic models

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Mixture topic models as PCFGs (1)

• Idea: Design PCFG so that:
▶ non-deterministic rules implement generative steps in topic model
▶ deterministic rules propagate information to appropriate place

Sentence → Topic′i i ∈ 1, . . . , ℓ
Topic′i → Topic′i Topici i ∈ 1, . . . , ℓ
Topic′i → Topici i ∈ 1, . . . , ℓ
Topici → w i ∈ 1, . . . , ℓ

w ∈ W

..
Sentence

.
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.

Topic4’

.

Topic4’

.

Topic4’

.

Topic4

.

shallow

.

Topic4

.

circuits

.

Topic4

.

compute

.

Topic4

.

faster
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Mixture topic models as PCFGs (2)

• Choose a topic for sentence (non-deterministically)

Sentence → Topic′i i ∈ 1, . . . , ℓ
Topic′i → Topic′i Topici i ∈ 1, . . . , ℓ
Topic′i → Topici i ∈ 1, . . . , ℓ
Topici → w i ∈ 1, . . . , ℓ

w ∈ W

..
Sentence

.

Topic4’

.

Topic4’

.

Topic4’

.

Topic4’

.

Topic4

.

shallow

.

Topic4

.

circuits

.

Topic4

.

compute

.

Topic4

.

faster
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Mixture topic models as PCFGs (3)

• Copy sentence topic to each word (deterministically)

Sentence → Topic′i i ∈ 1, . . . , ℓ
Topic′i → Topic′i Topici i ∈ 1, . . . , ℓ
Topic′i → Topici i ∈ 1, . . . , ℓ
Topici → w i ∈ 1, . . . , ℓ

w ∈ W

..
Sentence

.

Topic4’

.

Topic4’

.

Topic4’

.
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.
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.

circuits

.

Topic4

.
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.
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.

faster
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Mixture topic models as PCFGs (4)

• Generate each word from sentence topic (non-deterministically)

Sentence → Topic′i i ∈ 1, . . . , ℓ
Topic′i → Topic′i Topici i ∈ 1, . . . , ℓ
Topic′i → Topici i ∈ 1, . . . , ℓ
Topici → w i ∈ 1, . . . , ℓ

w ∈ W
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Admixture topic models as PCFGs (1)

• Prefix strings from document j with a document identifier “ j”

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ W
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Admixture topic models as PCFGs (2)

• Spine deterministically propagates document id up through tree

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ W

..
Sentence

.

Doc3’

.

Doc3’

.

Doc3’

.

Doc3’

.

Doc3’

.

3

.

Doc3

.

Topic4

.

shallow

.

Doc3

.

Topic4

.

circuits

.

Doc3

.

Topic4

.

compute

.

Doc3

.

Topic7

.

faster

36/90



Admixture topic models as PCFGs (3)

• Docj → Topici rules nondeterministically map documents to topics

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ W
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Admixture topic models as PCFGs (4)

• Topici → w rules nondeterministically map topics to words

Sentence → Doc′j j ∈ 1, . . . ,m
Doc′j → j j ∈ 1, . . . ,m
Doc′j → Doc′j Docj j ∈ 1, . . . ,m
Docj → Topici i ∈ 1, . . . , ℓ

j ∈ 1, . . . ,m
Topici → w i ∈ 1, . . . , ℓ

w ∈ W
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.
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Why are these reductions interesting?

• Not claiming that topic modelling should be done using PCFGs
▶ PCFG parsing takes time proportional to cube of document length
▶ standard topic model algorithms take time linear in document

length

• The PCFG reductions suggest new kinds of models that merge
grammars and topic models

▶ easily implemented and evaluated (on small corpora at least)

• Grammars are good at:
▶ grouping words into hierarchically-structured larger units
▶ tracking relative ordering of these units
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Bayesian nonparametrics for learning rules

• PCFGs are products of multinomials
▶ each rule expansion is a draw from a multinomial (roll of a die)

• Dirichlet Processes extend multinomials to an unbounded number
of outcomes

▶ Chinese Restaurant Processes (CRP) are the predictive
distributions associated with Dirichlet Processes (needed to
implement MCMC algorithms)

• Provides a framework for learning the rules as well as their
probabilities

▶ specify a generative process for possible rules
▶ CRP sampler learns the useful rules and their probabilities

• In an adaptor grammar, the possible rules are subtrees generated
by a base PCFG
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Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
▶ by picking a rule and recursively expanding its children, or
▶ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Implemented by having a CRP for each adapted nonterminal

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs
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A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .
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• Grammar’s trees can
represent any segmentation
of words into stems and
suffixes

⇒ Can represent true
segmentation

• But grammar’s units of
generalization (PCFG rules)
are “too small” to learn
morphemes
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A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes
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• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
▶ not a practical problem, as only a finite set of rules could possibly

be used in any particular data set
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From PCFGs to Adaptor grammars

• An adaptor grammar is a PCFG where a subset of the nonterminals
are adapted

• Adaptor grammar generative process:
▶ to expand an unadapted nonterminal B: (just as in PCFG)

– select a rule B → β ∈ R with prob. θB→β, and
recursively expand nonterminals in β

▶ to expand an adapted nonterminal B:

– select a previously generated subtree TB

with prob. ∝ number of times TB was generated, or
– select a rule B → β ∈ R with prob. ∝ αB θB→β, and

recursively expand nonterminals in β
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Adaptor grammar for stem-suffix morphology

Word → Stem Suffix
Stem → Phons
Suffix → Phons
Phons → Phon
Phons → Phon Phons

or in abbreviated form with
non-adapted nonterminals suppressed
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Word → Stem Suffix
Stem → Phon+

Suffix → Phon+
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Adaptor grammar for stem-suffix morphology (0)

..Word → Stem Suffix ........

Stem → Phoneme+

....

Suffix → Phoneme⋆

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1a)

..Word → Stem Suffix .........

Stem → Phoneme+

....

Suffix → Phoneme⋆

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1b)

..Word → Stem Suffix .........

Stem → Phoneme+

.....

Suffix → Phoneme⋆

........

Generated words:
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Adaptor grammar for stem-suffix morphology (1c)

..Word → Stem Suffix .........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words:
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Adaptor grammar for stem-suffix morphology (1d)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2a)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

....

Suffix → Phoneme⋆

.

Suffix

s

.......

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2b)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

.....

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2c)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

.........

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats
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Adaptor grammar for stem-suffix morphology (2d)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

..
Word

Stem

d o g

Suffix

s

.......

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats, dogs
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Adaptor grammar for stem-suffix morphology (3)

..Word → Stem Suffix .
Word

Stem

c a t

Suffix

s

...
Word

Stem

d o g

Suffix

s

.......

Stem → Phoneme+

.

Stem

c a t

..

Stem

d o g

...

Suffix → Phoneme⋆

.

Suffix

s

........

Generated words: cats, dogs, cats
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Posterior samples from adaptor grammar
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort
reports report s repo rts rep orts

reported report ed repo rted rep orted
report ing report ing repo rting rep orting

transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing
dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

57/90



Adaptor grammars as generative processes
• The sequence of trees generated by an adaptor grammar are not
independent

▶ it learns from the trees it generates
▶ if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

• but the sequence of trees is exchangable (important for sampling)

• An unadapted nonterminal A expands using A → β with
probability θA→β

• Each adapted nonterminal A is associated with a CRP (or PYP)
that caches previously generated subtrees rooted in A

• An adapted nonterminal A expands:
▶ to a subtree TA rooted in A with probability proportional to the

number of times TA was previously generated
▶ using A → β with probability proportional to αAθA→β
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Adaptor grammars as non-parametric PCFGs

• An adaptor grammar reuses whole previously-generated subtrees
TA of adapted nonterminals A

• This is equivalent to adding a rule A → w to the grammar, where
w is the yield of TA

• If the base CFG generates an infinite number of trees TA for A,
then the adaptor grammar is non-parametric

• But any set of sample parses for a finite training corpus only
contains a finite number of number of adapted subtrees

⇒ sampling methods (e.g., MCMC) are a natural approach to
learning and parsing adaptor grammars

▶ in implementation terms, an adaptor grammar is like a PCFG with
a constantly changing set of rules
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Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

j △ u ▲ w △ ɑ △ n △ t ▲ t △ u ▲ s △ i ▲ ð △ ə ▲ b △ ʊ △ k
“you want to see the book”

• Ignoring phonology and morphology, this involves learning the
pronunciations of the lexical items in the language
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CFG models of word segmentation

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons
Phon → a | b | . . .

• CFG trees can describe
segmentation, but

• PCFGs can’t distinguish good
segmentations from bad ones

▶ PCFG rules are too small a unit of generalisation
▶ need to learn e.g., probability that bʊk is a Word
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Towards non-parametric grammars

Words → Word
Words → Word Words
Word → all possible phoneme sequences

• Learn probability Word → b ʊ k
• But infinitely many possible Word expansions

⇒ this grammar is not a PCFG
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• Given fixed training data, only finitely many useful rules

⇒ use data to choose Word rules as well as their probabilities

• An adaptor grammar can do precisely this!
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Unigram adaptor grammar (Brent)

Words → Word
Words → Word Words
Word → Phons
Phons → Phon
Phons → Phon Phons

..
Words

.

Word

.

Phons

.

Phon

.

ð

.

Phons

.

Phon

.

ə

.

Words

.

Word

.

Phons

.

Phon

.

b

.

Phons

.

Phon

.

ʊ

.

Phons

.

Phon

.

k

• Word nonterminal is adapted

⇒ To generate a Word:
▶ select a previously generated Word subtree

with prob. ∝ number of times it has been generated
▶ expand using Word → Phons rule with prob. ∝ αWord

and recursively expand Phons
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Unigram model of word segmentation
• Unigram “bag of words” model (Brent):

▶ generate a dictionary, i.e., a set of words, where each word is a
random sequence of phonemes

– Bayesian prior prefers smaller dictionaries
▶ generate each utterance by choosing each word at random from

dictionary

• Brent’s unigram model as an adaptor grammar:

Words → Word+

Word → Phoneme+
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• Accuracy of word segmentation learnt: 56% token f-score
(same as Brent model)

• But we can construct many more word segmentation models using
AGs
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Adaptor grammar learnt from Brent corpus
• Initial grammar

1 Words → WordWords 1 Words → Word
1 Word → Phon
1 Phons → PhonPhons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

• A grammar learnt from Brent corpus

16625 Words → WordWords 9791 Words → Word
1575 Word → Phons
4962 Phons → PhonPhons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))
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Undersegmentation errors with Unigram model

Words → Word+ Word → Phon+

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)
• Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)
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Collocations ⇒ Words

Sentence → Colloc+

Colloc → Word+

Word → Phon+
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• A Colloc(ation) consists of one or more words
• Both Words and Collocs are adapted (learnt)
• Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)
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More complex adaptor grammar models of word

segmentation
• Because adaptor grammar models generalise PCFGs, we can
combine the topic model grammars and word segmentation
grammars

▶ topical information does improve word segmentation
▶ social cues do not improve word segmentation (as far as we can

tell)

• We can learn the internal structure of words too
▶ words are a sequence of syllables
▶ learn syllable structure jointly with word segmentation
▶ we can learn different structures for word-peripheral and

word-internal syllables
⇒ the best reported accuracy for unsupervised word segmentation

(87% f-score)
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Topical collocation models

Annotating an unlabeled dataset is one of the bottlenecks in using supervised
learning to build good predictive models. Getting a dataset labeled by experts can
be expensive and time consuming. With the advent of crowdsourcing services . . .

The task of recovering intrinsic images is to separate a given input image into its
material-dependent properties, known as reflectance or albedo, and its
light-dependent properties, such as shading, shadows, specular highlights, . . .

In each trial of a standard visual short-term memory experiment, subjects are first
presented with a display containing multiple items with simple features (e.g. colored
squares) for a brief duration and then, after a delay interval, their memory for . . .

Many studies have uncovered evidence that visual cortex contains specialized regions
involved in processing faces but not other object classes. Recent electrophysiology
studies of cells in several of these specialized regions revealed that at least some . . .
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Topic model with collocations

• Combines PCFG for admixture topic model and segmentation
adaptor grammar

Sentence → Docj j ∈ 1, . . . ,m
Docj → j j ∈ 1, . . . ,m
Docj → Docj Topici i ∈ 1, . . . , ℓ;

j ∈ 1, . . . ,m
Topici → Words i ∈ 1, . . . , ℓ
Words → Word
Words → Words Word
Word → w w ∈ W

..
Sentence

.

Doc3

.

Doc3

.

Doc3

.

3

.

Topic5

.

Words

.

Words

.

Word

.

polynomial

.

Word

.

size

.

Topic15

.

Words

.

Words

.

Word

.

threshold

.

Word

.

circuits

72/90



Data preparation in Griffiths et al (2007)

• Documents are papers from NIPS proceedings (∼ 3 million words)

• Case normalised

• Segmented at punctuation and function words

annotating an unlabeled dataset is one of the bottlenecks in

using supervised learning to build good predictive models. getting a dataset labeled

by experts can be expensive and time consuming. with the advent of

crowdsourcing services . . .

the task of recovering intrinsic images is to separate a given input image into its

material-dependent properties, known as reflectance or albedo, and its

light-dependent properties, such as shading , shadows , specular highlights , . . .
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Finding topical collocations in NIPS abstracts

• Run topical collocation adaptor grammar on NIPS corpus

• Run with ℓ = 20 topics (i.e., 20 distinct Topici nonterminals)

• Corpus is segmented by punctuation
▶ terminal strings are fairly short

⇒ inference is fairly efficient

• Used Pitman-Yor adaptors
▶ sampled Pitman-Yor a and b parameters
▶ flat and “vague Gamma” priors on Pitman-Yor a and b parameters

• See Griffiths et al (2007) for an alternative topical collocation
model, and Johnson and Goldwater (2009) for details on inference
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Sample output on NIPS corpus, 20 topics
• Multiword subtrees learned by adaptor grammar:

T 0 → gradient descent T 1 → associative memory
T 0 → cost function T 1 → standard deviation
T 0 → fixed point T 1 → randomly chosen
T 0 → learning rates T 1 → hamming distance
T 3 → membrane potential T 10 → ocular dominance
T 3 → action potentials T 10 → visual field
T 3 → visual system T 10 → nervous system
T 3 → primary visual cortex T 10 → action potential

• Sample skeletal parses:
3 (T 5 polynomial size) (T 15 threshold circuits)
4 (T 11 studied) (T 19 pattern recognition algorithms)
4 (T 2 feedforward neural network) (T 1 implements)
5 (T 11 single) (T 10 ocular dominance stripe) (T 12 low)

(T 3 ocularity) (T 12 drift rate)

75/90



Some collocations found in NIPS corpus
Count Topic Collocation

2 T0 unites states israeli binational science foundation bsf
2 T5 batch k-means empty circles online gradient
12 T1 partially observable markov decision processes
12 T2 defense advanced research projects agency
7 T5 radial basis function rbf network
5 T6 analog vlsi neural network chip
4 T12 national science foundation graduate fellowship
3 T10 globally optimal on-line learning rules
3 T12 radial basis function rbf units
3 T13 non-parametric multi-scale statistical image model
3 T15 weight vector estimate requires knowledge
3 T17 orientation bands intersect ocular dominance
3 T18 optimal brain damage le cun
3 T6 normalized mean squared prediction error
47 T5 markov chain monte carlo
43 T12 radial basis function rbf
41 T12 radial basis function networks
39 T7 independent component analysis ica
35 T11 principal component analysis pca
29 T11 hidden markov models hmms
23 T12 radial basis function network
21 T11 hidden markov model hmm
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Some collocations found in NIPS corpus (cont.)
Count Topic Collocation

17 T11 principal components analysis pca
16 T11 hidden markov models hmm
14 T18 artificial neural network ann
13 T15 optimal brain damage obd
12 T4 kanerva sparse distributed memory
11 T14 hybrid monte carlo method
11 T19 artificial neural networks ann
10 T0 mean square error mse
10 T12 radial basis functions rbfs
10 T16 markov decision process pomdp
10 T11 hidden markov model hmm
10 T3 atr human information processing
10 T18 artificial neural networks anns
10 T9 spin spin correlation function
9 T2 naive mean field approximation
9 T0 mean squared error mse
9 T7 support vector machines svms
9 T8 owl sound localization system
8 T1 compatible lateral bipolar transistors
8 T13 nsf presidential young investigator
8 T14 basic differential multiplier method
8 T18 recurrent analog neural nets
8 T2 stochastic gradient descent algorithm
7 T1 mean squared prediction error
7 T13 online maximum margin algorithm
7 T15 delay neural network tdnn
7 T17 projection pursuit learning network
7 T17 support vector machine svm
7 T8 hybrid reinforcement learning system
7 T9 contrast sensitive silicon retina
6 T2 akaike information criterion aic
6 T10 gradient descent learning rule
6 T11 fully connected committee machine
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Application: “perspective” and sentiment analysis
• Hardisty et al (2010) use a topical collocation model in a
“perspective” sentiment analysis

• Data: the Bitter Lemons corpus
essays on mid-East issues from Israeli and Palestinian perspectives

• Supervised training: training sentences belong to one of two
“super documents”

▶ learns distributions over topics associated with each perspective
▶ can be viewed as a “semi-supervised” approach

• Label test documents by finding “super document” most likely to
generate them

• Compared a number of other supervised and semi-supervised
methods (including SVMs, other collocation-based approaches)

• Found that adaptor grammar topical collocations (with a
hierarchical topic structure) performed best of all
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Project aims

• Are the topical collocations found by our model:
▶ better than those found by other topical collocation procedures?
▶ better than finding collocations separately and retokenising?

• There are several different adaptor grammars for topical
collocations: which one works best?

• The adaptor grammar inference procedure relies on a
general-purpose PCFG parsing procedure: can we find a faster
inference procedure for topical collocations?
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Evaluating topical collocation models

• Standard evaluation procedures for topic models:
▶ Perplexity: how well does the model predict held-out data
▶ Information retrieval: evaluate models by how well they score the

similarity between a query and documents in an
information-retrieval task

▶ Human evaluation: can humans spot the “intruder” in a list of
topical words and collocations?

• Subtask: find a proxy measure that approximates the human
evaluation results (useful for selecting between and tuning models)

• We are about to begin human evaluation using Mechanical Turk
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Speeding topical collocation model inference

• Current adaptor grammar models require repeatedly reparsing the
input
⇒ slow on multi-million word collections

• Take advantage of recent work on speeding (single-word) topic
model inference

▶ parallel point-wise sampling algorithms
▶ variational Bayesian approximations

• We have generalised these algorithms to apply to topical
collocation models, hopefully yielding a significant speed-up
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Accomplishments so far

• NAACL 2013 paper accepted “Topic Segmentation with a
Structured Topic Model”

▶ segments documents (e.g., meeting transcripts) into
topically-coherent units

▶ generalises the word segmentation problem (replace “words” with
“document subsection”)

▶ sampling algorithm for finding topically-coherent unit boundaries
generalises Goldwater et al word boundary sampling algorithm

▶ key technical challenge is finding methods for “splitting” and
“merging” topic models as sampler introduces and removes unit
boundaries
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Conclusions

• Although PCFGs are generally thought of as methods for syntactic
analysis, they can be used to model a variety of other phenomena
as well

▶ both mixture and admixture topic models can be expressed as
PCFGs

• Adaptor grammars can express a variety of useful models
▶ unsupervised models of word learning
▶ finding topical collocations
▶ generic AG inference code makes it easy to compare and explore a

variety of models

• These models and associated inference techniques can be
generalised to new kinds of models
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Future work: modelling “life stories”

• A person’s life story is the sequence of events that occur to them
▶ Life stories are a mixture of one or more careers
▶ A career consists of a sequence of events

• This can be regarded as generalised topic model:

Topic model Life story model
words events and properties

documents life stories
topics careers
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Life story models for entity linking

• Query: “What did Jim Jones do before his recent hit song?”

• Wikipedia lists eight different Jim Jones:
▶ two are politicians
▶ two are sportsmen
▶ one is a judge
▶ one is a cult leader
▶ one is a rapper
▶ one is a guitarist
▶ three of them are dead (including the guitarist)

• Which entry would you look at?
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Hierarchical Bayesian models for careers

• Everyone’s life story is different, but there are important
commonalities:

▶ everyone dies at most 110 years after they are born
▶ not everyone goes to university, but if they do, they go after

they’ve been to high school
▶ politicians run an election campaign before they win an election
▶ releasing a music CD is often associated with a release party, a

tour, reviews, etc.

• A career is a temporally-ordered cluster of events intended to
capture the shared structure of life stories

• Aim: learn a “grammar” of careers

• Use hierarchical Bayesian models to share information across
careers
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Life stories as admixtures of careers

• Bill Clinton’s life story is primarily that of a successful politician,
but it contains events from a musician career

⇒ a life story is an admixture model of one or more careers

• We want to capture correlations between careers:
▶ a lawyer is much more likely than a carpenter to become a

politician
▶ an academic is more likely than a plumber to become an author
▶ a singer is more likely than a mechanic to become a movie star
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Learning and using life story models

• Freebase is a structured database built from Wikipedia

• We intend to mine Freebase for life stories to train our Bayesian
models

• We will apply the life story models to improve entity linking in free
text documents (e.g., newswire)

• We submitted a proposal to develop life story models to Google
Research in April
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