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Readings for this week

e NLTK book, chapter 6 section 5 “Naive Bayes classifiers”
e Manning et al, Information to Information Retrieval, chapter 13

» chapter 11 has an introduction to probability theory
» chapter 12 explains how language models can be used for information
retrieval
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Probability and statistics

e Probability theory
» the mathematical theory of random phenomena

e Statistics
> a statistic is a summary (usually a number or a set of numbers) that
summarise a set of data
e A probabilistic model predicts how likely certain kinds of events are
» usually a probabilistic model has one or more adjustable parameters
> try to estimate the values of these parameters from data
» statistical theory provides ways of estimating the value of such adjustable
parameters
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Why are probabilistic models important in machine
learning?

e In the 1980s, a large number of approaches were explored to handle
uncertainly and incomplete or partial knowledge

e Probability and statistics turn out to be the most useful

>
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probability lets us quantify the degree of uncertainty

there's a well-developed mathematical theory to build on

it's possible to develop probabilistic models with rich internal structure
no principled conflict between linguistic theory and probabilistic models
but many details still have to be worked out

and there are lots of interesting new models to explore!



Outline

A very brief introduction to probability and statistics
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Event space

e An event e is a member of the event space or set £ of possible events
» Example: 1 roll of a die, so £ = {1,2,3,4,5,6}
e In this example £ is small, but in many real-life applications & is
astronomical
> in a question-answering system £ might be the set of all possible
question/answer pairs (i.e., all possible pairs of sequences of words)
> in a machine translation application £ might be the set of all possible
source language/target language sentence pairs
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Probability distributions

e A probability distribution P is a real-valued function on & where:
a. foreach e € £, P(e) > 0and P(e) <1
i.e., probabilities are real numbers between 0 and 1
b. ZP(e) = 1, i.e., probabilities sum to 1

ect
» Example (cont.):

P(1) = 01 P(4) = o1
P2 = 01 P(B) = 01
P(3) = 01 P(6) = 05

e The chance that the event will be realised as e is P(e)
» Example (cont.): the chance of rolling a 5is P(5) = 0.1
» Frequentists interpret probability to mean “if we repeatedly sample from
&, the fraction of samples that are e is P(e)".
» There are many other ways of understanding probabilities.
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Normalisation

e Often we'll only know what the probability of an event is proportional

to, i.e., we'll know f(e) and that P(e) = c f(e)
> we get P(e) by normalising f, i.e.,

P(e) = %f(e),where
Z = ) f(e)
ec&

e Example (cont.):

» Suppose we're only told that the probability of a 6 is 5 times larger than

the probability of the other sides. That is:

f1) =1 f3 =1 f6) = 1
f(2) =1 f(4) =1 f(6) = 5
» Then Z =3 . f(e) =10, so
P(1) = 01 PB3) = 01 PGB) = 01
P(2) = 01 P4) = 01 P(6) = 05
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Random variables

e A random variable is a function defined on the event space £
» Example (cont.): odd is the function

odd(l) = True odd(2) = False odd(3) = True
odd(4) = False odd(5) = True odd(6) = False

e If Y is a random variable and y € ) is one of its values, then:

P(Y=y) = 3 P(e)

ecf
Y(e)=y
» Example (cont.):
P(odd=False) = P(2)+P(4)+P(6) = 0.7
P(odd=True) = P(1)+P(3)+P(5) = 0.3

e A discrete random variable is one that ranges over a countable set
> in this course we'll only work with discrete random variables
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Joint probability distributions
e If X and Y are random variables over the same event space &, then

their joint probability distribution P(X=x, Y=y) is:

P(X=x,Y=y) = Y P(e)
ecé
X(e)=x
Y(e)=y

» Example (cont.): Define the random variable divs as follows:

divs(1) = 0 divs(2) = 0  divs(3) = 1
divz(4) = 1  divs(5) = 1  divs(6) = 2
Then: P(odd=False,divs=0) = P(2) = 0.1

P(odd=False,divs=1) = P(4) = 0.1
P(odd=False, divs=2) = P(6) = 0.5
P(odd=True,divs=0) = P(1) = 0.1
P(odd=True,divs=1) = P(3)+P(5) = 0.2
P(odd=True,divs=2) = 0
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Conditional probability distributions
e The conditional probability distribution P(X | Y) is defined as:
P(X=x,Y=y)
P(X=x|Y=y) = —~ 1))
( ) P(Y=y)
e Informally, the conditional probability distribution P(X=x, Y=y) is
what you get when you:
> restrict the event space to the subset {e: e € &, Y(e) =y}
> and renormalise

e Example (cont.):
P(odd=True, div3=1)

P(odd=True | divg=1) = P(diva—1)
ivz=

0.2

0.3
e An equivalent definition:

P(X=x|Y=y)P(Y=y) = P(X=x,Y=y)
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Joint and conditional probability pictures

® Marginal distributions

@
P(X=True) P{Y:True)
O_

P(X=True, Y=True)

® Joint distribution

e (Conditional distributions

¢

P(Y=True | X=True) P(X=True | Y=True)
e
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Bayes rule

e Bayes rule is a theorem that relates conditional probability distributions:

P(Y | X) = W
e Proof: P(Y,X) = P(X,Y)
P(Y | X)P(X) = P(X|Y)P(Y),s0

e Example (cont.):
P(odd=True | div3=1) P(divz=1)
P(odd=True)
2/3-3/10
3/10
= 2/3

P(divs=1 | odd=True) =
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Independent random variables

e Informal explanation: two random variables X and Y are independent if
knowing the value of X provides no information about the value of Y

e If X and Y are independent then:

P(X,Y) = P(X)P(Y), or equivalently:
P(Y|X) = P(Y)

e Example: Suppose an event consists of a roll of a die and a flip of a
coin, so an event might be e = (4, Heads)
> let R be a random variable whose value is the roll of the die (so
R=A1,...,6})
> let F be a random variable whose value is the flip of the coin (so
F = {Heads, Tails})
> it might be reasonable to assume that R and F are independent, i.e.,

P(R,F) = P(R)P(F)

MACQUARIE )/
UNIVERSITY 14/56
5



Independent identically distributed random variables

e Two random variables X and Y are independent and identically
distributed (i.i.d.) iff they are independent and have the same
distribution

P(X=v) = P(Y=v)forallveX =Y

> i.i.d. random variables usually arise from repeated samples from the same
distribution
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l.i.d. variables example

e Suppose event consists of 10 rolls of same die
> an event might be e =(2,4,2,5,1,1,6,2,1,5)
> let X; be the value of the jth roll, j € {1,...,10}
» if the Xj are i.i.d., then P(Xj=x) = P(Xj=x) for all j,;" € {1,...,10}
and x € {1,...,6}
Let px = P(X; x) forall x € {1,...,6}

> px is the probablllty of rolling a x on any single roll
Then

P(Xllea X2:X27 s 7X10:X10) = PxqPxy-rPxyg = H Px;
i=1
e suppose p = (0.1,0.1,0.1,0.1,0.1,0.5) and = (2,4,2,5,1,1,6,2,1,5)

e then
P(X=2)=01-01-01-01-0.1-0.1-05-0.1-0.1-0.1= 0.19-05
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Probability of multiple i.i.d. events
e Suppose X = (Xi,...,Xy) consists of ni.i.d. discrete random variables,

with P(Xij=x) = px
e Then the probability P(X=x) of the sequence = (x1,...,x,) is:

n
P(X=z) = Pxg = oo Pxy = pr,-
i=1

e If n, is the number of times v appears in x then:

P(X=x) = []npV
veX

e Example: 5 flips of a coin, with praiis = 0.8, pHeadgs = 0.2
» x = (Tails, Heads, Tails, Tails, Heads)
> SO NTails = 3 and NHeads = 2
» so P(X=x) = 0.83-0.22
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Statistics: estimating discrete probabilities

e Suppose we don't know p, but observe a sample = (x1,...,x,) of n
i.i.d. discrete random variables. Can we estimate p?

* Relative frequency estimator (a.k.a. maximum likelihood estimator)

n

A v
py = —, where:
n
n, = number of times v appears in (x1,...,Xn)

> m is a vector of length m = |X|, where X is the set of values that each X;
range over

> P is a vector of length m too

> (estimates obtained from data are often written with hats)

e Example:
» data: n =10 rolls of a die, so & = (2,4,2,5,1,1,6,2,1,5)
»som=3,nm=3,n=0n=1n=2n=1
» 50 p1=0.3,p =0.3,p3 =0,ps = 0.1, p5 = 0.2, pg = 0.1
s g
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Maximum likelihood estimation

Maximum likelihood estimation is a very general method for estimating
parameter values from data

e |t is provably optimal in many circumstances

e Given data x, the likelihood L(p) of parameters p is the probability of
the data w.r.t. the probability distribution specified by p

Lz(p) = Pp()

» Example: n = 3 flips of a coin yield x = (Heads, Tails, Heads), so
Lm (p) = pTails : pIZ—Ieads
e The maximum likelihood estimate (MLE) p is:

p = argmaxLl.(p)
P

» Example (cont.): it's possible to show that pyeads = 2/3, Prails = 1/3
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The MLE and zero counts, and “add 1" smoothing

e MLE for a categorical distribution given i.i.d. data & = (x1,...,xp) is:
n
pp = —, where:
n
n, = the number of times v appears in x

= If n, =0 then p, =0
e As we'll see, zero probability predictions can often cause problems

e "“Add 1" smoothing, a.k.a. Laplace smoothing, estimates p as:

a n, + 1
py = ,  where:
n+m
m = |X|, i.e., the number of values each X; ranges over

e Example: n= 3 flips of a coin yield x = (Heads, Tails, Heads), so
» m=|X|=2
> SO pHeads - 3/5 and pTalls — 2/5
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Outline

Naive Bayes classifiers
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Using probabilistic models to build classifiers

e Supervised classification: given training data D = ((x1, y1),
where:

» each x; is a data item (e.g., a document)
» and y; is the corresponding label
» predict the label y of a novel data item x
e Probabilistic models can be used to build classifiers
» from D estimate a model P(Y | X)
» Use P to predict the label §(x) on novel data item x

9(x) = argmaxP(Y=y | X=x)
yey

ooy (Xny ¥n))

e It's possible to show that if P(Y|X) = P(Y|X) (i.e., our estimated
model is the true model of the data) then this classifier has the highest

accuracy possible (i.e., Bayes optimal)
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Bayesian inversion in classifiers

e |dea: use Bayes rule to “invert” conditional probability

y(x) = argmaxP(Y=y | X=x) (optimal classifier)
yey
= argmax (X=x| y) P(Y=y) (Bayes rule)
yey P(X=x)
= argmax P(X=x| Y=y) P(Y=y) (xis constant)
yey

e These equations are exact (i.e., no approximations here)
e P(Y=y) is the probability of a label y
> if the set of possible labels ) is small, estimate P(Y) from D
» Eg., ﬁ(Y:y) = n,/n, i.e., fraction of data items with label y
e P(X=x| Y=y) is the probability of data item x given label y
» usually can't be directly estimated from training data
> because X too large to observe all possible (x, y) combinations in D
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Representing data items as collections of features

e Problem: set of data items X is too large treat each item atomically

e |dea: treat data item X as a collection of features (Fi, ..., Fm)
e Example: in the name gender classification problem

» X is a name (a character sequence) and Y is its gender
> there 2 features:

— F; is the last character in X
— F; is the first vowel in X

» so if X = ‘Steven’, then F; = 'n" and F, = ‘e’
e Most probabilistic classifiers use features to handle sparse data

e “Naive" aspect of naive Bayes: assume features are independent given Y
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The “naive” assumption in naive Bayes classifiers
e Optimal classifier: (from before, with X = F)
y(f) = argrr)l;axP(szl Y=y) P(Y=y)
€

y
» F=(Fy,...,Fn)is a vector of features
» P(Y=y) is easy to estimate from D

e “Naive” assumption in naive Bayes:

P(F=f|Y=y) = HP(FFH Y=y)

> i.e., assume the features F; are independent given Y
» usually not true, but naive Bayes classifiers often work well

e A Naive Bayes classifier is one that uses the “naive Bayes”
approximation for P(F=f | Y=y), so

y(f) = argmaxP(Y=y)
yey

P(F=f; | Y=)

jemE

j=1
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Naive Bayes classifier for name gender

Data items X are names, labels Y are their gender

2 features: F1 (last character) and F, (first vowel)

“Naive” Bayes assumption:

P(F=f|Y=y) = P(h=h|Y=y)P(R=f]|Y=y)

For example, if X = ‘Steven’, F; = 'n" and F> = 'e’. So:

P(F=('n",'¢’) | Y = 'male’)
~ P(Fi='n"|Y ="'male’) P(F;='e"| Y = 'male’)

Use Naive Bayes assumption in classifier formula to predict label y:

A(f) = armaxP(P=1 | Y=y) P(Y=)
ye
= argn;}axP(Flzfl | Y=y) P(Fa=f | Y=y) P(Y=y)
ye
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Calculating the quantities needed for NB classifier

e For Naive Bayes classifier, need to calculate:

P(Y=y) [[P(F=f| Y=y)
j=1

e Estimate P(Y=y) = p, as follows:

~

py = ny—,/n, where:

n

number of data items in training data, and

ny—, = number of data items with class label y

o Estimate P(Fj=f | Y=y) = gjr,, as follows:

Gjfy = NE=fy=y/Ny=y, where:
nF—fy—, = number of data items where feature F; has value f
J= 4 j
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Add-1 smoothing for NB classifiers

e If any of the probabilities in an NB classifier are zero, this causes the

class to be ruled out:
P(Y=y) [[P(F=f; | Y=y)
j=1
Add-1 smoothing can avoid this.
e Estimate P(Y=y) = p, as follows:

2 Ny—y +1

= ————  where:
Py n+ ’y‘ )
n = number of data items in training data, and
ny—, = number of data items with class label y

e Estimate P(Fj=f | Y=y) = g r,, as follows:

NF=f,y=y + 1

Qjfy = ———————, Wwhere:
ny=y + | Fjl
Nf.—fy—=, = number of data items where feature F; has value f
J ’ y J
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Naive Bayes classifiers in a broader context

e The “naive” assumption of feature independence (given the label)
makes naive Bayes classifiers very easy to train

e More sophisticated classifiers don't assume feature independence (e.g.,
logistic regression, support vector machines)

e But naive Bayes can sometimes be very competitive, even when the
“naive” feature independence assumption is not true

e On very large data sets, sometimes naive Bayes is used because more
sophisticated methods would be infeasible

e Many other important models also make a “naive Bayes” independence
assumption (e.g., Hidden Markov Models, Topic Models).
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Outline

Generative models and Bayesian networks
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Generative models

e A generative model is a probabilistic model where the joint distribution
is factored into product of conditional probability distributions

e The naive Bayes model is a generative model:
P(Y,Fi,....,Fn) = P(Y)P(FL|Y)...P(Fn|Y)

e Factoring makes it possible to estimate each conditional distributions
independently
> but independence assumptions may cause model to be badly biased
> the major alternative approach (called “discriminative models”) couples
factors via a shared normalisation factor (the “partition function”)
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Bias and variance in Naive Bayes
e Any distribution can factored into a product of conditional distributions:
P(X1,Xa,...,Xn) = P(X)P(Xa| X1) ... P(Xn | X1,..., Xnz1)
e Independence assumptions reduce the size of the models, but may
introduce bias, e.g.:
P(Xn | X1,.... Xp-1) = P(Xa | X1)

e Example: naive Bayes:
» How many parameters are required to represent P(Y, Fy, ..., Fy,) directly.
» How many parameters are required to represent each factor in the exact
conditional factorisation:

P(Y,F,F...,Fp)
= P(Y)P(FR|Y)P(R|Y,F)...P(Fn|Y,F,...,Fn-1)
» We get the naive Bayes model if we assume
P(FilY,F,....Fi1) = P(FY)

How many parameters does this model require?
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Why Bayes nets?

e Bayesian networks are a graphical notation for writing generative
probabilistic models
e Every generative model can be written as:

m
P(X1,....Xm) = []P(X:| Parents;)
i=1
where Parents; is a subset of Xq,...,Xj_1
e Bayes nets represent this as a directed acyclic graph where:
» each variable X; is represented as a node
> there is an edge from X; to X; iff X; € Parents;

e Example:
P(X1, X2, X3, Xa) = P(X1) P(Xa | X1) P(X3 | X1) P(Xa | X2, X3)
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Naive Bayes as a Bayes net

e The naive Bayes model:

P(Y,Fi,....Fn) = P(Y)P(FL|Y)...P(Fn|Y)

e Shaded nodes represent variables whose values are known when
inference is performed
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Plate notation

e Plate notation abbreviates repeated subsets of variables and
dependencies

e The naive Bayes model:

P(Y,Fi,....Fm) = P(Y)P(FL|Y)...P(Fm|Y)

ON0

m
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Outline

Naive Bayes for supervised document classification
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Two ways of using NB for document classification

e Training data D consists of a corpus of documents X where each
document has a class label Y

e Two different kinds of naive Bayes models (at least) that define features
F' in different ways

e Bernoulli word features introduce a feature F,, for each word type w
» F,, = True if document X contains w
» F,, = False if document X does not contain w
» A Bernoulli random variable is one with exactly two values (this model
ignores word frequencies)

e Multinomial features introduce a feature F; for each position j in the
document and assumes that the F; are i.i.d.

> i.e., each word in the document is generated from the same distribution
P(W|Y) over words

> (a multinomial random variable is distribution produced by repeatedly
sampling from a finite distribution, e.g., rolls of a die)
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Why use the naive Bayes approximation?

e Both the Bernoulli and the multinomial naive Bayes document
classification models assume the naive Bayes approximation
» the Bernoulli model assumes that the occurence of a word is independent
of the occurence of other words given the document label Y
» the multinomial model assumes that the word in a particular position is
independent of the other words in the document given the document label
Y
e |t's easy to show these assumptions are false
> they are a (structural) bias in our model
e But we make them because:
> these models are computationally and statistically tractable, and
» they do a fairly good job of document classification
> recall bias/variance trade-off (NB has high bias but low variance)
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Estimating a naive Bayes classifier model

e Recall the naive Bayes decision rule:

m
y(f) = argmaxP(Y=y) [[P(F=f | Y=y)
yey le
where Y is the label and F = (F1,..., Fn) are the features
e The class probabilities P(Y') are estimated in the same way in both the

Bernoulli and multinomial classifiers

P(Y=y) = py

py, = ny,/n, where:
n = number of documents in training data, and
n, = number of documents in training data with class label y

» m and p are both vectors of length | Y|
e “Add 1" smoothing can also be used to estimate P(Y=y)

by = (ny+1)/(n+1Y])
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Estimating a Bernoulli NB document classifier

e In a Bernoulli NB document classifier, there is a feature F,, for each
word in the vocabulary W
» F, = True if w is in the document, and False otherwise

P(Fw=True | Y=y) = quw, forweW,yec)
Qu,y n";v’y where:
y
Ny, = the number of documents with label y that
contain word w, and
n, = the number of documents with label y

» The n, form a vector of length |)|
» The gw,, and n,, form matrices of dimensions (|[W]|, |Y|)

e Smoothing (e.g., “add 1" smoothing) is often essential for g:

Nw,y +1

Qw,y = n, T2
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Bernoulli NB document classification example (1)

label ‘ text
sports | run kick ball run
D =
finance | buy sell sell
sports | kick ball
n = 3
Nsports = 2 Nfinance = 1
[gsports - 3/5 Igﬁnance - 2/5
run kick ball buy sell
n = sports | 1 2 2 0 O
finance | 0 0 0 1 1
run  kick  ball  buy sell
é = sports | 2/4 3/4 3/4 1/4 1/4
finance 1/3 1/3 1/3 2/3 2/3
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Running a Bernoulli NB document classifier

e The naive Bayes classifier decision rule: given a document x

y(x) = argmaxP(Y=y) HP (Fw=fw | Y=y)

yey wew

= argmax py (H qW7y> H 1—quwy
ye wex weW\x

= argmax 2L (et 1) [ et
yey  n+ |V \ 5 ny+2 wewx T 2

e W is the vocabulary (set of word types)

® qu,, is probability of a document with label y containing word w, so
1 —qw,y is probability of a document with label y not containing word w

e In the last line | used “add-1" estimates for p and g
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Bernoulli NB document classification example (2)

ﬁsports - 3/5 l%ﬁnance - 2/5
X | run  kick ball _buy sl
q = sports |2/4 3/4 3/4 1/4 1/4
finance 1/3 1/3 1/3 2/3 2/3
X = run run buy
SCOI‘G(X, SpOI‘tS) = f’sports}\' 6run,sports : abuyfports

(1 = Quick,sports) - (1 — Gballsports) - (1 — asell,sports)
— 3/5-2/4-3/4-1/4-1/4-3/4
~ 0.011
Score(x ) ﬁnance) = l%ﬁnancg : éA\Ilrun,ﬁnamce : abux,ﬁnance .
“(1 = Qick finance) * (1 — Gball finance) * (1 — Gsell finance)
— 2/5.1/3.2/3-2/3-2/3-1/3
0.013 so:

y(x) = finance
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Avoiding floating point underflow when calculating
probabilities

e If vocabulary W is large, floating point arithmetic may underflow

= Use logarithms in these calculations to avoid underflow

y(x) = argrrjljax log (P(Y y) H P(Fy=fw | Y—y))

wew
= argmax log (P(Y=y)) Z log (P(Fw=fw | Y=y))
yey wew
= argmax log(p,) + (Z |Og(CIw,y)> + Z log(1 — qu,y)
yey wex weEW\x
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Bernoulli NB document classification example (3)

psports
q

X

logScore(x, sports)

logScore(x, finance)

MACQUARIE
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3/5 Pinance = 2/5
‘ run kick ball buy sell

sports | 2/4 3/4 3/4 1/4 1/4

finance | 1/3 1/3 1/3 2/3 2/3
run run buy

IOg(ﬁsportS) + IOg(arun,sports) + Iog(abuy,sports)

+108(1 — Guick sports) + 108(1 — Goail sports) + 108(1 — Geell sports
—-054+-074-03+—-14+-14+-03
—4.5

log(Binance) + 10g(Grun,finance) + 10g(&buy.finance) )

+10g(1 — Quick,finance) + 10g(1 — Gball, finance) + 108(1 — Gselr,inas
—0.9+ 1.1+ —04+ —0.4+ 04+ —1.1
—4.3 so:

finance
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Why smoothing is important in an NB classifier

e It's important that the estimates of P(F; | Y) be smoothed

e Suppose w is a rare word that doesn’t appear in any documents with
class label y in the training data
= Ny, =0,50 Gu, =0,
i.e., our estimate of P(F,=True | Y=y) is zero
= the NB classifier will never predict y if the document contains w
> this is undesirable because it's possible w was missing from documents
with label y “by chance”, i.e., sparse data
e |t gets worse. Suppose w is a rare word that only appears in documents
with label y, and w’ is a rare word that only appears in documents with
a different label y'.
» what happens if a document turns up containing both w and w’?
- §w,,» = 0 because no document in y’ contains w
— G,y = 0 because no document in y contains w'’
= every class gets a score of zero
= NB cannot choose a label for document
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Bernoulli NB document classification example (4)

sports | run kick ball run
D = .
finance | buy sell sell
sports | kick ball
ﬁsports - 2/3 ﬁﬁnance = 1/3
run kick ball buy sell
G = sports [1/2 2/2 2/2 0/2 0/2
finance | 0/1 0/1 0/1 1/1 1/1
X = run run buy
SCOFG(X7 Sports) = ﬁsports . arun,sports . abuy,sports
(1 - akick,sports) : (1 - aball,sports) N (1 - asell,sports)
= 2/3.1/2.0-0-0-1
= 0
SCOTQ(X7 ﬁnance) = ﬁﬁnance . éirun,ﬁnance . CA]buy,ﬁnance

(1 = Guick,finance) - (1 — @ball finance) * (1 — Gsell, finance)
1/3-0-1-1-1-0
= 0 so:
score of both labels is zero — we can’t pick a winner!
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Multinomial naive Bayes document classifier

e In the multinomial model, a document x with m, words is represented
as a sequence of m, features, where:

> the value of feature F; is word w; at position j

e Formula for multinomial NB document classifier:

mx
y(x) = argmaxP(Y=y) HP(FJ':WJ' | Y=y), where:
yey J:]-
P(FJ:W | Y:y) = q/w,y
a’ — nflvv.y
W7y n./y
n’y = total number of words in all documents labelled y
Ny, = number of occurences of w in documents la-
belled y
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Smoothing in a multinomial NB document classifier

e Smoothing P(F;|Y') is important in a multinomial NB document
classifier (just as in a Bernoulli NB document classifier)

e “Add 1" smoothing for multinomial NB document classifier:

MACQUARIE
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Mmx
argmax P(Y=y) HP(FJ':WJ' | Y=y), where:
yey _I:]-
Auy
My, +1
n, + W]
total number of words in all documents labelled y
number of occurences of w in documents la-
belled y
vocabulary used in classifier
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Multinomial NB document classification example (1)

label ‘ text

sports | run kick ball run
finance | buy sell sell
sports | kick ball

n = 3 IW| =5
n! = 6 =3

sports
,bsports = 3/5 ﬁﬁnance = 2/5
run kick ball buy sell

n’ = sports 2 2 2 0 0
finance | 0 0 0 1 2

D =

/
Nbnance

run kick ball buy sell
§ = spos |3/11 3/11 3/11 1/11 1/11
finance | 1/8 1/8 1/8 2/8 3/8
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Multinomial NB document classification example (2)

ﬁsports

q

X

Score(x, sports)

Score(x, finance)

y(x)
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R P2

12

3/5 ﬁﬁnance - 2/5
run kick ball buy sell

sorts | 3/11 3/11 3/11 1/11 1/11
fnance | 1/8  1/8 1/8 2/8 3/8
run run buy
ﬁSPOFtS ’ allrun,sports ’ é\Illrun,sports ’ é\hljuy,sports
3/5-3/11-3/11-1/11
0.004
Ptinance - é\’éun,ﬁnance ’ é\’Il‘un,ﬁnance ’ é\’l/ouy,ﬁnaunce
2/5-1/8-1/8-2/8
0.002 so:

sports
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Avoiding floating point underflow when calculating
probabilities

e Unless the documents are very short, the probabilities will underflow
floating-point calculations

» calculate log probabilities instead of probabilities

J(x) = arg%axbg(p(y_y))+§j|og(p(5-_wjyy_y))
ye =

mx
= argmaxlog(p,) + » log(ql, ,)
D4

yEy J:]-
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More efficient computation in multinomial NB classifier

e Suppose instead of representing a document by features F', where the
value of feature F; is the word w; at position j,
we represent a document by features G, where

» there is a feature G,, for each w € W, and
> the value g, of G, is the number of times w appears in the document

e Then it's easy to show that:

mx
> log(ah,,) = Y &wlog(dl,,)
=1

wew

e This means the multinomial NB classifier can be computed as:

y(x) = argmaxlog(p,)+ Y &wlog(qy,,)
yey wew

e This saves time if the document is represented as a vector of word-count
pairs

MACQUARIE )/
UNIVERSITY
53/56



Multinomial NB document classification example (3)

I%sports = 3/5 Igﬁnance = 2/5
R ‘ run kick ball buy sell
qg = sports [3/11 3/11 3/11 1/11 1/11
finance | 1/8 1/8 1/8 2/8 3/8
X = run run buy,so gun = 2 and gy = 1

logScore(x, sports)

log(Psports) + &run 108(Ghun sports) T Bbuy 108(Fhuy spe
—05+2-—13+-24

—55

108 (Phinance) + &run 108(Grun finance) + 8buy 108(Ghuy. 5
—0.9+2-—20+-1.4

—6.5

y(x) = sports

12

logScore(x, finance)
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Outline

Summary
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Summary

e Probabilities give us a way to quantify uncertainty
» machine learning involves combining weak or uncertain information from
many sources
e Conditional probabilities describe the probability of one event given that
another event occurs
e Two random variables are independent if knowing the value of one
provides no information about the value of the other
e Bayes rule enables us to invert conditional probability distributions
e A naive Bayes model:
» uses Bayes rule to define the probability of the class label in terms of the
probability of the features given the class label
> assumes that the probability of each feature is independent given the class
label
e The independence assumption makes naive Bayes classifiers very easy to
train
» more sophisticated classifiers (e.g., logistic regression, support vector
machines) don't make this independence assumption
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