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Readings for this week

• NLTK book, chapter 6 section 5 “Naive Bayes classifiers”

• Manning et al, Information to Information Retrieval, chapter 13
I chapter 11 has an introduction to probability theory
I chapter 12 explains how language models can be used for information

retrieval
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Probability and statistics

• Probability theory
I the mathematical theory of random phenomena

• Statistics
I a statistic is a summary (usually a number or a set of numbers) that

summarise a set of data

• A probabilistic model predicts how likely certain kinds of events are
I usually a probabilistic model has one or more adjustable parameters
I try to estimate the values of these parameters from data
I statistical theory provides ways of estimating the value of such adjustable

parameters
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Why are probabilistic models important in machine
learning?

• In the 1980s, a large number of approaches were explored to handle
uncertainly and incomplete or partial knowledge

• Probability and statistics turn out to be the most useful
I probability lets us quantify the degree of uncertainty
I there’s a well-developed mathematical theory to build on
I it’s possible to develop probabilistic models with rich internal structure
I no principled conflict between linguistic theory and probabilistic models
I but many details still have to be worked out
I and there are lots of interesting new models to explore!
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Event space

• An event e is a member of the event space or set E of possible events
I Example: 1 roll of a die, so E = {1, 2, 3, 4, 5, 6}

• In this example E is small, but in many real-life applications E is
astronomical

I in a question-answering system E might be the set of all possible
question/answer pairs (i.e., all possible pairs of sequences of words)

I in a machine translation application E might be the set of all possible
source language/target language sentence pairs
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Probability distributions

• A probability distribution P is a real-valued function on E where:

a. for each e ∈ E , P(e) ≥ 0 and P(e) ≤ 1
i.e., probabilities are real numbers between 0 and 1

b.
∑
e∈E

P(e) = 1, i.e., probabilities sum to 1

I Example (cont.):

P(1) = 0.1 P(4) = 0.1
P(2) = 0.1 P(5) = 0.1
P(3) = 0.1 P(6) = 0.5

• The chance that the event will be realised as e is P(e)
I Example (cont.): the chance of rolling a 5 is P(5) = 0.1
I Frequentists interpret probability to mean “if we repeatedly sample from
E , the fraction of samples that are e is P(e)”.

I There are many other ways of understanding probabilities.
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Normalisation
• Often we’ll only know what the probability of an event is proportional

to, i.e., we’ll know f (e) and that P(e) = c f (e)
I we get P(e) by normalising f , i.e.,

P(e) =
1

Z
f (e),where

Z =
∑
e∈E

f (e)

• Example (cont.):
I Suppose we’re only told that the probability of a 6 is 5 times larger than

the probability of the other sides. That is:

f (1) = 1 f (3) = 1 f (5) = 1
f (2) = 1 f (4) = 1 f (6) = 5

I Then Z =
∑

e∈E f (e) = 10, so

P(1) = 0.1 P(3) = 0.1 P(5) = 0.1
P(2) = 0.1 P(4) = 0.1 P(6) = 0.5
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Random variables
• A random variable is a function defined on the event space E

I Example (cont.): odd is the function

odd(1) = True odd(2) = False odd(3) = True
odd(4) = False odd(5) = True odd(6) = False

• If Y is a random variable and y ∈ Y is one of its values, then:

P(Y=y) =
∑
e∈E

Y (e)=y

P(e)

I Example (cont.):

P(odd=False) = P(2) + P(4) + P(6) = 0.7

P(odd=True) = P(1) + P(3) + P(5) = 0.3

• A discrete random variable is one that ranges over a countable set
I in this course we’ll only work with discrete random variables
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Joint probability distributions
• If X and Y are random variables over the same event space E , then

their joint probability distribution P(X=x ,Y=y) is:

P(X=x ,Y=y) =
∑
e∈E

X (e)=x
Y (e)=y

P(e)

I Example (cont.): Define the random variable div3 as follows:

div3(1) = 0 div3(2) = 0 div3(3) = 1
div3(4) = 1 div3(5) = 1 div3(6) = 2

Then: P(odd=False,div3=0) = P(2) = 0.1

P(odd=False,div3=1) = P(4) = 0.1

P(odd=False,div3=2) = P(6) = 0.5

P(odd=True,div3=0) = P(1) = 0.1

P(odd=True,div3=1) = P(3) + P(5) = 0.2

P(odd=True,div3=2) = 0
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Conditional probability distributions
• The conditional probability distribution P(X | Y ) is defined as:

P(X=x | Y=y) =
P(X=x ,Y=y)

P(Y=y)

• Informally, the conditional probability distribution P(X=x ,Y=y) is
what you get when you:

I restrict the event space to the subset {e : e ∈ E ,Y (e) = y}
I and renormalise

• Example (cont.):

P(odd=True | div3=1) =
P(odd=True,div3=1)

P(div3=1)

=
0.2

0.3

• An equivalent definition:

P(X=x | Y=y) P(Y=y) = P(X=x ,Y=y)
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Joint and conditional probability pictures
• Marginal distributions

P(X=True) P(Y=True)

• Joint distribution

P(X=True,Y=True)

• Conditional distributions

P(Y=True | X=True) P(X=True | Y=True)
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Bayes rule
• Bayes rule is a theorem that relates conditional probability distributions:

P(Y | X ) =
P(X | Y ) P(Y )

P(X )

• Proof: P(Y ,X ) = P(X ,Y )

P(Y | X ) P(X ) = P(X | Y ) P(Y ), so:

P(Y | X ) =
P(X | Y ) P(Y )

P(X )

• Example (cont.):

P(div3=1 | odd=True) =
P(odd=True | div3=1) P(div3=1)

P(odd=True)

=
2/3 · 3/10

3/10

= 2/3
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Independent random variables

• Informal explanation: two random variables X and Y are independent if
knowing the value of X provides no information about the value of Y

• If X and Y are independent then:

P(X ,Y ) = P(X ) P(Y ), or equivalently:

P(Y | X ) = P(Y )

• Example: Suppose an event consists of a roll of a die and a flip of a
coin, so an event might be e = (4,Heads)

I let R be a random variable whose value is the roll of the die (so
R = {1, . . . , 6})

I let F be a random variable whose value is the flip of the coin (so
F = {Heads,Tails})

I it might be reasonable to assume that R and F are independent, i.e.,

P(R,F ) = P(R) P(F )
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Independent identically distributed random variables

• Two random variables X and Y are independent and identically
distributed (i.i.d.) iff they are independent and have the same
distribution

P(X=v) = P(Y=v) for all v ∈ X = Y

I i.i.d. random variables usually arise from repeated samples from the same
distribution
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I.i.d. variables example

• Suppose event consists of 10 rolls of same die
I an event might be e = (2, 4, 2, 5, 1, 1, 6, 2, 1, 5)
I let Xj be the value of the jth roll, j ∈ {1, . . . , 10}
I if the Xj are i.i.d., then P(Xj=x) = P(Xj′=x) for all j , j ′ ∈ {1, . . . , 10}

and x ∈ {1, . . . , 6}
• Let px = P(Xj=x) for all x ∈ {1, . . . , 6}

I px is the probability of rolling a x on any single roll

• Then

P(X1=x1,X2=x2, . . . ,X10=x10) = px1 · px2 · . . . · px10 =
10∏
i=1

pxi

• suppose p = (0.1, 0.1, 0.1, 0.1, 0.1, 0.5) and x = (2, 4, 2, 5, 1, 1, 6, 2, 1, 5)

• then
P(X = x) = 0.1 · 0.1 · 0.1 · 0.1 · 0.1 · 0.1 · 0.5 · 0.1 · 0.1 · 0.1 = 0.19 · 0.5
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�Probability of multiple i.i.d. events

• Suppose X = (X1, . . . ,Xn) consists of n i.i.d. discrete random variables,
with P(Xi=x) = px

• Then the probability P(X=x) of the sequence x = (x1, . . . , xn) is:

P(X=x) = px1 · . . . · pxn =
n∏

i=1

pxi

• If nv is the number of times v appears in x then:

P(X=x) =
∏
v∈X

pnvv

• Example: 5 flips of a coin, with pTails = 0.8, pHeads = 0.2
I x = (Tails,Heads,Tails,Tails,Heads)
I so nTails = 3 and nHeads = 2
I so P(X=x) = 0.83 · 0.22
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Statistics: estimating discrete probabilities

• Suppose we don’t know p, but observe a sample x = (x1, . . . , xn) of n
i.i.d. discrete random variables. Can we estimate p?

• Relative frequency estimator (a.k.a. maximum likelihood estimator)

p̂v =
nv
n
, where:

nv = number of times v appears in (x1, . . . , xn)

I n is a vector of length m = |X |, where X is the set of values that each Xi

range over
I p̂ is a vector of length m too
I (estimates obtained from data are often written with hats)

• Example:
I data: n = 10 rolls of a die, so x = (2, 4, 2, 5, 1, 1, 6, 2, 1, 5)
I so n1 = 3, n2 = 3, n3 = 0, n4 = 1, n5 = 2, n6 = 1
I so p̂1 = 0.3, p̂2 = 0.3, p̂3 = 0, p̂4 = 0.1, p̂5 = 0.2, p̂6 = 0.1
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�Maximum likelihood estimation

• Maximum likelihood estimation is a very general method for estimating
parameter values from data

• It is provably optimal in many circumstances

• Given data x, the likelihood L(p) of parameters p is the probability of
the data w.r.t. the probability distribution specified by p

Lx(p) = Pp(x)

I Example: n = 3 flips of a coin yield x = (Heads,Tails,Heads), so
Lx(p) = pTails · p2Heads

• The maximum likelihood estimate (MLE) p̂ is:

p̂ = argmax
p

Lx(p)

I Example (cont.): it’s possible to show that p̂Heads = 2/3, p̂Tails = 1/3
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The MLE and zero counts, and “add 1” smoothing

• MLE for a categorical distribution given i.i.d. data x = (x1, . . . , xn) is:

p̂v =
nv
n
, where:

nv = the number of times v appears in x

⇒ If nv = 0 then p̂v = 0

• As we’ll see, zero probability predictions can often cause problems

• “Add 1” smoothing, a.k.a. Laplace smoothing, estimates p as:

ˆ̂pv =
nv + 1

n + m
, where:

m = |X |, i.e., the number of values each Xi ranges over

• Example: n = 3 flips of a coin yield x = (Heads,Tails,Heads), so:
I m = |X | = 2
I so ˆ̂pHeads = 3/5 and ˆ̂pTails = 2/5
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Using probabilistic models to build classifiers

• Supervised classification: given training data D = ((x1, y1), . . . , (xn, yn))
where:

I each xi is a data item (e.g., a document)
I and yi is the corresponding label
I predict the label y of a novel data item x

• Probabilistic models can be used to build classifiers
I from D estimate a model P̂(Y | X )
I Use P̂ to predict the label ŷ(x) on novel data item x

ŷ(x) = argmax
y∈Y

P̂(Y=y | X=x)

• It’s possible to show that if P̂(Y |X ) = P(Y |X ) (i.e., our estimated
model is the true model of the data) then this classifier has the highest
accuracy possible (i.e., Bayes optimal)
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Bayesian inversion in classifiers

• Idea: use Bayes rule to “invert” conditional probability

ŷ(x) = argmax
y∈Y

P(Y=y | X=x) (optimal classifier)

= argmax
y∈Y

P(X=x | Y=y) P(Y=y)

P(X=x)
(Bayes rule)

= argmax
y∈Y

P(X=x | Y=y) P(Y=y) (x is constant)

• These equations are exact (i.e., no approximations here)

• P(Y=y) is the probability of a label y
I if the set of possible labels Y is small, estimate P(Y ) from D
I E.g., P̂(Y=y) = ny/n, i.e., fraction of data items with label y

• P(X=x | Y=y) is the probability of data item x given label y
I usually can’t be directly estimated from training data
I because X too large to observe all possible (x , y) combinations in D
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Representing data items as collections of features

• Problem: set of data items X is too large treat each item atomically

• Idea: treat data item X as a collection of features (F1, . . . ,Fm)

• Example: in the name gender classification problem
I X is a name (a character sequence) and Y is its gender
I there 2 features:

– F1 is the last character in X
– F2 is the first vowel in X

I so if X = ‘Steven’, then F1 = ‘n’ and F2 = ‘e’.

• Most probabilistic classifiers use features to handle sparse data

• “Naive” aspect of naive Bayes: assume features are independent given Y
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The “naive” assumption in naive Bayes classifiers
• Optimal classifier: (from before, with X = F )

ŷ(f) = argmax
y∈Y

P(F=f | Y=y) P(Y=y)

I F = (F1, . . . ,Fm) is a vector of features
I P(Y=y) is easy to estimate from D

• “Naive” assumption in naive Bayes:

P(F=f | Y=y) u
m∏
j=1

P(Fj=fj | Y=y)

I i.e., assume the features Fj are independent given Y
I usually not true, but naive Bayes classifiers often work well

• A Naive Bayes classifier is one that uses the “naive Bayes”
approximation for P(F=f | Y=y), so:

ŷ(f) = argmax
y∈Y

P(Y=y)
m∏
j=1

P(Fj=fj | Y=y)
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Naive Bayes classifier for name gender

• Data items X are names, labels Y are their gender

• 2 features: F1 (last character) and F2 (first vowel)

• “Naive” Bayes assumption:

P(F=f | Y=y) u P(F1=f1 | Y=y) P(F2=f2 | Y=y)

• For example, if X = ‘Steven’, F1 = ‘n’ and F2 = ‘e’. So:

P(F=(‘n’, ‘e’) | Y = ‘male’)

u P(F1=‘n’ | Y = ‘male’) P(F2=‘e’ | Y = ‘male’)

• Use Naive Bayes assumption in classifier formula to predict label ŷ :

ŷ(f) = argmax
y∈Y

P(F=f | Y=y) P(Y=y)

= argmax
y∈Y

P(F1=f1 | Y=y) P(F2=f2 | Y=y) P(Y=y)
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Calculating the quantities needed for NB classifier

• For Naive Bayes classifier, need to calculate:

P(Y=y)
m∏
j=1

P(Fj=fj | Y=y)

• Estimate P(Y=y) = py as follows:

p̂y = nY=y/n, where:

n = number of data items in training data, and

nY=y = number of data items with class label y

• Estimate P(Fj=f | Y=y) = qj ,f ,y as follows:

q̂j ,f ,y = nFj=f ,Y=y/nY=y , where:

nFj=f ,Y=y = number of data items where feature Fj has value f
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Add-1 smoothing for NB classifiers
• If any of the probabilities in an NB classifier are zero, this causes the

class to be ruled out:

P(Y=y)
m∏
j=1

P(Fj=fj | Y=y)

Add-1 smoothing can avoid this.
• Estimate P(Y=y) = py as follows:

ˆ̂py =
nY=y + 1

n + |Y|
, where:

n = number of data items in training data, and

nY=y = number of data items with class label y

• Estimate P(Fj=f | Y=y) = qj ,f ,y as follows:

ˆ̂qj ,f ,y =
nFj=f ,Y=y + 1

nY=y + |Fj |
, where:

nFj=f ,Y=y = number of data items where feature Fj has value f
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Naive Bayes classifiers in a broader context

• The “naive” assumption of feature independence (given the label)
makes naive Bayes classifiers very easy to train

• More sophisticated classifiers don’t assume feature independence (e.g.,
logistic regression, support vector machines)

• But naive Bayes can sometimes be very competitive, even when the
“naive” feature independence assumption is not true

• On very large data sets, sometimes naive Bayes is used because more
sophisticated methods would be infeasible

• Many other important models also make a “naive Bayes” independence
assumption (e.g., Hidden Markov Models, Topic Models).
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Generative models

• A generative model is a probabilistic model where the joint distribution
is factored into product of conditional probability distributions

• The naive Bayes model is a generative model:

P(Y ,F1, . . . ,Fm) = P(Y ) P(F1 | Y ) . . . P(Fm | Y )

• Factoring makes it possible to estimate each conditional distributions
independently

I but independence assumptions may cause model to be badly biased
I the major alternative approach (called “discriminative models”) couples

factors via a shared normalisation factor (the “partition function”)
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Bias and variance in Naive Bayes
• Any distribution can factored into a product of conditional distributions:

P(X1,X2, . . . ,Xn) = P(X1) P(X2 | X1) . . . P(Xn | X1, . . . ,Xn−1)

• Independence assumptions reduce the size of the models, but may
introduce bias, e.g.:

P(Xn | X1, . . . ,Xn−1) = P(Xn | X1)

• Example: naive Bayes:
I How many parameters are required to represent P(Y ,F1, . . . ,Fm) directly.
I How many parameters are required to represent each factor in the exact

conditional factorisation:

P(Y ,F1,F2 . . . ,Fm)

= P(Y ) P(F1 | Y ) P(F2 | Y ,F1) . . . P(Fm | Y ,F1, . . . ,Fm−1)

I We get the naive Bayes model if we assume

P(Fj | Y ,F1, . . . ,Fj−1) = P(Fj | Y )

How many parameters does this model require?
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Why Bayes nets?
• Bayesian networks are a graphical notation for writing generative

probabilistic models
• Every generative model can be written as:

P(X1, . . . ,Xm) =
m∏
i=1

P(Xi | Parents i )

where Parents i is a subset of X1, . . . ,Xi−1
• Bayes nets represent this as a directed acyclic graph where:

I each variable Xi is represented as a node
I there is an edge from Xj to Xi iff Xj ∈ Parents i

• Example:
P(X1,X2,X3,X4) = P(X1) P(X2 | X1) P(X3 | X1) P(X4 | X2,X3)

X1

X2

X3

X4
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Naive Bayes as a Bayes net

• The naive Bayes model:

P(Y ,F1, . . . ,Fm) = P(Y ) P(F1 | Y ) . . . P(Fm | Y )

Y

F1

. . .

Fm

• Shaded nodes represent variables whose values are known when
inference is performed

34/56



Plate notation

• Plate notation abbreviates repeated subsets of variables and
dependencies

• The naive Bayes model:

P(Y ,F1, . . . ,Fm) = P(Y ) P(F1 | Y ) . . . P(Fm | Y )

Y Fi

m
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Two ways of using NB for document classification

• Training data D consists of a corpus of documents X where each
document has a class label Y

• Two different kinds of naive Bayes models (at least) that define features
F in different ways

• Bernoulli word features introduce a feature Fw for each word type w
I Fw = True if document X contains w
I Fw = False if document X does not contain w
I A Bernoulli random variable is one with exactly two values (this model

ignores word frequencies)

• Multinomial features introduce a feature Fj for each position j in the
document and assumes that the Fj are i.i.d.

I i.e., each word in the document is generated from the same distribution
P(W |Y ) over words

I (a multinomial random variable is distribution produced by repeatedly
sampling from a finite distribution, e.g., rolls of a die)
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Why use the naive Bayes approximation?

• Both the Bernoulli and the multinomial naive Bayes document
classification models assume the naive Bayes approximation

I the Bernoulli model assumes that the occurence of a word is independent
of the occurence of other words given the document label Y

I the multinomial model assumes that the word in a particular position is
independent of the other words in the document given the document label
Y

• It’s easy to show these assumptions are false
I they are a (structural) bias in our model

• But we make them because:
I these models are computationally and statistically tractable, and
I they do a fairly good job of document classification
I recall bias/variance trade-off (NB has high bias but low variance)
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Estimating a naive Bayes classifier model
• Recall the naive Bayes decision rule:

ŷ(f) = argmax
y∈Y

P(Y=y)
m∏
j=1

P(Fj=fj | Y=y)

where Y is the label and F = (F1, . . . ,Fm) are the features
• The class probabilities P(Y ) are estimated in the same way in both the

Bernoulli and multinomial classifiers

P(Y=y) = py

p̂y = ny/n, where:

n = number of documents in training data, and

ny = number of documents in training data with class label y

I n and p are both vectors of length |Y|
• “Add 1” smoothing can also be used to estimate P(Y=y)

ˆ̂py = (ny + 1)/(n + |Y|)
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Estimating a Bernoulli NB document classifier
• In a Bernoulli NB document classifier, there is a feature Fw for each

word in the vocabulary W
I Fw = True if w is in the document, and False otherwise

P(Fw=True | Y=y) = qw ,y for w ∈ W, y ∈ Y

q̂w ,y =
nw ,y

ny
where:

nw ,y = the number of documents with label y that
contain word w , and

ny = the number of documents with label y

I The ny form a vector of length |Y|
I The qw ,y and nw ,y form matrices of dimensions (|W|, |Y|)

• Smoothing (e.g., “add 1” smoothing) is often essential for q:

ˆ̂qw ,y =
nw ,y + 1

ny + 2
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Bernoulli NB document classification example (1)

D =

label text

sports run kick ball run
finance buy sell sell
sports kick ball

n = 3

nsports = 2 nfinance = 1

ˆ̂psports = 3/5 ˆ̂pfinance = 2/5

n =

run kick ball buy sell

sports 1 2 2 0 0
finance 0 0 0 1 1

ˆ̂q =

run kick ball buy sell

sports 2/4 3/4 3/4 1/4 1/4
finance 1/3 1/3 1/3 2/3 2/3
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Running a Bernoulli NB document classifier

• The naive Bayes classifier decision rule: given a document x

ŷ(x) = argmax
y∈Y

P(Y=y)
∏
w∈W

P(Fw=fw | Y=y)

= argmax
y∈Y

py

(∏
w∈x

qw ,y

)  ∏
w∈W\x

1− qw ,y


= argmax

y∈Y

ny + 1

n + |Y|

(∏
w∈x

nw ,y + 1

ny + 2

)  ∏
w∈W\x

ny − nw ,y + 1

ny + 2


• W is the vocabulary (set of word types)

• qw ,y is probability of a document with label y containing word w , so
1− qw ,y is probability of a document with label y not containing word w

• In the last line I used “add-1” estimates for p and q

42/56



Bernoulli NB document classification example (2)
ˆ̂psports = 3/5 ˆ̂pfinance = 2/5

ˆ̂q =

run kick ball buy sell

sports 2/4 3/4 3/4 1/4 1/4
finance 1/3 1/3 1/3 2/3 2/3

x = run run buy

Score(x , sports) = ˆ̂psports · ˆ̂qrun,sports · ˆ̂qbuy,sports

·(1− ˆ̂qkick,sports) · (1− ˆ̂qball,sports) · (1− ˆ̂qsell,sports)

= 3/5 · 2/4 · 3/4 · 1/4 · 1/4 · 3/4

u 0.011

Score(x , finance) = ˆ̂pfinance · ˆ̂qrun,finance · ˆ̂qbuy,finance

·(1− ˆ̂qkick,finance) · (1− ˆ̂qball,finance) · (1− ˆ̂qsell,finance)

= 2/5 · 1/3 · 2/3 · 2/3 · 2/3 · 1/3

u 0.013 so:

ŷ(x) = finance
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Avoiding floating point underflow when calculating
probabilities

• If vocabulary W is large, floating point arithmetic may underflow

⇒ Use logarithms in these calculations to avoid underflow

ŷ(x) = argmax
y∈Y

log

(
P(Y=y)

∏
w∈W

P(Fw=fw | Y=y)

)
= argmax

y∈Y
log (P(Y=y)) +

∑
w∈W

log (P(Fw=fw | Y=y))

= argmax
y∈Y

log(py ) +

(∑
w∈x

log(qw ,y )

)
+

 ∑
w∈W\x

log(1− qw ,y )


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Bernoulli NB document classification example (3)

ˆ̂psports = 3/5 ˆ̂pfinance = 2/5

ˆ̂q =
run kick ball buy sell

sports 2/4 3/4 3/4 1/4 1/4
finance 1/3 1/3 1/3 2/3 2/3

x = run run buy

logScore(x , sports) = log(ˆ̂psports) + log(ˆ̂qrun,sports) + log(ˆ̂qbuy,sports)

+ log(1− ˆ̂qkick,sports) + log(1− ˆ̂qball,sports) + log(1− ˆ̂qsell,sports)

u −0.5 +−0.7 +−0.3 +−1.4 +−1.4 +−0.3

u −4.5

logScore(x ,finance) = log(ˆ̂pfinance) + log(ˆ̂qrun,finance) + log(ˆ̂qbuy,finance)

+ log(1− ˆ̂qkick,finance) + log(1− ˆ̂qball,finance) + log(1− ˆ̂qsell,finance)

u −0.9 +−1.1 +−0.4 +−0.4 +−0.4 +−1.1

u −4.3 so:

ŷ(x) = finance
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Why smoothing is important in an NB classifier

• It’s important that the estimates of P(Fj | Y ) be smoothed

• Suppose w is a rare word that doesn’t appear in any documents with
class label y in the training data

⇒ nw ,y = 0, so q̂w ,y = 0,
i.e., our estimate of P(Fw=True | Y=y) is zero

⇒ the NB classifier will never predict y if the document contains w
I this is undesirable because it’s possible w was missing from documents

with label y “by chance”, i.e., sparse data

• It gets worse. Suppose w is a rare word that only appears in documents
with label y , and w ′ is a rare word that only appears in documents with
a different label y ′.

I what happens if a document turns up containing both w and w ′?

– q̂w,y′ = 0 because no document in y ′ contains w
– q̂w′,y = 0 because no document in y contains w ′

⇒ every class gets a score of zero
⇒ NB cannot choose a label for document
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Bernoulli NB document classification example (4)

D =

label text

sports run kick ball run
finance buy sell sell
sports kick ball

p̂sports = 2/3 p̂finance = 1/3

q̂ =
run kick ball buy sell

sports 1/2 2/2 2/2 0/2 0/2
finance 0/1 0/1 0/1 1/1 1/1

x = run run buy

Score(x , sports) = p̂sports · q̂run,sports · q̂buy,sports

·(1− q̂kick,sports) · (1− q̂ball,sports) · (1− q̂sell,sports)

= 2/3 · 1/2 · 0 · 0 · 0 · 1
= 0

Score(x , finance) = p̂finance · q̂run,finance · q̂buy,finance

·(1− q̂kick,finance) · (1− q̂ball,finance) · (1− q̂sell,finance)

= 1/3 · 0 · 1 · 1 · 1 · 0
= 0 so:

score of both labels is zero – we can’t pick a winner!

47/56



Multinomial naive Bayes document classifier

• In the multinomial model, a document x with mx words is represented
as a sequence of mx features, where:

I the value of feature Fj is word wj at position j

• Formula for multinomial NB document classifier:

ŷ(x) = argmax
y∈Y

P(Y=y)
mx∏
j=1

P(Fj=wj | Y=y), where:

P(Fj=w | Y=y) = q′w ,y

q̂′w ,y =
n′w ,y

n′y

n′y = total number of words in all documents labelled y

n′w ,y = number of occurences of w in documents la-
belled y
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Smoothing in a multinomial NB document classifier

• Smoothing P(Fj |Y ) is important in a multinomial NB document
classifier (just as in a Bernoulli NB document classifier)

• “Add 1” smoothing for multinomial NB document classifier:

ŷ(x) = argmax
y∈Y

P(Y=y)
mx∏
j=1

P(Fj=wj | Y=y), where:

P(Fj=w | Y=y) = q′w ,y

ˆ̂q′w ,y =
n′w ,y + 1

n′y + |W|
n′y = total number of words in all documents labelled y

n′w ,y = number of occurences of w in documents la-
belled y

W = vocabulary used in classifier
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Multinomial NB document classification example (1)

D =

label text

sports run kick ball run
finance buy sell sell
sports kick ball

n = 3 |W| = 5

n′sports = 6 n′finance = 3

ˆ̂psports = 3/5 ˆ̂pfinance = 2/5

n′ =

run kick ball buy sell

sports 2 2 2 0 0
finance 0 0 0 1 2

ˆ̂q =

run kick ball buy sell

sports 3/11 3/11 3/11 1/11 1/11
finance 1/8 1/8 1/8 2/8 3/8
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Multinomial NB document classification example (2)

ˆ̂psports = 3/5 ˆ̂pfinance = 2/5

ˆ̂q =

run kick ball buy sell

sports 3/11 3/11 3/11 1/11 1/11
finance 1/8 1/8 1/8 2/8 3/8

x = run run buy

Score(x , sports) = ˆ̂psports · ˆ̂q′run,sports · ˆ̂q′run,sports · ˆ̂q′buy,sports

= 3/5 · 3/11 · 3/11 · 1/11

u 0.004

Score(x ,finance) = ˆ̂pfinance · ˆ̂q′run,finance · ˆ̂q′run,finance · ˆ̂q′buy,finance

= 2/5 · 1/8 · 1/8 · 2/8

u 0.002 so:

ŷ(x) = sports
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Avoiding floating point underflow when calculating
probabilities

• Unless the documents are very short, the probabilities will underflow
floating-point calculations

I calculate log probabilities instead of probabilities

ŷ(x) = argmax
y∈Y

log(P(Y=y)) +
mx∑
j=1

log (P(Fj=wj | Y=y))

= argmax
y∈Y

log(py ) +
mx∑
j=1

log(q′wj ,y
)
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More efficient computation in multinomial NB classifier

• Suppose instead of representing a document by features F , where the
value of feature Fj is the word wj at position j ,
we represent a document by features G, where

I there is a feature Gw for each w ∈ W, and
I the value gw of Gw is the number of times w appears in the document

• Then it’s easy to show that:

mx∑
j=1

log(q′wj ,y
) =

∑
w∈W

gw log(q′wj ,y
)

• This means the multinomial NB classifier can be computed as:

ŷ(x) = argmax
y∈Y

log(py ) +
∑
w∈W

gw log(q′wj ,y
)

• This saves time if the document is represented as a vector of word-count
pairs
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Multinomial NB document classification example (3)

ˆ̂psports = 3/5 ˆ̂pfinance = 2/5

ˆ̂q =

run kick ball buy sell

sports 3/11 3/11 3/11 1/11 1/11
finance 1/8 1/8 1/8 2/8 3/8

x = run run buy, so grun = 2 and gbuy = 1

logScore(x , sports) = log(ˆ̂psports) + grun log(ˆ̂q′run,sports) + gbuy log(ˆ̂q′buy,sports)

u −0.5 + 2 · −1.3 +−2.4

u −5.5

logScore(x ,finance) = log(ˆ̂pfinance) + grun log(ˆ̂q′run,finance) + gbuy log(ˆ̂q′buy,finance)

= −0.9 + 2 · −2.0 +−1.4

= −6.5

ŷ(x) = sports
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Summary
• Probabilities give us a way to quantify uncertainty

I machine learning involves combining weak or uncertain information from
many sources

• Conditional probabilities describe the probability of one event given that
another event occurs

• Two random variables are independent if knowing the value of one
provides no information about the value of the other

• Bayes rule enables us to invert conditional probability distributions
• A naive Bayes model:

I uses Bayes rule to define the probability of the class label in terms of the
probability of the features given the class label

I assumes that the probability of each feature is independent given the class
label

• The independence assumption makes naive Bayes classifiers very easy to
train

I more sophisticated classifiers (e.g., logistic regression, support vector
machines) don’t make this independence assumption
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