Probabilistic Models in Machine Learning

Mark Johnson

September 3, 2014

Readings for this week

- NLTK book, chapter 6 section 5 "Naive Bayes classifiers"
- Manning et al, Information to Information Retrieval, chapter 13
- chapter 11 has an introduction to probability theory
- chapter 12 explains how language models can be used for information retrieval

Probability and statistics

- Probability theory
- the mathematical theory of random phenomena
- Statistics
- a statistic is a summary (usually a number or a set of numbers) that summarise a set of data
- A probabilistic model predicts how likely certain kinds of events are
- usually a probabilistic model has one or more adjustable parameters
- try to estimate the values of these parameters from data
- statistical theory provides ways of estimating the value of such adjustable parameters

Why are probabilistic models important in machine learning?

- In the 1980s, a large number of approaches were explored to handle uncertainly and incomplete or partial knowledge
- Probability and statistics turn out to be the most useful
- probability lets us quantify the degree of uncertainty
- there's a well-developed mathematical theory to build on
- it's possible to develop probabilistic models with rich internal structure
- no principled conflict between linguistic theory and probabilistic models
- but many details still have to be worked out
- and there are lots of interesting new models to explore!

Outline

A very brief introduction to probability and statistics

Naive Bayes classifiers

Generative models and Bayesian networks

Naive Bayes for supervised document classification

Summary

Event space

- An event e is a member of the event space or set \mathcal{E} of possible events
- Example: 1 roll of a die, so $\mathcal{E}=\{1,2,3,4,5,6\}$
- In this example \mathcal{E} is small, but in many real-life applications \mathcal{E} is astronomical
- in a question-answering system \mathcal{E} might be the set of all possible question/answer pairs (i.e., all possible pairs of sequences of words)
- in a machine translation application \mathcal{E} might be the set of all possible source language/target language sentence pairs

Probability distributions

- A probability distribution P is a real-valued function on \mathcal{E} where:
a. for each $e \in \mathcal{E}, \mathrm{P}(e) \geq 0$ and $\mathrm{P}(e) \leq 1$
i.e., probabilities are real numbers between 0 and 1
b. $\sum_{e \in \mathcal{E}} \mathrm{P}(e)=1$, i.e., probabilities sum to 1
- Example (cont.):

$$
\begin{array}{ll}
\mathrm{P}(1)=0.1 & \mathrm{P}(4)=0.1 \\
\mathrm{P}(2)=0.1 & \mathrm{P}(5)=0.1 \\
\mathrm{P}(3)=0.1 & \mathrm{P}(6)=0.5
\end{array}
$$

- The chance that the event will be realised as e is $\mathrm{P}(e)$
- Example (cont.): the chance of rolling a 5 is $\mathrm{P}(5)=0.1$
- Frequentists interpret probability to mean "if we repeatedly sample from \mathcal{E}, the fraction of samples that are e is $\mathrm{P}(e)$ ".
- There are many other ways of understanding probabilities.

Normalisation

- Often we'll only know what the probability of an event is proportional to, i.e., we'll know $f(e)$ and that $\mathrm{P}(e)=c f(e)$
- we get $\mathrm{P}(e)$ by normalising f, i.e.,

$$
\begin{aligned}
\mathrm{P}(e) & =\frac{1}{Z} f(e), \text { where } \\
Z & =\sum_{e \in \mathcal{E}} f(e)
\end{aligned}
$$

- Example (cont.):
- Suppose we're only told that the probability of a 6 is 5 times larger than the probability of the other sides. That is:

$$
\begin{array}{llll}
f(1)=1 & f(3)=1 & f(5)=1 \\
f(2)=1 & f(4)=1 & f(6)=5
\end{array}
$$

- Then $Z=\sum_{e \in \mathcal{E}} f(e)=10$, so

$$
\begin{array}{llll}
\mathrm{P}(1)=0.1 & \mathrm{P}(3)=0.1 & \mathrm{P}(5)=0.1 \\
\mathrm{P}(2)=0.1 & \mathrm{P}(4)=0.1 & \mathrm{P}(6)=0.5
\end{array}
$$

Random variables

- A random variable is a function defined on the event space \mathcal{E}
- Example (cont.): odd is the function

$$
\begin{array}{lll}
\operatorname{odd}(1) & =\text { True } & \operatorname{odd}(2)=\text { False } \\
\operatorname{odd}(4)=\text { False } & \operatorname{odd}(3)=\text { True } \\
\operatorname{odd}(5)=\text { True } & \operatorname{odd}(6)=\text { False }
\end{array}
$$

- If Y is a random variable and $y \in \mathcal{Y}$ is one of its values, then:

$$
\mathrm{P}(Y=y)=\sum_{\substack{e \in \mathcal{E} \\ Y(e)=y}} \mathrm{P}(e)
$$

- Example (cont.):

$$
\begin{aligned}
\mathrm{P}(\text { odd }=\text { False }) & =\mathrm{P}(2)+\mathrm{P}(4)+\mathrm{P}(6)=0.7 \\
\mathrm{P}(\text { odd }=\text { True }) & =\mathrm{P}(1)+\mathrm{P}(3)+\mathrm{P}(5)=0.3
\end{aligned}
$$

- A discrete random variable is one that ranges over a countable set
- in this course we'll only work with discrete random variables

Joint probability distributions

- If X and Y are random variables over the same event space \mathcal{E}, then their joint probability distribution $\mathrm{P}(X=x, Y=y)$ is:

$$
\mathrm{P}(X=x, Y=y)=\sum_{\substack{e \in \mathcal{E} \\ x(e)=x \\ Y(e)=y}} \mathrm{P}(e)
$$

- Example (cont.): Define the random variable div ${ }_{3}$ as follows:

$$
\begin{array}{lll}
\operatorname{div}_{3}(1)=0 & \operatorname{div}_{3}(2)=0 & \operatorname{div}_{3}(3)=1 \\
\operatorname{div}_{3}(4)=1 & \operatorname{div}_{3}(5)=1 & \operatorname{div}_{3}(6)=2
\end{array}
$$

Then:

$$
\begin{aligned}
& \mathrm{P}\left(\text { odd }=\text { False, } \operatorname{div}_{3}=0\right)=\mathrm{P}(2)=0.1 \\
& \mathrm{P}\left(\text { odd }=\text { False }, \operatorname{div}_{3}=1\right)=\mathrm{P}(4)=0.1 \\
& \mathrm{P}\left(\text { odd }=\text { False, } \operatorname{div}_{3}=2\right)=\mathrm{P}(6)=0.5 \\
& \mathrm{P}\left(\text { odd }=\text { True, } \operatorname{div}_{3}=0\right)=\mathrm{P}(1)=0.1 \\
& \mathrm{P}\left(\text { odd }=\text { True }, \operatorname{div}_{3}=1\right)=\mathrm{P}(3)+\mathrm{P}(5)=0.2 \\
& \mathrm{P}\left(\text { odd }=\text { True, } \operatorname{div}_{3}=2\right)=0
\end{aligned}
$$

Conditional probability distributions

- The conditional probability distribution $\mathrm{P}(X \mid Y)$ is defined as:

$$
\mathrm{P}(X=x \mid Y=y)=\frac{\mathrm{P}(X=x, Y=y)}{\mathrm{P}(Y=y)}
$$

- Informally, the conditional probability distribution $\mathrm{P}(X=x, Y=y)$ is what you get when you:
- restrict the event space to the subset $\{e: e \in \mathcal{E}, Y(e)=y\}$
- and renormalise
- Example (cont.):

$$
\begin{aligned}
\mathrm{P}\left(\text { odd }=\text { True } \mid \operatorname{div}_{3}=1\right) & =\frac{\mathrm{P}\left(\text { odd }=\text { True }, \operatorname{div}_{3}=1\right)}{\mathrm{P}\left(\operatorname{div}_{3}=1\right)} \\
& =\frac{0.2}{0.3}
\end{aligned}
$$

- An equivalent definition:

$$
\mathrm{P}(X=x \mid Y=y) \mathrm{P}(Y=y)=\mathrm{P}(X=x, Y=y)
$$

Joint and conditional probability pictures

- Marginal distributions

- Joint distribution

- Conditional distributions

$$
\mathrm{P}(Y=\text { True } \mid X=\text { True }) \quad \mathrm{P}(X=\text { True } \mid Y=\text { True })
$$

Bayes rule

- Bayes rule is a theorem that relates conditional probability distributions:

$$
\mathrm{P}(Y \mid X)=\frac{\mathrm{P}(X \mid Y) \mathrm{P}(Y)}{\mathrm{P}(X)}
$$

- Proof:

$$
\begin{aligned}
\mathrm{P}(Y, X) & =\mathrm{P}(X, Y) \\
\mathrm{P}(Y \mid X) \mathrm{P}(X) & =\mathrm{P}(X \mid Y) \mathrm{P}(Y), \text { so: } \\
\mathrm{P}(Y \mid X) & =\frac{\mathrm{P}(X \mid Y) \mathrm{P}(Y)}{\mathrm{P}(X)}
\end{aligned}
$$

- Example (cont.):

$$
\begin{aligned}
\mathrm{P}\left(\operatorname{div}_{3}=1 \mid \text { odd }=\text { True }\right) & =\frac{\mathrm{P}\left(\text { odd }=\text { True } \mid \operatorname{div}_{3}=1\right) \mathrm{P}\left(\operatorname{div}_{3}=1\right)}{\mathrm{P}(\text { odd }=\text { True })} \\
& =\frac{2 / 3 \cdot 3 / 10}{3 / 10} \\
& =2 / 3
\end{aligned}
$$

Independent random variables

- Informal explanation: two random variables X and Y are independent if knowing the value of X provides no information about the value of Y
- If X and Y are independent then:

$$
\begin{aligned}
\mathrm{P}(X, Y) & =\mathrm{P}(X) \mathrm{P}(Y), \text { or equivalently: } \\
\mathrm{P}(Y \mid X) & =\mathrm{P}(Y)
\end{aligned}
$$

- Example: Suppose an event consists of a roll of a die and a flip of a coin, so an event might be $e=(4$, Heads $)$
- let R be a random variable whose value is the roll of the die (so $\mathcal{R}=\{1, \ldots, 6\})$
- let F be a random variable whose value is the flip of the coin (so $\mathcal{F}=\{$ Heads, Tails $\}$)
- it might be reasonable to assume that R and F are independent, i.e.,

$$
\mathrm{P}(R, F)=\mathrm{P}(R) \mathrm{P}(F)
$$

Independent identically distributed random variables

- Two random variables X and Y are independent and identically distributed (i.i.d.) iff they are independent and have the same distribution

$$
\mathrm{P}(X=v)=\mathrm{P}(Y=v) \text { for all } v \in \mathcal{X}=\mathcal{Y}
$$

- i.i.d. random variables usually arise from repeated samples from the same distribution

l.i.d. variables example

- Suppose event consists of 10 rolls of same die
- an event might be $e=(2,4,2,5,1,1,6,2,1,5)$
- let X_{j} be the value of the j th roll, $j \in\{1, \ldots, 10\}$
- if the X_{j} are i.i.d., then $\mathrm{P}\left(X_{j}=x\right)=\mathrm{P}\left(X_{j^{\prime}}=x\right)$ for all $j, j^{\prime} \in\{1, \ldots, 10\}$ and $x \in\{1, \ldots, 6\}$
- Let $p_{x}=\mathrm{P}\left(X_{j}=x\right)$ for all $x \in\{1, \ldots, 6\}$
- p_{x} is the probability of rolling a x on any single roll
- Then

$$
\mathrm{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{10}=x_{10}\right)=p_{x_{1}} \cdot p_{x_{2}} \cdot \ldots \cdot p_{x_{10}}=\prod_{1}^{10} p_{x_{i}}
$$

- suppose $\boldsymbol{p}=(0.1,0.1,0.1,0.1,0.1,0.5)$ and $\boldsymbol{x}=(2,4,2,5,1,1, \stackrel{i=1}{6}, 2,1,5)$
- then

$$
\mathrm{P}(\boldsymbol{X}=\boldsymbol{x})=0.1 \cdot 0.1 \cdot 0.1 \cdot 0.1 \cdot 0.1 \cdot 0.1 \cdot 0.5 \cdot 0.1 \cdot 0.1 \cdot 0.1=0.1^{9} \cdot 0.5
$$

2 Probability of multiple i.i.d. events

- Suppose $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ consists of n i.i.d. discrete random variables, with $\mathrm{P}\left(X_{i}=x\right)=p_{x}$
- Then the probability $\mathrm{P}(\boldsymbol{X}=\boldsymbol{x})$ of the sequence $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is:

$$
\mathrm{P}(\boldsymbol{X}=\boldsymbol{x})=p_{x_{1}} \cdot \ldots \cdot p_{x_{n}}=\prod_{i=1}^{n} p_{x_{i}}
$$

- If n_{v} is the number of times v appears in \boldsymbol{x} then:

$$
\mathrm{P}(\boldsymbol{X}=\boldsymbol{x})=\prod_{v \in \mathcal{X}} p_{v}^{n_{v}}
$$

- Example: 5 flips of a coin, with $p_{\text {Tails }}=0.8, p_{\text {Heads }}=0.2$
- $\boldsymbol{x}=$ (Tails, Heads, Tails, Tails, Heads)
- so $n_{\text {Tails }}=3$ and $n_{\text {Heads }}=2$
- so $\mathrm{P}(\boldsymbol{X}=\boldsymbol{x})=0.8^{3} \cdot 0.2^{2}$

Statistics: estimating discrete probabilities

- Suppose we don't know \boldsymbol{p}, but observe a sample $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ of n
i.i.d. discrete random variables. Can we estimate \boldsymbol{p} ?
- Relative frequency estimator (a.k.a. maximum likelihood estimator)

$$
\begin{aligned}
& \hat{p}_{v}=\frac{n_{v}}{n}, \quad \text { where: } \\
& n_{v}=\text { number of times } v \text { appears in }\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- n is a vector of length $m=|\mathcal{X}|$, where X is the set of values that each X_{i} range over
- \hat{p} is a vector of length m too
- (estimates obtained from data are often written with hats)
- Example:
- data: $n=10$ rolls of a die, so $\boldsymbol{x}=(2,4,2,5,1,1,6,2,1,5)$
- so $n_{1}=3, n_{2}=3, n_{3}=0, n_{4}=1, n_{5}=2, n_{6}=1$
- so $\hat{p}_{1}=0.3, \hat{p}_{2}=0.3, \hat{p}_{3}=0, \hat{p}_{4}=0.1, \hat{p}_{5}=0.2, \hat{p}_{6}=0.1$

2Maximum likelihood estimation

Maximum likelihood estimation is a very general method for estimating parameter values from data

- It is provably optimal in many circumstances
- Given data \boldsymbol{x}, the likelihood $L(\boldsymbol{p})$ of parameters \boldsymbol{p} is the probability of the data w.r.t. the probability distribution specified by \boldsymbol{p}

$$
L_{x}(\boldsymbol{p})=\mathrm{P}_{\boldsymbol{p}}(\boldsymbol{x})
$$

- Example: $n=3$ flips of a coin yield $x=$ (Heads, Tails, Heads), so

$$
L_{x}(\boldsymbol{p})=p_{\text {Tails }} \cdot p_{\text {Heads }}^{2}
$$

- The maximum likelihood estimate (MLE) $\hat{\boldsymbol{p}}$ is:

$$
\hat{\boldsymbol{p}}=\underset{\boldsymbol{p}}{\operatorname{argmax}} L_{x}(\boldsymbol{p})
$$

- Example (cont.): it's possible to show that $\hat{p}_{\text {Heads }}=2 / 3, \hat{\rho}_{\text {Tails }}=1 / 3$

The MLE and zero counts, and "add 1" smoothing

- MLE for a categorical distribution given i.i.d. data $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is:

$$
\begin{aligned}
& \hat{p}_{v}=\frac{n_{v}}{n}, \text { where: } \\
& n_{v}=\text { the number of times } v \text { appears in } \boldsymbol{x}
\end{aligned}
$$

\Rightarrow If $n_{v}=0$ then $\hat{p}_{v}=0$

- As we'll see, zero probability predictions can often cause problems
- "Add 1" smoothing, a.k.a. Laplace smoothing, estimates pas:

$$
\begin{aligned}
\hat{\hat{p}}_{v} & =\frac{n_{v}+1}{n+m}, \quad \text { where: } \\
m & =|\mathcal{X}|, \quad \text { i.e., the number of values each } X_{i} \text { ranges over }
\end{aligned}
$$

- Example: $n=3$ flips of a coin yield $\boldsymbol{x}=$ (Heads, Tails, Heads), so:
- $m=|\mathcal{X}|=2$
- so $\hat{\hat{p}}_{\text {Heads }}=3 / 5$ and $\hat{\hat{p}}_{\text {Tails }}=2 / 5$

Outline

A very brief introduction to probability and statistics

Naive Bayes classifiers

Generative models and Bayesian networks

Naive Bayes for supervised document classification

Using probabilistic models to build classifiers

- Supervised classification: given training data $D=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ where:
- each x_{i} is a data item (e.g., a document)
- and y_{i} is the corresponding label
- predict the label y of a novel data item x
- Probabilistic models can be used to build classifiers
- from D estimate a model $\widehat{\mathrm{P}}(Y \mid X)$
- Use $\widehat{\mathrm{P}}$ to predict the label $\hat{y}(x)$ on novel data item x

$$
\hat{y}(x)=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \widehat{P}(Y=y \mid X=x)
$$

- It's possible to show that if $\widehat{\mathrm{P}}(Y \mid X)=\mathrm{P}(Y \mid X)$ (i.e., our estimated model is the true model of the data) then this classifier has the highest accuracy possible (i.e., Bayes optimal)

Bayesian inversion in classifiers

- Idea: use Bayes rule to "invert" conditional probability

$$
\begin{aligned}
\widehat{y}(x) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(Y=y \mid X=x) & & \text { (optimal classifier) } \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{\mathrm{P}(X=x \mid Y=y) \mathrm{P}(Y=y)}{\mathrm{P}(X=x)} & & \text { (Bayes rule) } \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(X=x \mid Y=y) \mathrm{P}(Y=y) & & \text { (x is constant) }
\end{aligned}
$$

- These equations are exact (i.e., no approximations here)
- $\mathrm{P}(Y=y)$ is the probability of a label y
- if the set of possible labels \mathcal{Y} is small, estimate $\mathrm{P}(Y)$ from D
- E.g., $\widehat{\mathrm{P}}(Y=y)=n_{y} / n$, i.e., fraction of data items with label y
- $\mathrm{P}(X=x \mid Y=y)$ is the probability of data item x given label y
- usually can't be directly estimated from training data
- because \mathcal{X} too large to observe all possible (x, y) combinations in D

Representing data items as collections of features

- Problem: set of data items \mathcal{X} is too large treat each item atomically
- Idea: treat data item X as a collection of features $\left(F_{1}, \ldots, F_{m}\right)$
- Example: in the name gender classification problem
- X is a name (a character sequence) and Y is its gender
- there 2 features:
- F_{1} is the last character in X
- F_{2} is the first vowel in X
- so if $X=$ 'Steven', then $F_{1}=$ 'n' and $F_{2}=$ 'e'.
- Most probabilistic classifiers use features to handle sparse data
- "Naive" aspect of naive Bayes: assume features are independent given Y

The "naive" assumption in naive Bayes classifiers

- Optimal classifier: (from before, with $X=\boldsymbol{F}$)

$$
\widehat{y}(\boldsymbol{f})=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(\boldsymbol{F}=\boldsymbol{f} \mid Y=y) \mathrm{P}(Y=y)
$$

- $\boldsymbol{F}=\left(F_{1}, \ldots, F_{m}\right)$ is a vector of features
- $\mathrm{P}(Y=y)$ is easy to estimate from D
- "Naive" assumption in naive Bayes:

$$
\mathrm{P}(\boldsymbol{F}=\boldsymbol{f} \mid Y=y) \approx \prod_{j=1}^{m} \mathrm{P}\left(F_{j}=f_{j} \mid Y=y\right)
$$

- i.e., assume the features F_{j} are independent given Y
- usually not true, but naive Bayes classifiers often work well
- A Naive Bayes classifier is one that uses the "naive Bayes" approximation for $\mathrm{P}(\boldsymbol{F}=\boldsymbol{f} \mid Y=y)$, so:

$$
\widehat{y}(\boldsymbol{f})=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(Y=y) \prod_{j=1}^{m} \mathrm{P}\left(F_{j}=f_{j} \mid Y=y\right)
$$

Naive Bayes classifier for name gender

- Data items X are names, labels Y are their gender
- 2 features: F_{1} (last character) and F_{2} (first vowel)
- "Naive" Bayes assumption:

$$
\mathrm{P}(\boldsymbol{F}=\boldsymbol{f} \mid Y=y) \approx \mathrm{P}\left(F_{1}=f_{1} \mid Y=y\right) \mathrm{P}\left(F_{2}=f_{2} \mid Y=y\right)
$$

- For example, if $X=$ 'Steven', $F_{1}=$ ' n ' and $F_{2}=$ ' e '. So:

$$
\begin{aligned}
& \mathrm{P}\left(\boldsymbol{F}=\left(\text { ' }^{\prime} \text { ', 'e' }\right) \mid Y=\text { 'male' }\right) \\
& \quad \approx \mathrm{P}\left(F_{1}={ }^{\prime} \mathrm{n} \text { ' } \mid Y=\text { 'male' }\right) \mathrm{P}\left(F_{2}={ }^{\prime} \mathrm{e}^{\prime} \mid Y=\text { 'male' }\right)
\end{aligned}
$$

- Use Naive Bayes assumption in classifier formula to predict label \widehat{y} :

$$
\begin{aligned}
\hat{y}(\boldsymbol{f}) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(\boldsymbol{F}=\boldsymbol{f} \mid Y=y) \mathrm{P}(Y=y) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}\left(F_{1}=f_{1} \mid Y=y\right) \mathrm{P}\left(F_{2}=f_{2} \mid Y=y\right) \mathrm{P}(Y=y)
\end{aligned}
$$

Calculating the quantities needed for NB classifier

- For Naive Bayes classifier, need to calculate:

$$
\mathrm{P}(Y=y) \prod_{j=1}^{m} \mathrm{P}\left(F_{j}=f_{j} \mid Y=y\right)
$$

- Estimate $\mathrm{P}(Y=y)=p_{y}$ as follows:

$$
\begin{aligned}
\hat{p}_{y} & =n_{Y=y} / n, \quad \text { where: } \\
n & =\text { number of data items in training data, and } \\
n_{Y=y} & =\text { number of data items with class label } y
\end{aligned}
$$

- Estimate $\mathrm{P}\left(F_{j}=f \mid Y=y\right)=q_{j, f, y}$ as follows:

$$
\begin{aligned}
\hat{q}_{j, f, y} & =n_{F_{j}=f, Y=y} / n_{Y=y}, \quad \text { where: } \\
n_{F_{j}=f, Y=y} & =\text { number of data items where feature } F_{j} \text { has value } f
\end{aligned}
$$

Add-1 smoothing for NB classifiers

- If any of the probabilities in an NB classifier are zero, this causes the class to be ruled out:

$$
\mathrm{P}(Y=y) \prod_{j=1}^{m} \mathrm{P}\left(F_{j}=f_{j} \mid Y=y\right)
$$

Add-1 smoothing can avoid this.

- Estimate $\mathrm{P}(Y=y)=p_{y}$ as follows:

$$
\hat{\hat{p}}_{y}=\frac{n_{Y=y}+1}{n+|\mathcal{Y}|}, \quad \text { where: }
$$

$n=$ number of data items in training data, and
$n_{Y=y}=$ number of data items with class label y

- Estimate $\mathrm{P}\left(F_{j}=f \mid Y=y\right)=q_{j, f, y}$ as follows:

$$
\hat{\hat{q}}_{j, f, y}=\frac{n_{F_{j}=f, Y=y}+1}{n_{Y=y}+\left|\mathcal{F}_{j}\right|} \text {, where: }
$$

$n_{F_{j}=f, Y=y}=$ number of data items where feature F_{j} has value f

Naive Bayes classifiers in a broader context

- The "naive" assumption of feature independence (given the label) makes naive Bayes classifiers very easy to train
- More sophisticated classifiers don't assume feature independence (e.g., logistic regression, support vector machines)
- But naive Bayes can sometimes be very competitive, even when the "naive" feature independence assumption is not true
- On very large data sets, sometimes naive Bayes is used because more sophisticated methods would be infeasible
- Many other important models also make a "naive Bayes" independence assumption (e.g., Hidden Markov Models, Topic Models).

Outline

A very brief introduction to probability and statistics

Naive Bayes classifiers

Generative models and Bayesian networks

Naive Bayes for supervised document classification

Generative models

- A generative model is a probabilistic model where the joint distribution is factored into product of conditional probability distributions
- The naive Bayes model is a generative model:

$$
\mathrm{P}\left(Y, F_{1}, \ldots, F_{m}\right)=\mathrm{P}(Y) \mathrm{P}\left(F_{1} \mid Y\right) \ldots \mathrm{P}\left(F_{m} \mid Y\right)
$$

- Factoring makes it possible to estimate each conditional distributions independently
- but independence assumptions may cause model to be badly biased
- the major alternative approach (called "discriminative models") couples factors via a shared normalisation factor (the "partition function")

Bias and variance in Naive Bayes

- Any distribution can factored into a product of conditional distributions:

$$
\mathrm{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\mathrm{P}\left(X_{1}\right) \mathrm{P}\left(X_{2} \mid X_{1}\right) \ldots \mathrm{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

- Independence assumptions reduce the size of the models, but may introduce bias, e.g.:

$$
\mathrm{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\mathrm{P}\left(X_{n} \mid X_{1}\right)
$$

- Example: naive Bayes:
- How many parameters are required to represent $\mathrm{P}\left(Y, F_{1}, \ldots, F_{m}\right)$ directly.
- How many parameters are required to represent each factor in the exact conditional factorisation:

$$
\begin{aligned}
& \mathrm{P}\left(Y, F_{1}, F_{2} \ldots, F_{m}\right) \\
& \quad=\mathrm{P}(Y) \mathrm{P}\left(F_{1} \mid Y\right) \mathrm{P}\left(F_{2} \mid Y, F_{1}\right) \ldots \mathrm{P}\left(F_{m} \mid Y, F_{1}, \ldots, F_{m-1}\right)
\end{aligned}
$$

- We get the naive Bayes model if we assume

$$
\mathrm{P}\left(F_{j} \mid Y, F_{1}, \ldots, F_{j-1}\right)=\mathrm{P}\left(F_{j} \mid Y\right)
$$

How many parameters does this model require?

Why Bayes nets?

- Bayesian networks are a graphical notation for writing generative probabilistic models
- Every generative model can be written as:

$$
\mathrm{P}\left(X_{1}, \ldots, X_{m}\right)=\prod_{i=1}^{m} \mathrm{P}\left(X_{i} \mid \text { Parents }_{i}\right)
$$

where Parents ${ }_{i}$ is a subset of X_{1}, \ldots, X_{i-1}

- Bayes nets represent this as a directed acyclic graph where:
- each variable X_{i} is represented as a node
- there is an edge from X_{j} to X_{i} iff $X_{j} \in$ Parents $_{i}$
- Example:

$$
\mathrm{P}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\mathrm{P}\left(X_{1}\right) \mathrm{P}\left(X_{2} \mid X_{1}\right) \mathrm{P}\left(X_{3} \mid X_{1}\right) \mathrm{P}\left(X_{4} \mid X_{2}, X_{3}\right)
$$

Naive Bayes as a Bayes net

- The naive Bayes model:

$$
\mathrm{P}\left(Y, F_{1}, \ldots, F_{m}\right)=\mathrm{P}(Y) \mathrm{P}\left(F_{1} \mid Y\right) \ldots \mathrm{P}\left(F_{m} \mid Y\right)
$$

- Shaded nodes represent variables whose values are known when inference is performed

Plate notation

- Plate notation abbreviates repeated subsets of variables and dependencies
- The naive Bayes model:

$$
\mathrm{P}\left(Y, F_{1}, \ldots, F_{m}\right)=\mathrm{P}(Y) \mathrm{P}\left(F_{1} \mid Y\right) \ldots \mathrm{P}\left(F_{m} \mid Y\right)
$$

Outline

A very brief introduction to probability and statistics

Naive Bayes classifiers

Generative models and Bayesian networks

Naive Bayes for supervised document classification

Two ways of using NB for document classification

- Training data D consists of a corpus of documents X where each document has a class label Y
- Two different kinds of naive Bayes models (at least) that define features \boldsymbol{F} in different ways
- Bernoulli word features introduce a feature F_{w} for each word type w
- $F_{w}=$ True if document X contains w
- $F_{w}=$ False if document X does not contain w
- A Bernoulli random variable is one with exactly two values (this model ignores word frequencies)
- Multinomial features introduce a feature F_{j} for each position j in the document and assumes that the F_{j} are i.i.d.
- i.e., each word in the document is generated from the same distribution $\mathrm{P}(W \mid Y)$ over words
- (a multinomial random variable is distribution produced by repeatedly sampling from a finite distribution, e.g., rolls of a die)

Why use the naive Bayes approximation?

- Both the Bernoulli and the multinomial naive Bayes document classification models assume the naive Bayes approximation
- the Bernoulli model assumes that the occurence of a word is independent of the occurence of other words given the document label Y
- the multinomial model assumes that the word in a particular position is independent of the other words in the document given the document label Y
- It's easy to show these assumptions are false
- they are a (structural) bias in our model
- But we make them because:
- these models are computationally and statistically tractable, and
- they do a fairly good job of document classification
- recall bias/variance trade-off (NB has high bias but low variance)

Estimating a naive Bayes classifier model

- Recall the naive Bayes decision rule:

$$
\widehat{y}(\boldsymbol{f})=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(Y=y) \prod_{j=1}^{m} \mathrm{P}\left(F_{j}=f_{j} \mid Y=y\right)
$$

where Y is the label and $\boldsymbol{F}=\left(F_{1}, \ldots, F_{m}\right)$ are the features

- The class probabilities $\mathrm{P}(Y)$ are estimated in the same way in both the Bernoulli and multinomial classifiers

$$
\begin{aligned}
\mathrm{P}(Y=y) & =p_{y} \\
\hat{p}_{y} & =n_{y} / n, \quad \text { where: } \\
n & =\text { number of documents in training data, and } \\
n_{y} & =\text { number of documents in training data with class label } y
\end{aligned}
$$

- \boldsymbol{n} and \boldsymbol{p} are both vectors of length $|\mathcal{Y}|$
- "Add 1" smoothing can also be used to estimate $\mathrm{P}(Y=y)$

$$
\hat{\hat{p}}_{y}=\left(n_{y}+1\right) /(n+|\mathcal{Y}|)
$$

Estimating a Bernoulli NB document classifier

- In a Bernoulli NB document classifier, there is a feature F_{w} for each word in the vocabulary \mathcal{W}
- $F_{w}=$ True if w is in the document, and False otherwise

$$
\begin{aligned}
\mathrm{P}\left(F_{w}=\text { True } \mid Y=y\right) & =q_{w, y} \quad \text { for } w \in \mathcal{W}, y \in \mathcal{Y} \\
\hat{q}_{w, y} & =\frac{n_{w, y}}{n_{y}} \quad \text { where: } \\
n_{w, y} & =\text { the number of documents with label } y \text { that } \\
& \text { contain word } w, \text { and } \\
n_{y} & =\text { the number of documents with label } y
\end{aligned}
$$

- The n_{y} form a vector of length $|\mathcal{Y}|$
- The $q_{w, y}$ and $n_{w, y}$ form matrices of dimensions $(|\mathcal{W}|,|\mathcal{Y}|)$
- Smoothing (e.g., "add 1" smoothing) is often essential for q :

$$
\hat{\hat{q}}_{w, y}=\frac{n_{w, y}+1}{n_{y}+2}
$$

Bernoulli NB document classification example (1)

$$
\begin{aligned}
& D=\begin{array}{c|l}
\text { label } & \text { text } \\
\hline \text { sports } & \text { run kick ball run } \\
\text { finance } \\
\text { sports } & \text { buy sell sell } \\
\text { kick ball }
\end{array} \\
& n=3 \\
& n_{\text {sports }}=2 \quad n_{\text {finance }}=1 \\
& \hat{\hat{p}}_{\text {sports }}=3 / 5 \quad \hat{\hat{p}}_{\text {finance }}=2 / 5 \\
& \boldsymbol{n}=\begin{array}{c|ccccc}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 1 & 2 & 2 & 0 & 0 \\
\text { finance } & 0 & 0 & 0 & 1 & 1
\end{array} \\
& \hat{\hat{\boldsymbol{q}}}=\begin{array}{c|ccccc}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 2 / 4 & 3 / 4 & 3 / 4 & 1 / 4 & 1 / 4 \\
\text { finance } & 1 / 3 & 1 / 3 & 1 / 3 & 2 / 3 & 2 / 3
\end{array}
\end{aligned}
$$

Running a Bernoulli NB document classifier

- The naive Bayes classifier decision rule: given a document x

$$
\begin{aligned}
\widehat{y}(x) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(Y=y) \prod_{w \in \mathcal{W}} \mathrm{P}\left(F_{w}=f_{w} \mid Y=y\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p_{y}\left(\prod_{w \in x} q_{w, y}\right)\left(\prod_{w \in \mathcal{W} \backslash x} 1-q_{w, y}\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{n_{y}+1}{n+|\mathcal{Y}|}\left(\prod_{w \in x} \frac{n_{w, y}+1}{n_{y}+2}\right)\left(\prod_{w \in \mathcal{W} \backslash x} \frac{n_{y}-n_{w, y}+1}{n_{y}+2}\right)
\end{aligned}
$$

- \mathcal{W} is the vocabulary (set of word types)
- $q_{w, y}$ is probability of a document with label y containing word w, so $1-q_{w, y}$ is probability of a document with label y not containing word w
- In the last line I used "add-1" estimates for \boldsymbol{p} and \boldsymbol{q}

Bernoulli NB document classification example (2)

$$
\hat{\hat{p}}_{\text {sports }}=3 / 5 \quad \hat{\hat{p}}_{\text {finance }}=2 / 5
$$

$$
\hat{\hat{\boldsymbol{q}}}=\begin{array}{c|ccccc}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 2 / 4 & 3 / 4 & 3 / 4 & 1 / 4 & 1 / 4 \\
\text { finance } & 1 / 3 & 1 / 3 & 1 / 3 & 2 / 3 & 2 / 3
\end{array}
$$

$$
x=\text { run run buy }
$$

$\operatorname{Score}(x$, sports $)=\hat{\hat{p}}_{\text {sports }} \cdot \hat{\hat{q}}_{\text {run,sports }} \cdot \hat{\hat{q}}_{\text {buy,sports }}$

$$
\begin{aligned}
& \cdot\left(1-\hat{\hat{q}}_{\mathrm{kick}, \text { sports }}\right) \cdot\left(1-\hat{\hat{q}}_{\mathrm{ball}, \text { sports }}\right) \cdot\left(1-\hat{\hat{q}}_{\text {sell,sports }}\right) \\
= & 3 / 5 \cdot 2 / 4 \cdot 3 / 4 \cdot 1 / 4 \cdot 1 / 4 \cdot 3 / 4 \\
\approx & 0.011
\end{aligned}
$$

$\operatorname{Score}(x$, finance $)=\hat{\hat{p}}_{\text {finance }} \cdot \hat{\hat{q}}_{\text {run,finance }} \cdot \hat{\hat{q}}_{\text {buy,finance }}$

$$
\begin{aligned}
& \cdot\left(1-\hat{\hat{q}}_{\text {kick,finance }}\right) \cdot\left(1-\hat{\hat{q}}_{\text {ball,finance }}\right) \cdot\left(1-\hat{\hat{q}}_{\text {sell,finance }}\right) \\
= & 2 / 5 \cdot 1 / 3 \cdot 2 / 3 \cdot 2 / 3 \cdot 2 / 3 \cdot 1 / 3 \\
\approx & 0.013 \quad \mathrm{so}: \\
\widehat{y}(x)= & \text { finance }
\end{aligned}
$$

Avoiding floating point underflow when calculating probabilities

- If vocabulary \mathcal{W} is large, floating point arithmetic may underflow
\Rightarrow Use logarithms in these calculations to avoid underflow

$$
\begin{aligned}
\widehat{y}(x) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \log \left(\mathrm{P}(Y=y) \prod_{w \in \mathcal{W}} \mathrm{P}\left(F_{w}=f_{w} \mid Y=y\right)\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \log (\mathrm{P}(Y=y))+\sum_{w \in \mathcal{W}} \log \left(\mathrm{P}\left(F_{w}=f_{w} \mid Y=y\right)\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \log \left(p_{y}\right)+\left(\sum_{w \in x} \log \left(q_{w, y}\right)\right)+\left(\sum_{w \in \mathcal{W} \backslash x} \log \left(1-q_{w, y}\right)\right)
\end{aligned}
$$

Bernoulli NB document classification example (3)

$$
\begin{aligned}
& \hat{\hat{p}}_{\text {sports }}=3 / 5 \quad \hat{\hat{p}}_{\text {finance }}=2 / 5 \\
& \hat{\hat{\boldsymbol{q}}}=\begin{array}{c|ccccc}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 2 / 4 & 3 / 4 & 3 / 4 & 1 / 4 & 1 / 4 \\
\text { finance } & 1 / 3 & 1 / 3 & 1 / 3 & 2 / 3 & 2 / 3
\end{array} \\
& x=\text { run run buy } \\
& \log \operatorname{Score}(x, \text { sports })=\log \left(\hat{\hat{p}}_{\text {sports }}\right)+\log \left(\hat{\hat{q}}_{\text {run,sports }}\right)+\log \left(\hat{\hat{q}}_{\text {buy,sports }}\right) \\
& +\log \left(1-\hat{\hat{q}}_{\text {kick,sports }}\right)+\log \left(1-\hat{\hat{q}}_{\text {ball,sports }}\right)+\log \left(1-\hat{\hat{q}}_{\text {sell,sports }}\right. \\
& \approx-0.5+-0.7+-0.3+-1.4+-1.4+-0.3 \\
& \approx-4.5 \\
& \operatorname{logScore}(x, \text { finance })=\log \left(\hat{\hat{p}}_{\text {finance }}\right)+\log \left(\hat{\hat{q}}_{\text {run,finance }}\right)+\log \left(\hat{\hat{q}}_{\text {buy }, \text { finance }}\right) \\
& +\log \left(1-\hat{\hat{q}}_{\text {kick,finance }}\right)+\log \left(1-\hat{\hat{q}}_{\text {ball,finance }}\right)+\log \left(1-\hat{\hat{q}}_{\text {sell,finar }}\right. \\
& \approx-0.9+-1.1+-0.4+-0.4+-0.4+-1.1 \\
& \approx-4.3 \text { so: } \\
& \widehat{y}(x)=\text { finance }
\end{aligned}
$$

Why smoothing is important in an NB classifier

- It's important that the estimates of $\mathrm{P}\left(F_{j} \mid Y\right)$ be smoothed
- Suppose w is a rare word that doesn't appear in any documents with class label y in the training data

$$
\begin{aligned}
\Rightarrow & n_{w, y}=0 \text {, so } \hat{q}_{w, y}=0 \\
& \text { i.e., our estimate of } \mathrm{P}\left(F_{w}=\text { True } \mid Y=y\right) \text { is zero }
\end{aligned}
$$

\Rightarrow the NB classifier will never predict y if the document contains w

- this is undesirable because it's possible w was missing from documents with label y "by chance", i.e., sparse data
- It gets worse. Suppose w is a rare word that only appears in documents with label y, and w^{\prime} is a rare word that only appears in documents with a different label y^{\prime}.
- what happens if a document turns up containing both w and w^{\prime} ?
- $\hat{q}_{w, y^{\prime}}=0$ because no document in y^{\prime} contains w
- $\hat{q}_{w^{\prime}, y}=0$ because no document in y contains w^{\prime}
\Rightarrow every class gets a score of zero
\Rightarrow NB cannot choose a label for document

Bernoulli NB document classification example (4)

$$
\begin{aligned}
& x=\text { run run buy } \\
& \operatorname{Score}(x, \text { sports })=\hat{p}_{\text {sports }} \cdot \hat{q}_{\text {run,sports }} \cdot \hat{q}_{\text {buy }, \text { sports }} \\
& \cdot\left(1-\hat{q}_{\text {kick,sports }}\right) \cdot\left(1-\hat{q}_{\text {ball,sports }}\right) \cdot\left(1-\hat{q}_{\text {sell,sports }}\right) \\
& =2 / 3 \cdot 1 / 2 \cdot 0 \cdot 0 \cdot 0 \cdot 1 \\
& =0 \\
& \operatorname{Score}(x, \text { finance })=\hat{p}_{\text {finance }} \cdot \hat{q}_{\text {run,finance }} \cdot \hat{q}_{\text {buy,finance }} \\
& \cdot\left(1-\hat{q}_{\text {kick,finance }}\right) \cdot\left(1-\hat{q}_{\text {ball,finance }}\right) \cdot\left(1-\hat{q}_{\text {sell,finance }}\right) \\
& =1 / 3 \cdot 0 \cdot 1 \cdot 1 \cdot 1 \cdot 0 \\
& =0 \text { so: } \\
& \text { score of both labels is zero - we can't pick a winner! }
\end{aligned}
$$

Multinomial naive Bayes document classifier

- In the multinomial model, a document x with m_{x} words is represented as a sequence of m_{x} features, where:
- the value of feature F_{j} is word w_{j} at position j
- Formula for multinomial NB document classifier:

$$
\begin{aligned}
\widehat{y}(x) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(Y=y) \prod_{j=1}^{m_{x}} \mathrm{P}\left(F_{j}=w_{j} \mid Y=y\right), \quad \text { where: } \\
\mathrm{P}\left(F_{j}=w \mid Y=y\right) & =q_{w, y}^{\prime} \\
\hat{q}_{w, y}^{\prime}= & \frac{n_{w, y}^{\prime}}{n_{y}^{\prime}} \\
n_{y}^{\prime}= & \text { total number of words in all documents labelled } y \\
n_{w, y}^{\prime}= & \text { number of occurences of } w \text { in documents la- } \\
& \text { belled } y
\end{aligned}
$$

Smoothing in a multinomial NB document classifier

- Smoothing $\mathrm{P}\left(F_{j} \mid Y\right)$ is important in a multinomial NB document classifier (just as in a Bernoulli NB document classifier)
- "Add 1" smoothing for multinomial NB document classifier:

$$
\begin{aligned}
\widehat{y}(x) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \mathrm{P}(Y=y) \prod_{j=1}^{m_{x}} \mathrm{P}\left(F_{j}=w_{j} \mid Y=y\right), \quad \text { where: } \\
\mathrm{P}\left(F_{j}=w \mid Y=y\right) & =q_{w, y}^{\prime} \\
\hat{\hat{q}}_{w, y}^{\prime} & =\frac{n_{w, y}^{\prime}+1}{n_{y}^{\prime}+|\mathcal{W}|} \\
n_{y}^{\prime} & =\text { total number of words in all documents labelled } y \\
n_{w, y}^{\prime} & =\text { number of occurences of } w \text { in documents la- } \\
\mathcal{W} & =\text { belled } y
\end{aligned}
$$

Multinomial NB document classification example (1)

$$
\begin{aligned}
& D=\begin{array}{c|l}
\text { label } & \text { text } \\
\hline \text { sports } & \text { run kick ball run } \\
\text { finance } \\
\text { sports } & \begin{array}{l}
\text { buy sell sell } \\
\text { kick ball }
\end{array}
\end{array} \\
& n=3 \quad|\mathcal{W}|=5 \\
& n_{\text {sports }}^{\prime}=6 \quad n_{\text {finance }}^{\prime}=3 \\
& \hat{\hat{p}}_{\text {sports }}=3 / 5 \quad \hat{\hat{p}}_{\text {finance }}=2 / 5 \\
& \boldsymbol{n}^{\prime}=\begin{array}{c|ccccc}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 2 & 2 & 2 & 0 & 0 \\
\text { finance } & 0 & 0 & 0 & 1 & 2
\end{array} \\
& \hat{\hat{\boldsymbol{q}}}=\begin{array}{c|ccccc}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 3 / 11 & 3 / 11 & 3 / 11 & 1 / 11 & 1 / 11
\end{array} \\
& \begin{array}{l|lllll}
\text { finance } & 1 / 8 & 1 / 8 & 1 / 8 & 2 / 8 & 3 / 8
\end{array}
\end{aligned}
$$

Multinomial NB document classification example (2)

$$
\begin{aligned}
& \hat{\hat{p}}_{\text {sports }}=3 / 5 \quad \hat{\hat{p}}_{\text {finance }}=2 / 5 \\
& \hat{\hat{q}}=\begin{array}{l|rrrrr}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 3 / 11 & 3 / 11 & 3 / 11 & 1 / 11 & 1 / 11
\end{array} \\
& \begin{array}{l|lllll}
\text { finance } & 1 / 8 & 1 / 8 & 1 / 8 & 2 / 8 & 3 / 8
\end{array} \\
& x=\text { run run buy } \\
& \operatorname{Score}(x, \text { sports })=\hat{\hat{p}}_{\text {sports }} \cdot \hat{\hat{q}}_{\text {run,sports }}^{\prime} \cdot \hat{\hat{q}}_{\text {run,sports }}^{\prime} \cdot \hat{\hat{q}}_{\text {buy, sports }}^{\prime} \\
& =3 / 5 \cdot 3 / 11 \cdot 3 / 11 \cdot 1 / 11 \\
& \approx 0.004 \\
& \operatorname{Score}(x, \text { finance })=\hat{\hat{p}}_{\text {finance }} \cdot \hat{\hat{q}}_{\text {run,finance }}^{\prime} \cdot \hat{\hat{q}}_{\text {run,finance }}^{\prime} \cdot \hat{\hat{q}}_{\text {buy,finance }}^{\prime} \\
& =2 / 5 \cdot 1 / 8 \cdot 1 / 8 \cdot 2 / 8 \\
& \approx 0.002 \text { so: } \\
& \hat{y}(x)=\text { sports }
\end{aligned}
$$

Avoiding floating point underflow when calculating probabilities

- Unless the documents are very short, the probabilities will underflow floating-point calculations
- calculate log probabilities instead of probabilities

$$
\begin{aligned}
\widehat{y}(x) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \log (\mathrm{P}(Y=y))+\sum_{j=1}^{m_{x}} \log \left(\mathrm{P}\left(F_{j}=w_{j} \mid Y=y\right)\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \log \left(p_{y}\right)+\sum_{j=1}^{m_{x}} \log \left(q_{w_{j}, y}^{\prime}\right)
\end{aligned}
$$

More efficient computation in multinomial NB classifier

- Suppose instead of representing a document by features \boldsymbol{F}, where the value of feature F_{j} is the word w_{j} at position j, we represent a document by features G, where
- there is a feature G_{w} for each $w \in \mathcal{W}$, and
- the value g_{w} of G_{w} is the number of times w appears in the document
- Then it's easy to show that:

$$
\sum_{j=1}^{m_{\times}} \log \left(q_{w_{j}, y}^{\prime}\right)=\sum_{w \in \mathcal{W}} g_{w} \log \left(q_{w_{j}, y}^{\prime}\right)
$$

- This means the multinomial NB classifier can be computed as:

$$
\widehat{y}(x)=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \log \left(p_{y}\right)+\sum_{w \in \mathcal{W}} g_{w} \log \left(q_{w_{j}, y}^{\prime}\right)
$$

- This saves time if the document is represented as a vector of word-count pairs

Multinomial NB document classification example (3)

$$
\begin{aligned}
& \hat{\hat{p}}_{\text {sports }}=3 / 5 \quad \hat{\hat{p}}_{\text {finance }}=2 / 5 \\
& \hat{\hat{\boldsymbol{q}}}=\begin{array}{l|ccccc}
& \text { run } & \text { kick } & \text { ball } & \text { buy } & \text { sell } \\
\hline \text { sports } & 3 / 11 & 3 / 11 & 3 / 11 & 1 / 11 & 1 / 11 \\
\text { finance } & 1 / 8 & 1 / 8 & 1 / 8 & 2 / 8 & 3 / 8
\end{array} \\
& x=\text { run run buy, so } g_{\text {run }}=2 \text { and } g_{\text {buy }}=1 \\
& \log \operatorname{Score}(x, \text { sports })=\log \left(\hat{\hat{p}}_{\text {sports }}\right)+g_{\text {run }} \log \left(\hat{\hat{q}}_{\text {run,sports }}^{\prime}\right)+g_{\text {buy }} \log \left(\hat{\hat{q}}_{\text {buy }, \text { spa }}^{\prime}\right. \\
& \approx-0.5+2 \cdot-1.3+-2.4 \\
& \approx-5.5 \\
& \log \operatorname{Score}(x, \text { finance })=\log \left(\hat{\hat{p}}_{\text {finance }}\right)+g_{\text {run }} \log \left(\hat{\hat{q}}_{\text {run,finance }}^{\prime}\right)+g_{\text {buy }} \log \left(\hat{\hat{q}}_{\text {buy }, \text { fi }}^{\prime}\right. \\
& =-0.9+2 \cdot-2.0+-1.4 \\
& =-6.5 \\
& \widehat{y}(x)=\text { sports }
\end{aligned}
$$

Outline

A very brief introduction to probability and statistics

Naive Bayes classifiers

Generative models and Bayesian networks

Naive Bayes for supervised document classification

Summary

Summary

- Probabilities give us a way to quantify uncertainty
- machine learning involves combining weak or uncertain information from many sources
- Conditional probabilities describe the probability of one event given that another event occurs
- Two random variables are independent if knowing the value of one provides no information about the value of the other
- Bayes rule enables us to invert conditional probability distributions
- A naive Bayes model:
- uses Bayes rule to define the probability of the class label in terms of the probability of the features given the class label
- assumes that the probability of each feature is independent given the class label
- The independence assumption makes naive Bayes classifiers very easy to train
- more sophisticated classifiers (e.g., logistic regression, support vector machines) don't make this independence assumption

