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What is sequence labelling?

e A sequence labelling problem is one where:
> the input consists of a sequence X = (Xi,...,X,), and

> the output consists of a sequence Y = (Yi,...,Y,) of labels, where:

» Y, is the label for element X;
e Example: Part-of-speech tagging

Y _ Verb, Determiner, Noun
X - spread, the, butter

e Example: Spelling correction

Y _ write, a, book
X - rite, a, buk
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Named entity extraction with IOB labels

o Named entity recognition and classification (NER) involves finding the
named entities in a text and identifying what type of entity they are
(e.g., person, location, corporation, dates, etc.)

e NER can be formulated as a sequence labelling problem
e Inside-Outside-Begin (IOB) labelling scheme indicates the beginning and

span of each named entity

B-ORG I-ORG O O O B-LOC [-LOC I-LOC O
Macquarie  University is located in New South  Wales

e The IOB labelling scheme lets us identify adjacent named entities

B-LOC I-LOC |-LOC B-LOC I-LOC 0] B-LOC )
New South  Wales Northern  Territory and Queensland are

e This technology can extract information from:

> news stories
» financial reports
» classified ads
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Other applications of sequence labelling

e Speech transcription as a sequence labelling task

» The input X = (X1, ..., X,) is a sequence of acoustic frames X;, where X;
is a set of features extracted from a 50msec window of the speech signal
» The output Y is a sequence of words (the transcript of the speech signal)

e Financial applications of sequence labelling
» identifying trends in price movements

¢ Biological applications of sequence labelling
» gene-finding in DNA or RNA sequences
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A first (bad) approach to sequence labelling

e |dea: train a supervised classifier to predict entire label sequence at once

B-ORG I-ORG (0] (0] O B-LOC I-LOC I-LOC O
Macquarie  University is located in New South  Wales

e Problem: the number of possible label sequences grows exponentially
with the length of the sequence

» with binary labels, there are 2" different label sequences of a sequence of
length n (232 = 4 billion)

= most labels won't be observed even in very large training data sets

e This approach fails because it has massive sparse data problems
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A better approach to sequence labelling

time
B-LOC I-LOC O O 0} 0} O B-LOC
Western  Australia is the largest state in Australia

Avoids sparse data problems in label space

as features

But this approach can produce inconsistent label sequences

(¢} B-LOC I-ORG I-ORG O O (0] 0]
The New York Times is a newspaper

= Track dependencies between adjacent labels
» “chicken-and-egg” problem that Hidden Markov Models solve!
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Idea: train a supervised classifier to predict the label of one word at a

0]

As well as current word, classifiers can use previous and following words
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The big picture

o Optimal classifier: y(x) = argmax, P(Y=y | X=x)
e How can we avoid sparse data problems when estimating P(Y | X)

= Decompose P(Y | X) into a product of distributions that don't have
sparse data problems

e How can we compute the argmax over all possible label sequences y?

= Use the Viterbi algorithm (dynamic programming over a trellis) to
search over an exponential number of sequences 'y in linear time
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Introduction to Hidden Markov models

e Hidden Markov models (HMMs) are a simple sequence labelling model
e HMMs are noisy channel models generating

P(X,Y) = P(X|Y)P(Y)

> the source model P(Y) is a Markov model (e.g., a bigram language
model)

n+1

[[P(vil i)
i=1
> the channel model P(X | Y) generates each X; independently, i.e.,
P(X|Y) HP (Xi | Yy
e At testing time we only know X, so Y is unobserved or hidden
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Terminology in Hidden Markov Models

e Hidden Markov models (HMMs) generate pairs of sequences (x,y)

e The sequence x is called:

> the input sequence, or
» the observations, or
> the visible data

because x is given when an HMM is used for sequence labelling

e The sequence y is called:
> the label sequence, or

> the tag sequence, or
» the hidden data

because y is unknown when an HMM is used for sequence labelling

e Ay €} is sometimes called a hidden state because an HMM can be
viewed as a stochastic automaton

» each different y € ) is a state in the automaton
» the x are emissions from the automaton
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Review: Naive Bayes models

e The naive Bayes model:

P(Y,X1,...,.Xn) = P(Y)P(X{|Y)...P(Xm|Y)

e In a Naive Bayes classifier, the X; are features and Y'is the class label
we want to predict

» P(X; | Y) can be Bernoulli, multinomial, Gaussian etc.
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Review: Markov models and n-gram language models

e An bigram language model is a first-order Markov model that factorises
the distribution over a sequence y into a product of conditional
distributions:

m
P(y) = HP(yI ‘yl'—na"'ayi—l)
i=1

> pady with end markers, i.e., y = ($,y1, Y2, .-+, ¥Ym, $)
e In a bigram language model, y is a sentence and the y; are words.

e First-order Markov model as a Bayes net:

S (5
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Hidden Markov models

e A Hidden Markov Model (s, t) defines a probability distribution over
an item sequence X = (Xi,...,X,), where each X; € X, and
a label sequence Y = (Y1,...,Y,), where each Y; € ), as:
P(X,Y) = P(X|Y)P(Y)
n+1
P(Y=($,y1,...,¥n %)) = J[P(Yi=yil Yica=vyi1)
i=1
n+1
= H S)’iv}’i—l (i'e" P(Y,‘:y ‘ Yf*lzyl) - 5,‘/»,\//)
i=1

P(X=(x1,...,xn) | Y=($,y1,---,¥n,9$))

n
= HP(X,':X,' | Yi=yi)
i—1

n
= JItey G P(X=x|Yi=y) =1,
i=1

MACQUARIE
UNIVERSITY ‘)}I

14/38



Hidden Markov models as Bayes nets

e A Hidden Markov Model (HMM) defines a joint distribution P(X,Y)
over:

> item sequences X = (X,...,X,) and
> label sequencesY = (Yo =9, Y1,..., Yy, Yor1 =9$):

P(X,Y) = (HP(Y,-|Y,-_1)P(X,-|Y,-)> P(Yni1 | V)
i=1

e HMMs can be expressed as Bayes nets, and standard message-passing
inference algorithms work well with HMMs

(D)D)~ —()—®)
bbdédé

MACQUARIE
UNIVERSITY ‘)}I

15/38



The parameters of an HMM

e An HMM is specified by two matrices:
> a matrix s, where s, ,» = P(Yi=y | Yi_1=y') is
the probability of a label y following the label y'

— this is the same as in a bigram language model
— remember to pad y with begin/end of sentence markers $

> a matrix t, where t, , = P(Xj=x| Yi =y) is
the probability of an item x given the label y
— similiar to the feature-class probability P(F; | Y) in naive Bayes
e If the set of labels is Y and the vocabulary is X', then

> sis an m X m matrix, where m = |Y|.
> tisa v X m matrix, where v = |X].
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HMM estimate of a labelled sequence’s probability

)/i\%sji—l g \(/)e;b gelt /\(I)O;n x,-\yi ‘ Verb Det Noun

s = wb [04 01 01 03 ot = 7 8";’ g'é 8"11
Det |04 04 01 0.2 Sl T

butter | 0.4 0.1 0.5

Noun | 0.2 0.2 0.7 0.2

P (X=(spread, the, butter), Y=(Verb, Det, Noun))
= 5§ Verb * SDet,Verb * SNoun,Det * 5§ Noun

'tspread,Verb : tthe,Det : tbutter,Noun
04-04-07-03-0.5-0.8-0.5

0.009

12
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A HMM as a stochastic automaton

State to state transition probabilities

yi\Yic1 | $ Verb Det Noun
$ 0 03 0.1 0.3
Verb 104 01 0.1 0.3
Det 04 04 01 0.2
Noun 0.2 0.2 0.7 0.2

Verb 0.4
spread 0.5
1
4

the 0.
0.3 butter 0.
0-
0.4 Det

‘ ' e

the R
' butter .
Noun I

State to word emission probabilities 04

xi \Yi ‘ Verb Det Noun

spread | 0.5 0.1 0.4
the 0.1 0.8 0.1

butter | 0.4 0.1 0.5

P (X=(spread, the, butter), Y=(Verb, Det, No

spread 0.4
the 0.1
butter 0.5

= S5§,Verb * SDet,Verb * SNoun,Det * S$, Noun

'tspread,Verb : tthe,Det : tbutter,Noun

04-04-07-03-05-0.8-0.5

~ 0.0
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Estimating an HMM from labelled data

e Training data consists of /abelled sequences of data items
e Estimate s, ,» = P(Yj=y | Yj_1=y’) from label sequences y
(just as for language models)

> If n, , is the number of times y follows y’ in training label sequences and
nys is the number of times y’ is followed by anything, then:

3 ny, +1
! = —_—
Y.y ny/ + D}|

» Be sure to count the end-markers $
e Estimate t,, = P(Xij = x| Y; = y) from pairs of item sequences x and
their corresponding label sequence y

> If ry,, is the number of times a data item x is labelled y, and r, is the
number of times y appears in a label sequence, then:

3 Iy +1
i ry +|X|
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Estimating an HMM example

D — K Verb  Noun ) ( Verb Det Noun )}
spread butter /’ \ butter the spread
Yi\Vi1 ‘ $ Verb Det Noun Yi\Yi-1 ‘ $ Verb Det Noun
$ 0 0 0 2 R $ 1/6 1/6 1/5 3/6
n = Verb |2 0 0 0 s = Verb |3/6 1/6 1/5 1/6
Det |0 1 0 0 Det 1/6 2/6 1/5 1/6
Noun |0 1 1 0 Noun |1/6 2/6 2/5 1/6
X,-\y,- ‘ Verb Det Noun X,-\y,- ‘ Verb Det Noun
. _ spread 1 0 1 § _ spread 2/5 1/4 2/5
the 0 1 0 the 1/5 2/4 1/5
butter | 1 0 1 butter | 2/5 1/4 2/5
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Outline

Finding the most probable label sequence

MACQUARIE
UNIVERSITY ‘)}I

21/38



Why is finding the most probable label sequence hard

e When we use an HMM, we're given data items x and want to return the
most probable label sequence:

y(x) = argmaxP(X=x|Y=y)P(Y=y)
yeyn

e If x has n elements and each item has m = |))| possible labels, the
number of possible label sequences is m”

» the number of possible label sequences grows exponentially with the
length of the string
= exhaustive search for the optimal label sequence become impossible once
n is large
o But the Viterbi algorithm finds the most probable label sequence y(x) in
O(n) (linear) time using dynamic programming over a trellis
> the Viterbi algorithm is actually just the shortest path algorithm on the
trellis

MACQUARIE
UNIVERSITY ‘)}I



The trellis

e Given input x of length n, the trellis is a directed acyclic graph where:
» the nodes are all pairs (i,y) fory € Y and i € 1,...,n, plus a starting

node and a final node

> there are edges from the starting node to all nodes (1,y) for each y € Y
> for each y’,y € Y and each i € 2,..., n there is an edge from (i — 1,y’)

to (/,y)

> for each y € Y there is an edge from (n, y) to the final node

e Every possible y is a path through the trellis

(1,Verb) (2,Verb)
$ (1,Det) (2,Det)

(1,Noun) (2,Noun)

spread the
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(3,Verb)

(3,Det)

(3,Noun)

butter
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Using a trellis to find the most probable label sequence y

e One-to-one correspondence between paths from start to finish in the
trellis and label sequences 'y
e High level description of algorithm:

» associate each edge in the trellis with a weight (a number)
» the product of the weights along a path from start to finish will be

P(X=x,Y=y)

» use dynamic programming to find highest scoring path from start to finish
> return the corresponding label sequence y(x)
Conditioned on the input X, the distribution P(Y | X) is an
inhomogenous (i.e., time-varying) Markov chain
> the transition probabilities P(Y; | Yi—1, X;) depend on X; and hence i
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Rearranging the terms in the HMM formula

e Rearrange terms so all terms associated with a time i are together

P(X,Y) = P(Y)P(X]|Y)
Sy1,$ " Syayr T SYnyn—1 T S8,y bayt “boys "+ Exayn

= S8 bayi “Sey by 0 Synyee1  Banyn S8y,
n

= Hs}’hy{—l by | S8,ym
i=1

e Trellis edge weights:

» weight on edge from start node to node (1,y) is wy , s =5, ¢ty
> weight on edge from node (i — 1,y’) to node (i,y) is Wiy, = Sy, - tu.y
» weight on edge from node (n, y) to final node is w1, = S5,

= product of weights on edges of path y in trellis is P(X=x, Y=y)
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Trellis for spread the butter

(1,Verb) —(2,Verb) — 7 (3,Verb)

M N

$ \ (1,Det) — 1 (2,Det) 1 (3,Det) 7
(1, Noun)’ '(2 Noun)’ '(3 Noun)
spread the butter
yi\gf_l ‘ g \ge;b gelt /\g’;” x;)\yi | Verb Det Noun
s = Verb |04 01 01 03 e = P 8'? 8}1; g-i'
Det 04 04 01 0.2 ’ ’ ’
Noun 0.2 butter | 0.4 01 0.5
y2\y1 | Verb  Det  Noun
w = W, — Verb | 0.01 0.01 0.03
1 = , =

Det | 0.32 0.08 0.16
Noun | 0.02 0.07 0.02
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Finding the highest-scoring path

(1,Verb) (2,Verb) (3,Verb)
$ (1,Det) (2,Det) (3,Det) $

(1,Noun) (2,Noun) (3,Noun)

spread the butter

® The score of a path is the product of the weights of the edges along that path

e Key insight: the highest-scoring path to a node (i, y) must begin with a
highest-scoring path to some node (i — 1,y’)

® Let MaxScore(/, y) be the score of the highest scoring path to node (i,y). Then:
MaxScore(l,y) = wi, g
MaxScore(i,y) = max MaxScore(i — 1,y') - w;,, ifl<2<n
y'ey
MaxScore(n+1,$) = max MaxScore(n, y) - Wai1,$,,
y'e
e To find the highest scoring path, compute MaxScore(i, y) for i =1,2,...,n+1in
turn
e .



Finding the highest-scoring path example (1)

(1,Verb) —(2,Verb) — (3,Verb)

$ (1,Det) —j (2,Det) ~ ) (3,Det) — §
(1,Noun)"(2,Noun)”(3,Noun)
spread the butter
yivo | %

w Verb .
! Det | 0.04
Noun | 0.08
MaxScore(1, Verb) = 0.2
MaxScore(1,Det) = 0.04
MaxScore(1,Noun) = 0.08
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Finding the highest-scoring path example (2)

(1,Verb) ) (2,Verb) — (3,Verb)
$ (1,Det) (2,Det) ~ ) (3,Det) — $
(1,Noun)___;(2,Noun)”(3,Noun)
spread the butter
MaxScore(1, Verb) = 0.2 y\n | Verb  Det Noun
Verb | 0.01 0.01 0.03
MaxScore(1,Det) = 0.04 w, =
MaxScore(1,Noun) = 0.08 Det 10.320.08 0.16
’ Noun | 0.02 0.07 0.02
MaxScore(2, Verb) = 0.0024 via Noun
MaxScore(2,Det) = 0.064 via Verb
MaxScore(2,Noun) = 0.004 via Noun
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Finding the highest-scoring path example (3)

/. (1,Verb) = (2,Verb) — (3,Verb)
$ (1,Det) — 1 (2,Det) ) (3,Det) — §
(1,Noun)” (2,Noun)”7(3,Noun)
spread the butter
MaxScore(2, Verb) = 0.0024 ys\ | Verb  Det  Noun
Verb | 0.04 0.04 0.12
MaxScore(2,Det) = 0.064 ws =
MaxScore(2,Noun) = 0.004 Det 1 0.04 001 0.02
’ ’ Noun | 0.1 035 0.1
MaxScore(3, Verb) = 0.00256 via Det
MaxScore(3,Det) = 0.00064 via Det
MaxScore(3,Noun) = 0.0224 via Det
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Finding the highest-scoring path example (4)

(1,Verb) -~ (2,Verb) — ' (3,Verb)
$ < (1Det) /-~ (2.Det) —(~ (3.Det) —— §
(1,Noun)"(2,Noun)”7(3,Noun)
spread the butter
MaxScore(3, Verb) = 0.00256
MaxScore(3,Det) = 0.00064 wy, = $\$y3 } \Ge;b git I\gogn
MaxScore(3,Noun) = 0.0224 ' ' '
MaxScore(4,$) = 0.00672 via Noun
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Forward-backward algorithms

e This dynamic programming algorithm is an instance of a general family
of algorithms known as forward-backward algorithms

e The forward pass computes a probability of a prefix of the input

e The backward pass computes a probability of a suffix of the input
e With these it is possible compute:
> the marginal probability of any state given the input P(Yi=y | X = x)
» the marginal probability of any adjacent pair of states
P(Yi_i=y, Yi=y' | X = x)
» the expected number of times any pair of states is seen in the input
Elny, | X]
e These are required for estimating HMMs from unlabelled data using the
Expectation-Maximisation Algorithm
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Higher-order HMMs
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The “order” of an HMM

e The order of an HMM is the number of previous labels used to predict
the current label Y;
A first-order HMM uses the previous label Y;_; to predict Y;:

n+1

P(Y) = J[ P(YilYi-1)
i=1

(the HMMs we've seen so far are all first-order HMMs)
A second-order HMM uses the previous two labels Y;_> and Y;_1 to
predict Y;:

n+1
P(Y) = [] P(Yil Y1, Yi2)
i=1

the parameters used in a second-order HMM are more complex
s is a three-dimensional array of size m x m x m, where m = ||

P(Yi=y | Yiei=y', Yieo=y") = s,y
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Bayes net representation of a 2nd-order HMM

(HPY’YII le))(n+1|yn)

<>
e $ Y1 Y> Y3 Ya $
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@The trellis in higher-order HMMs

e The nodes in the trellis encode the information required from “the past”
in order to predict the next label Y;

> a first-order HMM tracks one past label = trellis states are pairs (i, y’),
where Y;_1 =y’

> a second-order HMM tracks two past labels = trellis states are triples
(i,y',y"), where Y;_1 =y’ and Y;_, = y”

> in a k-th order HMM, trellis states consist of a position index i and k
Y-values for Y;_1,Yi_o,...,Yi_«

e This means that for a sequence X of length n and where the number of
states || = m, a k-th order HMM has O(n - m¥) nodes in the trellis

e Since every edge is visited a constant number of times, the
computational complexity of the Viterbi algorithm is also O(n - m*T1).
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Summary
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Summary

Sequence labelling is an important kind of structured prediction problem

Hidden Markov Models (HMMs) can be viewed as a generalisation of
Naive Bayes models where the label Y is generated by a Markov model

» HMMs can also be viewed as stochastic automata with a hidden state

Forward-backward algorithms are dynamic programming algorithms that
can compute:

» the Viterbi (i.e., most likely) label sequence for a string
> the expected number of times each state-output or state-state transition
is used in the analysis of a string

HMMs make the same independence assumptions as Naive Bayes
» Conditional Random Fields (CRFs) are a generalisation of HMMs that
relax these independence assumptions
» CRFs are the sequence labelling generalisation of logistic regression
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