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What is sequence labelling?

• A sequence labelling problem is one where:
I the input consists of a sequence X = (X1, . . . ,Xn), and
I the output consists of a sequence Y = (Y1, . . . ,Yn) of labels, where:
I Yi is the label for element Xi

• Example: Part-of-speech tagging(
Y
X

)
=

(
Verb, Determiner, Noun
spread, the, butter

)
• Example: Spelling correction(

Y
X

)
=

(
write, a, book
rite, a, buk

)
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Named entity extraction with IOB labels

• Named entity recognition and classification (NER) involves finding the
named entities in a text and identifying what type of entity they are
(e.g., person, location, corporation, dates, etc.)

• NER can be formulated as a sequence labelling problem

• Inside-Outside-Begin (IOB) labelling scheme indicates the beginning and
span of each named entity

B-ORG I-ORG O O O B-LOC I-LOC I-LOC O
Macquarie University is located in New South Wales .

• The IOB labelling scheme lets us identify adjacent named entities

B-LOC I-LOC I-LOC B-LOC I-LOC O B-LOC O . . .
New South Wales Northern Territory and Queensland are . . .

• This technology can extract information from:
I news stories
I financial reports
I classified ads
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Other applications of sequence labelling

• Speech transcription as a sequence labelling task
I The input X = (X1, . . . ,Xn) is a sequence of acoustic frames Xi , where Xi

is a set of features extracted from a 50msec window of the speech signal
I The output Y is a sequence of words (the transcript of the speech signal)

• Financial applications of sequence labelling
I identifying trends in price movements

• Biological applications of sequence labelling
I gene-finding in DNA or RNA sequences
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A first (bad) approach to sequence labelling

• Idea: train a supervised classifier to predict entire label sequence at once

B-ORG I-ORG O O O B-LOC I-LOC I-LOC O
Macquarie University is located in New South Wales .

• Problem: the number of possible label sequences grows exponentially
with the length of the sequence

I with binary labels, there are 2n different label sequences of a sequence of
length n (232 = 4 billion)

⇒ most labels won’t be observed even in very large training data sets

• This approach fails because it has massive sparse data problems
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A better approach to sequence labelling

• Idea: train a supervised classifier to predict the label of one word at a
time

B-LOC I-LOC O O O O O B-LOC O
Western Australia is the largest state in Australia .

• Avoids sparse data problems in label space

• As well as current word, classifiers can use previous and following words
as features

• But this approach can produce inconsistent label sequences

O B-LOC I-ORG I-ORG O O O O
The New York Times is a newspaper .

⇒ Track dependencies between adjacent labels
I “chicken-and-egg” problem that Hidden Markov Models solve!

7/38



Outline

Sequence labelling

Hidden Markov Models

Finding the most probable label sequence

Higher-order HMMs

Summary

8/38



The big picture

• Optimal classifier: ŷ(x) = argmaxy P(Y=y | X=x)

• How can we avoid sparse data problems when estimating P(Y | X)

⇒ Decompose P(Y | X) into a product of distributions that don’t have
sparse data problems

• How can we compute the argmax over all possible label sequences y?

⇒ Use the Viterbi algorithm (dynamic programming over a trellis) to
search over an exponential number of sequences y in linear time

9/38



Introduction to Hidden Markov models

• Hidden Markov models (HMMs) are a simple sequence labelling model

• HMMs are noisy channel models generating

P(X,Y) = P(X | Y)P(Y)

I the source model P(Y) is a Markov model (e.g., a bigram language
model)

P(Y) =
n+1∏
i=1

P(Yi | Yi−1)

I the channel model P(X | Y) generates each Xi independently, i.e.,

P(X | Y) =
n∏

i=1

P(Xi | Yi )

• At testing time we only know X, so Y is unobserved or hidden
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Terminology in Hidden Markov Models

• Hidden Markov models (HMMs) generate pairs of sequences (x, y)

• The sequence x is called:
I the input sequence, or
I the observations, or
I the visible data

because x is given when an HMM is used for sequence labelling

• The sequence y is called:
I the label sequence, or
I the tag sequence, or
I the hidden data

because y is unknown when an HMM is used for sequence labelling

• A y ∈ Y is sometimes called a hidden state because an HMM can be
viewed as a stochastic automaton

I each different y ∈ Y is a state in the automaton
I the x are emissions from the automaton
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Review: Naive Bayes models

• The naive Bayes model:

P(Y ,X1, . . . ,Xm) = P(Y )P(X1 | Y ) . . . P(Xm | Y )

Y

X1

. . .

Xm

• In a Naive Bayes classifier, the Xi are features and Y is the class label
we want to predict

I P(Xi | Y ) can be Bernoulli, multinomial, Gaussian etc.
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Review: Markov models and n-gram language models

• An bigram language model is a first-order Markov model that factorises
the distribution over a sequence y into a product of conditional
distributions:

P(y) =
m∏
i=1

P(yi | yi−n, . . . , yi−1)

I pad y with end markers, i.e., y = ($, y1, y2, . . . , ym, $)

• In a bigram language model, y is a sentence and the yi are words.

• First-order Markov model as a Bayes net:

$ Y1 Y2 Y3 Y4 $
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Hidden Markov models
• A Hidden Markov Model (s, t) defines a probability distribution over

an item sequence X = (X1, . . . ,Xn), where each Xi ∈ X , and
a label sequence Y = (Y1, . . . ,Yn), where each Yi ∈ Y, as:

P(X,Y) = P(X | Y) P(Y)

P(Y=($, y1, . . . , yn, $)) =
n+1∏
i=1

P(Yi=yi | Yi−1=yi−1)

=
n+1∏
i=1

syi ,yi−1 (i.e., P(Yi=y | Yi−1=y ′) = sy,y′)

P(X=(x1, . . . , xn) | Y=($, y1, . . . , yn, $))

=
n∏

i=1

P(Xi=xi | Yi=yi )

=
n∏

i=1

txi ,yi (i.e., P(Xi=x | Yi=y) = tx,y )
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Hidden Markov models as Bayes nets

• A Hidden Markov Model (HMM) defines a joint distribution P(X,Y)
over:

I item sequences X = (X1, . . . ,Xn) and
I label sequences Y = (Y0 = $,Y1, . . . ,Yn,Yn+1 = $):

P(X,Y) =

(
n∏

i=1

P(Yi | Yi−1)P(Xi | Yi )

)
P(Yn+1 | Yn)

• HMMs can be expressed as Bayes nets, and standard message-passing
inference algorithms work well with HMMs

$ Y1 Y2 Y3 Y4 $

X1 X2 X3 X4
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The parameters of an HMM

• An HMM is specified by two matrices:
I a matrix s, where sy ,y ′ = P(Yi=y | Yi−1=y ′) is

the probability of a label y following the label y ′

– this is the same as in a bigram language model
– remember to pad y with begin/end of sentence markers $

I a matrix t, where tx,y = P(Xi=x | Yi = y) is
the probability of an item x given the label y

– similiar to the feature-class probability P(Fj | Y ) in naive Bayes

• If the set of labels is Y and the vocabulary is X , then
I s is an m ×m matrix, where m = |Y|.
I t is a v ×m matrix, where v = |X |.
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HMM estimate of a labelled sequence’s probability

s =

yi\yi−1 $ Verb Det Noun

$ 0 0.3 0.1 0.3
Verb 0.4 0.1 0.1 0.3
Det 0.4 0.4 0.1 0.2
Noun 0.2 0.2 0.7 0.2

t =

xi\yi Verb Det Noun

spread 0.5 0.1 0.4
the 0.1 0.8 0.1

butter 0.4 0.1 0.5

P (X=(spread, the,butter),Y=(Verb,Det,Noun))

= s$,Verb · sDet,Verb · sNoun,Det · s$,Noun

·tspread,Verb · tthe,Det · tbutter,Noun

= 0.4 · 0.4 · 0.7 · 0.3 · 0.5 · 0.8 · 0.5
u 0.009
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A HMM as a stochastic automaton
State to state transition probabilities

yi\yi−1 $ Verb Det Noun

$ 0 0.3 0.1 0.3
Verb 0.4 0.1 0.1 0.3
Det 0.4 0.4 0.1 0.2
Noun 0.2 0.2 0.7 0.2

State to word emission probabilities

xi\yi Verb Det Noun

spread 0.5 0.1 0.4
the 0.1 0.8 0.1

butter 0.4 0.1 0.5

P (X=(spread, the,butter),Y=(Verb,Det,Noun))

= s$,Verb · sDet,Verb · sNoun,Det · s$,Noun

·tspread,Verb · tthe,Det · tbutter,Noun

= 0.4 · 0.4 · 0.7 · 0.3 · 0.5 · 0.8 · 0.5
u 0.009

Verb

the

butter

spread 0.5

0.1

0.4

$ Det

the

butter

spread 0.1

0.8

0.1

Noun

the

butter

spread 0.4

0.1

0.5

0.4

0.2

0.3

0.1

0.4

0.2

0.1

0.10.4

0.1

0.7

0.3

0.3

0.2

0.2
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Estimating an HMM from labelled data

• Training data consists of labelled sequences of data items

• Estimate sy ,y ′ = P(Yi=y | Yi−1=y ′) from label sequences y
(just as for language models)

I If ny ,y ′ is the number of times y follows y ′ in training label sequences and
ny ′ is the number of times y ′ is followed by anything, then:

ˆ̂sy ,y ′ =
ny ,y ′ + 1

ny ′ + |Y|

I Be sure to count the end-markers $

• Estimate tx ,y = P(Xi = x | Yi = y) from pairs of item sequences x and
their corresponding label sequence y

I If rx,y is the number of times a data item x is labelled y , and ry is the
number of times y appears in a label sequence, then:

ˆ̂tx,y =
rx,y + 1

ry + |X |
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Estimating an HMM example

D =

[(
Verb Noun
spread butter

)
,

(
Verb Det Noun
butter the spread

)]

n =

yi\yi−1 $ Verb Det Noun

$ 0 0 0 2
Verb 2 0 0 0
Det 0 1 0 0
Noun 0 1 1 0

ˆ̂s =

yi\yi−1 $ Verb Det Noun

$ 1/6 1/6 1/5 3/6
Verb 3/6 1/6 1/5 1/6
Det 1/6 2/6 1/5 1/6
Noun 1/6 2/6 2/5 1/6

r =

xi\yi Verb Det Noun

spread 1 0 1
the 0 1 0

butter 1 0 1

ˆ̂t =

xi\yi Verb Det Noun

spread 2/5 1/4 2/5
the 1/5 2/4 1/5

butter 2/5 1/4 2/5
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Why is finding the most probable label sequence hard

• When we use an HMM, we’re given data items x and want to return the
most probable label sequence:

ŷ(x) = argmax
y∈Yn

P(X=x | Y=y)P(Y=y)

• If x has n elements and each item has m = |Y| possible labels, the
number of possible label sequences is mn

I the number of possible label sequences grows exponentially with the
length of the string

⇒ exhaustive search for the optimal label sequence become impossible once
n is large

• But the Viterbi algorithm finds the most probable label sequence ŷ(x) in
O(n) (linear) time using dynamic programming over a trellis

I the Viterbi algorithm is actually just the shortest path algorithm on the
trellis
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The trellis
• Given input x of length n, the trellis is a directed acyclic graph where:

I the nodes are all pairs (i , y) for y ∈ Y and i ∈ 1, . . . , n, plus a starting
node and a final node

I there are edges from the starting node to all nodes (1, y) for each y ∈ Y
I for each y ′, y ∈ Y and each i ∈ 2, . . . , n there is an edge from (i − 1, y ′)

to (i , y)
I for each y ∈ Y there is an edge from (n, y) to the final node

• Every possible y is a path through the trellis

$ $

butterspread the

(1,Verb)

(1,Det)

(1,Noun) (2,Noun)

(2,Det)

(2,Verb) (3,Verb)

(3,Det)

(3,Noun)
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Using a trellis to find the most probable label sequence y

• One-to-one correspondence between paths from start to finish in the
trellis and label sequences y

• High level description of algorithm:
I associate each edge in the trellis with a weight (a number)
I the product of the weights along a path from start to finish will be

P(X=x,Y=y)

I use dynamic programming to find highest scoring path from start to finish
I return the corresponding label sequence ŷ(x)

� Conditioned on the input X, the distribution P(Y | X) is an
inhomogenous (i.e., time-varying) Markov chain

I the transition probabilities P(Yi | Yi−1,Xi ) depend on Xi and hence i
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Rearranging the terms in the HMM formula

• Rearrange terms so all terms associated with a time i are together

P(X,Y) = P(Y)P(X | Y)

= sy1,$ · sy2,y1 · . . . · syn,yn−1 · s$,yn · tx1,y1 · tx2,y2 · . . . · txn,yn
= sy1,$ · tx1,y1 · sy2,y1 · tx2,y2 · . . . · syn,yn−1 · txn,yn · s$,yn

=

(
n∏

i=1

syi ,yi−1 · txi ,yi

)
· s$,yn

• Trellis edge weights:
I weight on edge from start node to node (1, y) is w1,y ,$ = sy ,$ · tx1,y
I weight on edge from node (i − 1, y ′) to node (i , y) is wi,y ,y ′ = sy ,y ′ · txi ,y
I weight on edge from node (n, y) to final node is wn+1,$,y = s$,y

⇒ product of weights on edges of path y in trellis is P(X=x,Y=y)
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Trellis for spread the butter

$ $

butterspread the

(1,Verb)

(1,Det)

(1,Noun) (2,Noun)

(2,Det)

(2,Verb) (3,Verb)

(3,Det)

(3,Noun)

s =

yi\yi−1 $ Verb Det Noun

$ 0 0.3 0.1 0.3
Verb 0.4 0.1 0.1 0.3
Det 0.4 0.4 0.1 0.2
Noun 0.2 0.2 0.7 0.2

t =

xi\yi Verb Det Noun

spread 0.5 0.1 0.4
the 0.1 0.8 0.1

butter 0.4 0.1 0.5

w1 =

y1\y0 $

Verb 0.2
Det 0.04
Noun 0.08

w2 =

y2\y1 Verb Det Noun

Verb 0.01 0.01 0.03
Det 0.32 0.08 0.16
Noun 0.02 0.07 0.02
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Finding the highest-scoring path

$ $

butterspread the

(1,Verb)

(1,Det)

(1,Noun) (2,Noun)

(2,Det)

(2,Verb) (3,Verb)

(3,Det)

(3,Noun)

• The score of a path is the product of the weights of the edges along that path

• Key insight: the highest-scoring path to a node (i , y) must begin with a
highest-scoring path to some node (i − 1, y ′)

• Let MaxScore(i , y) be the score of the highest scoring path to node (i , y). Then:

MaxScore(1, y) = w1,y,$

MaxScore(i , y) = max
y′∈Y

MaxScore(i − 1, y ′) · wi,y,y′ if 1 < 2 ≤ n

MaxScore(n + 1, $) = max
y′∈Y

MaxScore(n, y) · wn+1,$,y

• To find the highest scoring path, compute MaxScore(i , y) for i = 1, 2, . . . , n + 1 in
turn
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Finding the highest-scoring path example (1)

$ $

butterspread the

(1,Verb)

(1,Det)

(1,Noun) (2,Noun)

(2,Det)

(2,Verb) (3,Verb)

(3,Det)

(3,Noun)

w1 =

y1\y0 $

Verb 0.2
Det 0.04
Noun 0.08

MaxScore(1,Verb) = 0.2

MaxScore(1,Det) = 0.04

MaxScore(1,Noun) = 0.08
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Finding the highest-scoring path example (2)

$ $

butterspread the

(1,Verb)

(1,Det)

(1,Noun) (2,Noun)

(2,Det)

(2,Verb) (3,Verb)

(3,Det)

(3,Noun)

MaxScore(1,Verb) = 0.2
MaxScore(1,Det) = 0.04

MaxScore(1,Noun) = 0.08
w2 =

y2\y1 Verb Det Noun

Verb 0.01 0.01 0.03
Det 0.32 0.08 0.16
Noun 0.02 0.07 0.02

MaxScore(2,Verb) = 0.0024 via Noun

MaxScore(2,Det) = 0.064 via Verb

MaxScore(2,Noun) = 0.004 via Noun
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Finding the highest-scoring path example (3)

$ $

butterspread the

(1,Verb)

(1,Det)

(1,Noun) (2,Noun)

(2,Det)

(2,Verb) (3,Verb)

(3,Det)

(3,Noun)

MaxScore(2,Verb) = 0.0024
MaxScore(2,Det) = 0.064

MaxScore(2,Noun) = 0.004
w3 =

y3\y2 Verb Det Noun

Verb 0.04 0.04 0.12
Det 0.04 0.01 0.02
Noun 0.1 0.35 0.1

MaxScore(3,Verb) = 0.00256 via Det

MaxScore(3,Det) = 0.00064 via Det

MaxScore(3,Noun) = 0.0224 via Det
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Finding the highest-scoring path example (4)

$ $

butterspread the

(1,Verb)

(1,Det)

(1,Noun) (2,Noun)

(2,Det)

(2,Verb) (3,Verb)

(3,Det)

(3,Noun)

MaxScore(3,Verb) = 0.00256
MaxScore(3,Det) = 0.00064

MaxScore(3,Noun) = 0.0224
w4 =

$\y3 Verb Det Noun

$ 0.3 0.1 0.3

MaxScore(4, $) = 0.00672 via Noun
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Forward-backward algorithms

• This dynamic programming algorithm is an instance of a general family
of algorithms known as forward-backward algorithms

• The forward pass computes a probability of a prefix of the input

• The backward pass computes a probability of a suffix of the input

• With these it is possible compute:
I the marginal probability of any state given the input P(Yi=y | X = x)
I the marginal probability of any adjacent pair of states

P(Yi−1=y ,Yi=y ′ | X = x)
I the expected number of times any pair of states is seen in the input

E[ny ,y ′ | x]

• These are required for estimating HMMs from unlabelled data using the
Expectation-Maximisation Algorithm
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The “order” of an HMM
• The order of an HMM is the number of previous labels used to predict

the current label Yi

• A first-order HMM uses the previous label Yi−1 to predict Yi :

P(Y) =
n+1∏
i=1

P(Yi | Yi−1)

(the HMMs we’ve seen so far are all first-order HMMs)
• A second-order HMM uses the previous two labels Yi−2 and Yi−1 to

predict Yi :

P(Y) =
n+1∏
i=1

P(Yi | Yi−1,Yi−2)

• the parameters used in a second-order HMM are more complex
• s is a three-dimensional array of size m ×m ×m, where m = |Y|

P(Yi=y | Yi−1=y ′,Yi−2=y ′′) = sy ,y ′,y ′′
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Bayes net representation of a 2nd-order HMM

P(X,Y) =

(
n∏

i=1

P(Yi | Yi−1)P(Xi | Yi )

)
P(Yn+1 | Yn)

$ $ Y1 Y2 Y3 Y4 $

X1 X2 X3 X4
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�The trellis in higher-order HMMs

• The nodes in the trellis encode the information required from “the past”
in order to predict the next label Yi

I a first-order HMM tracks one past label ⇒ trellis states are pairs (i , y ′),
where Yi−1 = y ′

I a second-order HMM tracks two past labels ⇒ trellis states are triples
(i , y ′, y ′′), where Yi−1 = y ′ and Yi−2 = y ′′

I in a k-th order HMM, trellis states consist of a position index i and k
Y -values for Yi−1,Yi−2, . . . ,Yi−k

• This means that for a sequence X of length n and where the number of
states |Y| = m, a k-th order HMM has O(n ·mk) nodes in the trellis

• Since every edge is visited a constant number of times, the
computational complexity of the Viterbi algorithm is also O(n ·mk+1).
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Summary

• Sequence labelling is an important kind of structured prediction problem

• Hidden Markov Models (HMMs) can be viewed as a generalisation of
Naive Bayes models where the label Y is generated by a Markov model

I HMMs can also be viewed as stochastic automata with a hidden state

• Forward-backward algorithms are dynamic programming algorithms that
can compute:

I the Viterbi (i.e., most likely) label sequence for a string
I the expected number of times each state-output or state-state transition

is used in the analysis of a string

• HMMs make the same independence assumptions as Naive Bayes
I Conditional Random Fields (CRFs) are a generalisation of HMMs that

relax these independence assumptions
I CRFs are the sequence labelling generalisation of logistic regression
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