Beyond the 1-best pipeline

Mark Johnson Macquarie University

Overview

- 1-best pipeline architectures now standard
 Is there value to improving on them?
- Bidirectional message-passing allows "later" modules to fix "earlier" mistakes
- Also allows training a module without explicit training data
- Building this would be a research challenge
 Jason Narad's PhD thesis (his results below)

Conventional 1-best pipeline system

- Each component's input is the previous component's output ⇒ cascading errors
- Separate training data required for each component
 - Often only out-of-domain data is available

n-best reranking pipeline

Multiple complete analyses at each stage

 weights indicate how good each analysis is

 Combinatorial ambiguity explosion ⇒

 exponential number of analyses required

Packed *n*-best reranking pipeline

- Factor representations into packed values
 - e.g., dynamic programming parsing chart
- Localise ambiguity with packed *n*-best values (e.g., Huang's "cube pruning")
 - represents exponentially many analyses in polynomial space/time

Bidirectional message-passing system

- Bidirectional messages about packed values
 - belief propagation / dual decomposition
 - modules jointly agree on representations
- Backward messages enable learning without module-specific training data

Relation extraction

BaselineBaseline-EntOracle DPHidden DP

Oracle CP
Hidden CP

Semantic role labelling Unlabeled FI Baseline Hidden Oracle

Conclusions

- There are more sophisticated architectures beyond the 1-best pipeline
 - Bidirectional message-passing doesn't need training data for all modules
- More complex architectures require more coordination between modules
 - Additional complexity doesn't always "pay off"
 - "Sweet spot" depends on intended applications