
Introduction to Neural Networks

Mark Johnson

Dept of Computing
Macquarie University

Sydney
Australia

September 2015

1/31



Outline

Introduction

Learning weights with Backpropagation

Alternative non-linear activation functions

Avoiding over-learning

Learning low-dimensional representations

Conclusion and other topics

2/31



What are (deep) neural networks?

• Neural networks are functions mapping inputs to outputs
É the inputs are usually feature vectors, encoding pictures,
documents, etc.

É the outputs are usually a single value (e.g., a label for the input),
but can be structured (e.g., a sentence)

• A neural network is a network of models typically organised into a
sequence of layers
É the first layer is the input feature vector
É the output of one layer serves as the input to the next layer
É the output is the last layer

• Deep neural networks have a relatively large number of layers (e.g., 5
or more)

3/31



Logistic regression as a 2-layer neural network

P(Y=1 | x) = σ(
∑

j

wjxj + b)

= σ(w · x + b)

σ(v) =
1

1+ exp(−v)

• x = (x1, . . . , xm) is the input vector (feature values)

• w = (w1, . . . ,wm) is a vector of connection weights
(feature weights)

• b is a bias weight
É can be viewed as the weight associated with an “always
on” input

y...

1

b

x0

w0x1
w1

xm

wm

4/31



The logistic sigmoid function

0

1

0−5 5

y = 1/1 + e−x

5/31



Weaknesses of logistic regression
• Logistic regression is a log-linear model
i.e., the log odds are a linear function of the input

P(Y=1 | x) =
1

1+ exp(−w · x)
⇔ log
�

P(Y=1 | x)
P(Y=0 | x)

�

= w · x

• The presence of feature xj increases the log odds by wj
⇒ Unable to capture non-linear interactions between the features

É XOR is the classic example of a function that a linear model
cannot express

É can a linear function of pixel intensities recognise a cat?
• Neural networks with hidden layers can learn non-linear feature
interactions

• Note: a linear model can capture non-linear interactions if the inputs
are non-linearly transformed first
É XOR = OR − AND
É Extreme learning consists of linear regression applied to random
non-linear transformations of the input

6/31



Hidden nodes

• Hidden nodes are nodes that are neither
input nor output nodes

• Each hidden layer provides extra expressive
power

• Three layer neural network (ignoring bias
nodes):

hi = σ(
∑

j

Aijxj)

y = σ(
∑

j

bjhj)

or in matrix terms:

h = σ(Ax)
y = σ(b · h)

x0

x1

x2

x3

x4

xm

...

h0

h1

h2

h3

h4

hn

...

y

Input Hidden Output

7/31



One-hot encoding for categorical inputs

• A categorical variable ranges over a fixed set of categories (e.g., words
in a fixed vocabulary)

• A one-hot encoding of a categorical variable associates a binary node
for each possible value of the categorical variable
É the one-hot encoding of c ∈ 1, . . . ,m is x = (x1, . . . , xm), where
xc = 1 and xc ′ = 0 for c ′ 6= c

cat dog chair table book cup pen desk . . .

• A sequence of categorical variables can be represented by a sequence
of their 1-hot encodings

• If xc is the one-hot encoding of category c , then Axc = A·,c
so a 1-hot encoding of c corresponds to a table-lookup of column c

8/31



Why is the non-linearity important?
• General form of a neural network:

x(i) = g(i)(W(i) x(i−1))

where:
É x(i) are the activations at level i ,
É W(i) is a weight matrix mapping activations at level i − 1 to level i
É g(i) is a non-linear function (e.g., the sigmoid function)

• E.g., a general 3-layer network has the following form:

y = g(2)(W(2) x(1)) = g(2)(W(2) g(1)(W(1) x(0)))

• If g(1) = g(2) = I (the identity function), then:

y = W(2) W(1) x(0)

• But the product of two matrices is another matrix!
⇒ A three-layer network is equivalent to a two-layer network if g(1) is a

linear function

9/31



Outline

Introduction

Learning weights with Backpropagation

Alternative non-linear activation functions

Avoiding over-learning

Learning low-dimensional representations

Conclusion and other topics

10/31



Learning weights via Stochastic Gradient Descent
• Given labelled training data D = ((x1, y1), . . . , (xn, yn)), we want to
find weights cW with minimum loss:

cW = argmin
W

n
∑

i=1

`(W; xi , yi), where:

`(W; x, y) = − log P(y | x)

• `(W; xi , yi) is loss incurred when predicting y from x using weights W
É probabilities are not greater than 1 ⇒ loss is never negative
É log(1)=0 ⇒ perfect prediction incurrs zero loss

• Minimising log-loss is maximum likelihood estimation

• Stochastic gradient descent:
É choose a random training example (x, y) ∈ D
É update W by adding −ε∂`(W;x,y)

∂W

11/31



Derivatives of the sigmoid function

σ(x) =
1

1+ e−x

dσ(x)
dx

=
1

2+ e−x + ex = σ(x)σ(−x)

0

1

0−5 5

σ(x)

dσ/dx

12/31



Derivatives of the log sigmoid function

d logσ(x)
dx

=
1+ e−x

2+ e−x + ex = σ(−x) = 1− σ(x)

−5

0

1

0−5 5

logσ(x)

d logσ/dx

13/31



Calculating derivatives with Backpropagation (1)

x0
0

x0
1

x0
2

x0
3

x1
0v1

0
σW 1

0,0

W 1
0,1

W 1
0,2

W 1
0,3

x1
1v1

1
σ

W 1
1,0

W 1
1,1

W 1
1,2

W 1
1,3

x1
2v1

2
σ

W 1
2,0

W 1
2,1

W 1
2,2

W 1
2,3

x1
3v1

3
σ

W 1
3,0

W 1
3,1

W 1
3,2

W 1
3,3

x2
0v2

0
σW 2

0,0

W 2
0,1

W 2
0,2

W 2
0,3

x2
1v2

1
σ

W 2
1,0

W 2
1,1

W 2
1,2

W 2
1,3

x2
2v2

2
σ

W 2
2,0

W 2
2,1

W 2
2,2

W 2
2,3

x2
3v2

3
σ

W 2
3,0

W 2
3,1

W 2
3,2

W 2
3,3

yv3 σ
W

30

W 3
1

W
3
2

W
3

3

y = σ(v (3))

v(k) = W(k) x(k−1), k = 1, . . . , 3

x(k) = σ(v(k)), k = 1, 2

14/31



Calculating derivatives with Backpropagation (2)

x0
0

x0
1

x0
2

x0
3

x1
0v1

0
σW 1

0,0

W 1
0,1

W 1
0,2

W 1
0,3

x1
1v1

1
σ

W 1
1,0

W 1
1,1

W 1
1,2

W 1
1,3

x1
2v1

2
σ

W 1
2,0

W 1
2,1

W 1
2,2

W 1
2,3

x1
3v1

3
σ

W 1
3,0

W 1
3,1

W 1
3,2

W 1
3,3

x2
0v2

0
σW 2

0,0

W 2
0,1

W 2
0,2

W 2
0,3

x2
1v2

1
σ

W 2
1,0

W 2
1,1

W 2
1,2

W 2
1,3

x2
2v2

2
σ

W 2
2,0

W 2
2,1

W 2
2,2

W 2
2,3

x2
3v2

3
σ

W 2
3,0

W 2
3,1

W 2
3,2

W 2
3,3

yv3 σ

W
30

W 3
1

W
3
2

W
3

3

y = σ(v (3))

v (3) = W(3) x(2)

∂ log y

∂W(3)
=

∂ log y

∂v (3)
∂v (3)

∂W(3)
= (1− σ(v (3))) x(2)

∂ log y

∂ x(2)
=

∂y

∂v (3)
∂v (3)

∂ x(2)
= (1− σ(v (3))) W(3)

∂ log y

∂ v(2)
=

∂ log y

∂ x(2)
∂ x(2)

∂ v(2)
= (1− σ(v (3))) W(3)σ(v(2))σ(−v(2))

15/31



Calculating derivatives with Backpropagation (3)

x0
0

x0
1

x0
2

x0
3

x1
0v1

0
σW 1

0,0

W 1
0,1

W 1
0,2

W 1
0,3

x1
1v1

1
σ

W 1
1,0

W 1
1,1

W 1
1,2

W 1
1,3

x1
2v1

2
σ

W 1
2,0

W 1
2,1

W 1
2,2

W 1
2,3

x1
3v1

3
σ

W 1
3,0

W 1
3,1

W 1
3,2

W 1
3,3

x2
0v2

0
σW 2

0,0

W 2
0,1

W 2
0,2

W 2
0,3

x2
1v2

1
σ

W 2
1,0

W 2
1,1

W 2
1,2

W 2
1,3

x2
2v2

2
σ

W 2
2,0

W 2
2,1

W 2
2,2

W 2
2,3

x2
3v2

3
σ

W 2
3,0

W 2
3,1

W 2
3,2

W 2
3,3

yv3 σ

W
30

W 3
1

W
3
2

W
3

3

x(2) = σ(v(2))
v(2) = W(2)x(1)

∂ log y

∂ v(2)
=

∂ log y

∂ x(2)
∂ x(2)

∂ v(2)
=

∂ log y

∂ x(2)
(σ(v(2))σ(−v(2)))

∂ log y

∂W(2)
=

∂ log y

∂ v(2)
∂ v(2)

∂W(2)
=

∂ log y

∂ v(2)
x(1)

∂ log y

∂ x(1)
=

∂ log y

∂ v(2)
∂ v(2)

∂ x(1)
=

∂ log y

∂ v(2)
W(2)

16/31



Calculating derivatives with Backpropagation (4)

• Backpropagation is essentially just repeated application of the “chain
rule” for differentiation

• High-level overview of backpropagation:
É Forward pass: propagate activations from input layer to output
layer

É Backward pass: propagate error signal from output layer back to
input layer

É Compute derivatives: derivatives involve both “forward” and
“backward” activations

17/31



Outline

Introduction

Learning weights with Backpropagation

Alternative non-linear activation functions

Avoiding over-learning

Learning low-dimensional representations

Conclusion and other topics

18/31



tanh activation function (a scaled sigmoid)
• No reason for hidden unit activations to be probabilities

É output unit is often a predicted value, e.g., a (log) probability
• Idea: allow negative as well as positive hidden unit activations

tanh(v) =
exp(v)− exp(−v)
exp(v) + exp(−v)

= 2σ(2v)− 1

σ(v) =
1

1+ exp(−v)

−1

0

1

0−5 5

σ(x)

tanh(x)

19/31



The vanishing gradient problem
• The sigmoid and tanh functions saturate on very large or very small
inputs

⇒ Vanishing gradient problem: in deep networks, gradient is often close
to zero for weights close to input layer

⇒ That part of the network learns very slowly, or not at all

0

1

0−5 5

σ(x)

dσ/dx

20/31



Rectlinear activation function
• The Rectlinear (rectified linear) activation function doesn’t saturate:
(in positive direction)

RelU(v) = max(v , 0)

• It’s also very fast to calculate!

0

5

0−5 5

RelU(x)

21/31



Outline

Introduction

Learning weights with Backpropagation

Alternative non-linear activation functions

Avoiding over-learning

Learning low-dimensional representations

Conclusion and other topics

22/31



Early stopping in stochastic gradient descent

• Neural networks (like all machine learning algorithms) can over-fit the
training data

• You can detect over-fitting by measuring the difference in accuracy on
training and held-out development data (don’t use your test data!)

• Early stopping: stop training when accuracy on held-out development
data starts decreasing
É often over-fitting will have started before held-out accuracy starts
decreasing

23/31



Regularisation via weight decay

• Regularisation: add a term to loss function that penalises large
connection weights, such as the L2 regulariser

Q(w) = 1/2
∑

j

w2
j

∂Q
∂wj

= wj

• In SGD, the L2 penalty subtracts a fraction of each weight at each
iteration
É also known as a shrinkage method, as it “shrinks” the connection
weights

24/31



Model-averaging via Drop-out

• Drop-out training:
É at training time, during each SGD iteration randomly select half
the connection weights, and ignore the others
– i.e., calculate forward activations, derivatives and updates
just using selected weights

É at test time, use full network but divide all weights by 2

• This is training a randomly-chosen subnetwork at each iteration
É it forces the network not to rely on any single connection
É each time a data item is seen during training it has a different
subnetwork ⇒ encourages network to learn multiple
generalisations about each data item

• Full network is an “average” of randomly chosen subnetworks

• Over-fitting is much less of a problem with drop-out

25/31



Outline

Introduction

Learning weights with Backpropagation

Alternative non-linear activation functions

Avoiding over-learning

Learning low-dimensional representations

Conclusion and other topics

26/31



Auto-encoders learn low-dimensional representations

• An auto-encoder is a neural network that
predicts its own input (i.e., learns an identity
function)

• Typically auto-encoders have fewer hidden
units than visible input/output units
É can also impose a sparsity penalty (e.g.,
cross-entropy) on hidden units

⇒ Auto-encoder has to learn generalisations
about its inputs
É hidden units represent these
generalisations

Input Hidden Input

27/31



word2vec learns low-dimensional word representations

• word2vec learns 500-dimensional
word representations by predicting
the neighbouring words surrounding
each word w in a 5-word window
(w−2,w−1,w ,w1,w2)

• Has surprising properties, e.g.,
[Paris]− [France] ≈ [Rome]− [Italy]

• Weight matrices mapping
representation of word w to
representations of neighbouring
words are shared (i.e.,
position-independent)
É would position-dependent
weights be better?

◦
◦
•
◦
◦

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

◦
◦
•
◦
◦

◦
◦
•
◦
◦

◦
◦
•
◦
◦

◦
◦
•
◦
◦

w

w−2

w−1

w1

w2

28/31



Outline

Introduction

Learning weights with Backpropagation

Alternative non-linear activation functions

Avoiding over-learning

Learning low-dimensional representations

Conclusion and other topics

29/31



Summary

• A neural network is a large combination of classifiers, arranged in a
sequence of layers

• Neural networks are typically trained using stochastic gradient ascent

• The gradient can be efficiently calculated using the backpropagation
algorithm
É large number of “tricks” for learning

• The activation patterns of hidden units associated with each input can
serve as low dimensional representations of that input

30/31



Where to go from here

• Boltzmann Machines

• Convolutional Neural Networks (ConvNets) and weight tying:
É CS231n: Convolutional neural networks for visual recognition,
Stanford University

• Recurrent Neural Networks (RNNs) and sequence modelling:
É CS224d: Deep learning for natural language processing, Stanford
University

31/31

http://cs231n.stanford.edu/syllabus.html
http://cs224d.stanford.edu/syllabus.html

	Introduction
	Learning weights with Backpropagation
	Alternative non-linear activation functions
	Avoiding over-learning
	Learning low-dimensional representations
	Conclusion and other topics

