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Natural language processing
and computational linguistics

• Natural language processing (NLP) develops methods for solving practical
problems involving language

▶ automatic speech recognition
▶ machine translation
▶ information extraction from documents

• Computational linguistics (CL) studies the computational processes
underlying (human) language

▶ how do we understand language?
▶ how do we produce language?
▶ how do we learn language?

• Similiar methods and models are used in NLP and CL
▶ my recommendation: be clear what your goal is!
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A brief history of CL and NLP

• Computational linguistics goes back to the dawn of computer science
▶ syntactic parsing and machine translation started in the 1950s

• Until the 1990s, computational linguistics was closely connected to
linguistics

▶ linguists write grammars, computational linguists implement them
• The “statistical revolution” in the 1990s:

▶ techniques developed in neighbouring fields work better
– hidden Markov models produce better speech recognisers
– bag-of-words methods like tf-idf produce better information retrieval systems

⇒ NLP and CL adopted probabilistic models
• NLP and CL today:

▶ oriented towards machine learning rather than linguistics
▶ NLP applications-oriented, driven by large internet companies
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Phonetics and phonology

• Phonetics studies the sounds of a language
▶ E.g., [t] and [d] differ in voice onset time
▶ E.g., English aspirates stop consonants in certain positions
(e.g., [thop] vs. [stop])

• Phonology studies the distributional properties of these sounds
▶ E.g., the English noun plural is [s] following unvoiced segments and [z]
following voiced segments

▶ E.g., English speakers pronounce /t/ differently (e.g., inwater)
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Morphology

• Morphology studies the structure of words
▶ E.g., re+structur+ing, un+remark+able

• Derivational morphology exhibits hierarchical structure
• Example: re+vital+ize+ation

Noun

Verb

Verb

re+

Verb

Adjective

vital

Verb

+ize

Noun

+ation

• The suffix usually determines the syntactic category of the derived word
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Syntax

• Syntax studies the ways words combine to form phrases and sentences

Sentence

NounPhrase

Determiner

the

Noun

cat

VerbPhrase

Verb

chased

NounPhrase

Determiner

the

Noun

dog

• Syntactic parsing helps identifywho did what to whom, a key step in
understanding a sentence
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Semantics and pragmatics

• Semantics studies themeaning of words, phrases and sentences
▶ E.g., I ate the oysters in/for an hour.
▶ E.g.,Who do you want to talk to ∅/him?

• Pragmatics studies how we use language to do things in the world
▶ E.g., Can you pass the salt?
▶ E.g., in a letter of recommendation:

Sam is punctual and extremely well-groomed.
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The lexicon

• A language has a lexicon, which lists for each
morpheme

▶ how it is pronounced (phonology),
▶ its distributional properties (morphology and
syntax),

▶ what it means (semantics), and
▶ its discourse properties (pragmatics)

• The lexicon interacts with all levels of linguistic
representation

Morphology

Syntax

Semantics

Pragmatics

Meaning

Phonology

Sound

Le
xi
co
n
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Linguistic levels on one slide

• Phonology studies the distributional patterns of sounds
▶ E.g., cats vs dogs

• Morphology studies the structure of words
▶ E.g., re+vital+ise

• Syntax studies howwords combine to form phrases and sentences
▶ E.g., Flying planes can be dangerous

• Semantics studies howmeaning is associated with language
▶ E.g., I sprayed the paint onto the wall/I sprayed the wall with paint

• Pragmatics studies how language is used to do things
▶ E.g., Can you pass the salt?

• The lexicon stores phonological, morphological, syntactic, semantic and
pragmatic information about morphemes and words
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What’s driving NLP and CL research?

• Tools for managing the “information explosion”
▶ extracting information from and managing large text document collections
▶ NLP is often free “icing on the cake” to sell more ads;
e.g., speech recognition, machine translation, document clustering (news), etc.

• Mobile and portable computing
▶ keyword search / document retrieval don’t work well on very small devices
▶ we want to be able to talk to our computers (speech recognition)
and have them say something intelligent back (NL generation)

• The intelligence agencies
• The old Artificial Intelligence (AI) dream

▶ language is the richest window into the mind
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Automatic speech recognition

• Input: an acoustic waveform a
• Output: a text transcript t̂(a) of a
• Challenges for Automatic Speech Recognition (ASR):

▶ speaker and pronunciation variability
the same text can be pronounced in many different ways

▶ homophones and near homophones:
e.g. recognize speech vs. wreck a nice beach
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Machine translation

• Input: a sentence (usually text) f in the source language
• Output: a sentence e in the target language
• Challenges for Machine Translation:

▶ the best translation of a word or phrase depends on the context
▶ the order of words and phrases varies from language to language
▶ there’s often no single “correct translation”
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The inspiration for
statistical machine translation

Also knowing nothing official about, but having guessed and inferred
considerable about, powerful new mechanized methods in
cryptography — methods which I believe succeed even when one does
not know what language has been coded — one naturally wonders if
the problem of translation could conceivably be treated as a problem
in cryptography.

When I look at an article in Russian, I say “This is really written in
English, but it has been coded in some strange symbols. I will now
proceed to decode.”

Warren Weaver – 1947
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Topic modelling

• Topic models cluster documents on
same topic

▶ unsupervised (i.e., topics aren’t given
in training data)

• Important for document analysis and
information extraction

▶ Example: clustering news stories for
information retrieval

▶ Example: tracking evolution of a
research topic over time
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Example input to a topic model
(NIPS corpus)

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to build good
predictive models. Getting a dataset labeled by experts can be expensive and time consuming. With
the advent of crowdsourcing services …

The task of recovering intrinsic images is to separate a given input image into its material-dependent
properties, known as reflectance or albedo, and its light-dependent properties, such as shading,
shadows, specular highlights, …

In each trial of a standard visual short-term memory experiment, subjects are first presented with a
display containing multiple items with simple features (e.g. colored squares) for a brief duration and
then, after a delay interval, their memory for …

Many studies have uncovered evidence that visual cortex contains specialized regions involved in
processing faces but not other object classes. Recent electrophysiology studies of cells in several of
these specialized regions revealed that at least some …
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Example (cont): ignore function words

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to build good
predictive models. Getting a dataset labeled by experts can be expensive and time consuming. With
the advent of crowdsourcing services …

The task of recovering intrinsic images is to separate a given input image into its material-dependent
properties, known as reflectance or albedo, and its light-dependent properties, such as shading,
shadows, specular highlights, …

In each trial of a standard visual short-term memory experiment, subjects are first presented with a
display containing multiple items with simple features (e.g. colored squares) for a brief duration and
then, after a delay interval, their memory for …

Many studies have uncovered evidence that visual cortex contains specialized regions involved in
processing faces but not other object classes. Recent electrophysiology studies of cells in several of
these specialized regions revealed that at least some …
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Example (cont): admixture topic model

Annotating an unlabeled dataset is one of the bottlenecks in using supervised learning to build good
predictive models. Getting a dataset labeled by experts can be expensive and time consuming. With
the advent of crowdsourcing services …

The task of recovering intrinsic images is to separate a given input image into its material-dependent
properties, known as reflectance or albedo, and its light-dependent properties, such as shading,
shadows, specular highlights, …

In each trial of a standard visual short-term memory experiment, subjects are first presented with a
display containing multiple items with simple features (e.g. colored squares) for a brief duration and
then, after a delay interval, their memory for …

Many studies have uncovered evidence that visual cortex contains specialized regions involved in
processing faces but not other object classes. Recent electrophysiology studies of cells in several of
these specialized regions revealed that at least some …
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Phrase structure and
dependency parses

S

NP

D

the
N

cat

VP

V

chased
NP

D

a
N

dog the cat chased a dog

sbj
dobj

det det

• A phrase structure parse represents phrases as nodes in a tree
• A dependency parse represents dependencies between words
• Phrase structure and dependency parses are approximately
inter-translatable:

▶ Dependency parses can be translated to phrase structure parses
▶ If every phrase in a phrase structure parse has a head word, then phrase
structure parses can be translated to dependency parses
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Syntactic structures of real sentences
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• State-of-the-art parsers have accuracies of over 90%
• Dependency parsers can parse thousands of sentences a second
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Advantages of probabilistic parsing

• In the GofAI approach to syntactic parsing:
▶ a hand-written grammar defines the grammatical (i.e., well-formed) parses
▶ given a sentence, the parser returns the set of grammatical parses for that
sentence

⇒ unable to distinguish more likely from less likely parses
⇒ hard to ensure robustness (i.e., that every sentence gets a parse)

• In a probabilistic parser:
▶ the grammar generates all possible parse trees for all possible strings (roughly)
▶ use probabilities to identify plausible syntactic parses

• Probabilistic syntactic models usually encode:
▶ the probabilities of syntactic constructions
▶ the probabilities of lexical dependencies
e.g., how likely is pizza as direct object of eat?
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Named entity recognition and linking

• Named entity recognition finds all “mentions” referring to an entity in a
document

Example: Tony Abbott︸ ︷︷ ︸
person

bought 300︸︷︷︸
number

shares inAcme Corp︸ ︷︷ ︸
corporation

in 2006︸ ︷︷ ︸
date

• Noun phrase coreference tracks mentions to entities within or across
documents

Example: Tony Abbott met the president of Indonesia yesterday. Mr. Abbott
told him that he …

• Entity linkingmaps entities to database entries
Example: Tony Abbott︸ ︷︷ ︸

/m/xw2135

bought 300︸︷︷︸
number

shares inAcme Corp︸ ︷︷ ︸
/m/yzw9w

in 2006︸ ︷︷ ︸
date
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Relation extraction

• Relation extractionmines texts to find relationships between named
entities, i.e., “who did what to whom (when)?”

The new Governor General, Peter Cosgrove, visited Buckingham Palace
yesterday.

Has-role
Person Role

Peter Cosgrove Governor General of Australia

Offical-visit
Visitor Organisation

Peter Cosgrove Queen of England

• The syntactic parse provides useful features for relation extraction
• Text mining bio-medical literature is a major application
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Syntactic parsing for
relation extraction

The Governor General, Peter Cosgrove, visited Buckingham Palace

sbj
dobjdet

nn
appos

nn nn

• The syntactic path in a dependency parse is a useful feature in relation
extraction

X appos−→ Y⇒ has-role(Y,X)
X sbj←− visited dobj−→Y⇒ official-visit(X,Y)
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Google’s Knowledge Graph

• Goal: move beyond keyword search
document retrieval to directly
answer user queries
⇒ easier for mobile device users

• Google’s Knowledge Graph:
▶ built on top of FreeBase
▶ entries are synthesised from
Wikipedia, news stories, etc.

▶ manually curated (?)
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FreeBase: an open knowledge base

• An entity-relationship database on
top of a graph triple store

• Data mined fromWikipedia,
ChefMoz, NNDB, FMD,
MusicBrainz, etc.

• 44 million topics (entities),
2 billion facts,
25GB compressed dump

• Created by Metaweb, which was
acquired by Google
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Distant supervision
for relation extraction

• Ideal labelled data for relation extraction: large text corpus annotated with
entities and relations

▶ expensive to produce, especially for a lot of relations!
• Distant supervision assumption: if two or more entities that appear in the
same sentence also appear in the same database relation, then probably the
sentence expresses the relation

▶ assumes entity tuples are sparse
• With the distant supervision assumption, we obtain relation extraction
training data by:

▶ taking a large text corpus (e.g., 10 years of news articles)
▶ running a named entity linker on the corpus
▶ looking up the entity tuples that appear in the same sentence in the large
knowledge base (e.g., FreeBase)
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Opinion mining and
sentiment analysis

• Used to analyse e.g., social media (Web 2.0)
• Typical goals: given a corpus of messages:

▶ classify each message along a subjective–objective scale
▶ identify the message polarity (e.g., on dislike–like scale)

• Training opinion mining and sentiment analysis models:
▶ in some domains, supervised learning with simple keyword-based features
works well

▶ but in other domains it’s necessary to model syntactic structure as well
– E.g., I doubt she had a very good experience …

• Opinion mining can be combined with:
▶ topic modelling to cluster messages with similar opinions
▶ multi-document summarisation to summarise results
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Why do statistical models
work so well?

• Statistical models can be trained from large datasets
▶ large document collections are available or can be constructed
▶ machine learning methods can automatically adjust a model so it performs

well on the data it will be used on

• Probabilistic models can integrate disparate and potentially conflicting
evidence

▶ standard linguistic methods make hard categorical classifications
▶ the weighted features used in probabilistic models can weigh conflicting

information from diverse sources

• Statistical models can rank alternative possible analyses
▶ in NLP, the number of possible analyses is often astronomical
▶ a statistical model provides a principled way of selecting the most probable

analysis
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Why is NLP difficult?

• Abstractly, most NLP applications can be viewed as prediction problems
⇒ should be able to solve them with Machine Learning

• The label set is often the set of all possible sentences
▶ infinite (or at least astronomically large)
▶ constrained in ways we don’t fully understand

• Training data for supervised learning is often not available
⇒ unsupervised/semi-supervised techniques for training from available
data

• Algorithmic challenges
▶ vocabulary can be large (e.g., 50K words)
▶ data sets are often large (GB or TB)
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Motivation for
the noisy channel model

• Speech recognition and machine translation models as prediction
problems:

▶ speech recognition: given an acoustic string, predict the text
▶ translation: given a foreign source language sentence, predict its target
language translation

• The “natural” training data for these tasks is relatively rare/expensive:
▶ speech recognition: acoustic signals labelled with text transcripts
▶ translation: (source language sentence,target language translation) pairs

• The noisy channel model lets us leveragemonolingual text data in output
language

▶ large amounts of such text are cheaply available

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 35/170



The noisy channel model

• The noisy channel model is a common structure
for generative models

▶ the source y is a hidden variable generated by
P(y)

▶ the output x is a visible variable generated from y
by P(y | x)

• Given output x, findmost likely source ŷ(x)

ŷ(x) = argmaxP(y | x)

• Bayes rule: P(y | x) =
P(x | y) P(y)

P(x)
• Since input x is constant:

ŷ(x) = argmax
y

P(x | y) P(y)

Source model P(y)

Source y

Channel model P(x | y)

Output x
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The noisy channel model
in speech recognition

• Input: acoustic signal a
• Output: most likely text t̂(a), where:

t̂(a) = argmax
t

P(t | a)

= argmax
t

P(a | t)P(t), where:

▶ P(a | t) is an acoustic model, and
▶ P(t) is an language model

• The acoustic model uses pronouncing dictionaries to decompose the
sentence t into sequences of phonemes, and map each phoneme to a portion
of the acoustic signal a

• The language model is responsible for distinguishingmore likely sentences
from less likely sentences in the output text,
e.g., distinguishing recognise speech vs. wreck a nice beach
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The noisy channel model
in machine translation

• Input: target language sentence f
• Output: most likely source language sentence ê(f), where:

ê(f) = argmax
e

P(e | f)

= argmax
e

P(f | e)P(e), where:

▶ P(f | e) is a translation model, and
▶ P(e) is an language model

• The translation model calculates P(f | e) as a product of two submodels:
▶ aword or a phrase translation model
▶ a distortion model, which accounts for the word and phrase reorderings
between source and target language

• The language model is responsible for distinguishingmore fluent sentences
from less fluent sentences in the target language,
e.g., distinguishing Sasha will the car lead vs. Sasha will drive the car
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The role of language models

• A language model estimates the probability P(w) that a string of wordsw is
a sentence

▶ useful in tasks such as speech recognition and machine translation that involve
predicting entire sentences

• Language models provide a way of leveraging large amounts of text
(e.g., from the web)

• Primary challenge in language modelling: infinite number of possible
sentences

⇒ Factorise P(w) into a product of submodels
▶ we’ll look at n-gram sequence models here
▶ but syntax-based language models are also used, especially in machine
translation

▶ and neural network language models are widely used in speech recognition
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n-gram language models

• Goal: estimate P(w), wherew = (w1, . . . ,wm) is a sequence of words
• n-gram models decompose P(w) into product of conditional distributions

P(w) = P(w1)P(w2 | w1)P(w3 | w1,w2) . . .P(wm | w1, . . . ,wm−1)

E.g., P(wreck a nice beach) = P(wreck)P(a | wreck)P(nice | wreck a)
P(beach | wreck a nice)

• n-gram assumption: no dependencies span more than n words, i.e.,

P(wi | w1, . . . ,wi−1) ≈ P(wi | wi−n, . . . ,wi−1)

E.g., A bigram model is an n-gram model where n = 2:

P(wreck a nice beach) ≈ P(wreck)P(a | wreck)P(nice | a)
P(beach | nice)
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n-gram language models as
Markov models and Bayes nets

• An n-gram language model is aMarkov model that factorises the
distribution over sentences into a product of conditional distributions:

P(w) =
m∏
i=1

P(wi | wi−n, . . . ,wi−1)

▶ padw with end markers, i.e.,w = (▷, x1, x2, . . . , xm, ◁)

• Bigram language model as Bayes net:

▷ X1 X2 X3 X4 ◁

• Trigram language model as Bayes net:

▷ ▷ X1 X2 X3 X4 ◁
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The conditional word models
in n-gram models

• An n-grammodel factorises P(w) into a product of conditional models, each
of the form:

P(xn | x1, . . . , xn−1)

• The performance of an n-gram model depends greatly on exactly how these
conditional models are defined

▶ huge amount of work on this

• Parsing based language models use the sentence’s syntactic structure to
estimate this conditional probability

• Deep learning neural networkmethods for estimating these conditional
distributions currently produce state-of-the-art language models
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Maximum Entropy Language Models

P(xn | xn−1, xn−2) =
1

Z(xn−1, xn−2)
exp(wxn−1,xn +w′

xn−2,xn), where:

Z(xn−1, xn−2) =
∑
x∈V

exp(wxn−1,x +w′
xn−2,x)

• The partition function Z(xn−1, xn−2) involves summing over the entire
vocabulary V , which is computationally expensive

• This is a 1-layer neural network with no hidden layer using a one-hot
encoding

◦ • ◦ ◦ ◦
xn−1

◦ • ◦ ◦ ◦
xn−2

• • • • •
xn

w w′
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Deep learning neural
network language models

• Introduce one or more hidden layers that provide a latent feature
representation for words

P(xn | xn−1, xn−2) ∝ exp(
∑
j

vxn−1,jwj,xn + vxn−2,jw′
j,xn)

• vx is the latent feature representation for word x

◦ • ◦ ◦ ◦
xn−1

◦ • ◦ ◦ ◦
xn−2

• • • • •
v

• • • • •
v

• • • • •
xn

w w′
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What is sequence labelling?

• A sequence labelling problem is one where:
▶ the input consists of a sequenceX = (X1, . . . ,Xn), and
▶ the output consists of a sequence Y = (Y1, . . . ,Yn) of labels, where:
▶ Yi is the label for element Xi

• Example: Part-of-speech tagging(
Y
X

)
=

(
Verb, Determiner, Noun
spread, the, butter

)
• Example: Spelling correction(

Y
X

)
=

(
write, a, book
rite, a, buk

)
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Named entity extraction
with IOB labels

• Named entity recognition and classification (NER) involves finding the
named entities in a text and identifying what type of entity they are (e.g.,
person, location, corporation, dates, etc.)

• NER can be formulated as a sequence labelling problem
• Inside-Outside-Begin (IOB) labelling scheme indicates the beginning and
span of each named entity

B-ORG I-ORG O O O B-LOC I-LOC I-LOC O
Macquarie University is located in New South Wales .

• The IOB labelling scheme lets us identify adjacent named entities
B-LOC I-LOC I-LOC B-LOC I-LOC O B-LOC O …
New South Wales Northern Territory and Queensland are …

• This technology can extract information from:
▶ news stories
▶ financial reports
▶ classified ads
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Other applications of
sequence labelling

• Speech recognition is a sequence labelling task:
▶ The inputX = (X1, . . . ,Xn) is a sequence of acoustic frames Xi, where Xi is a
set of features extracted from a 50msec window of the speech signal

▶ The output Y is a sequence of words (the transcript of the speech signal)
• Financial applications of sequence labelling

▶ identifying trends in price movements
• Biological applications of sequence labelling

▶ gene-finding in DNA or RNA sequences
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A first (bad) approach
to sequence labelling

• Idea: train a supervised classifier to predict entire label sequence at once
B-ORG I-ORG O O O B-LOC I-LOC I-LOC O

Macquarie University is located in New South Wales .

• Problem: the number of possible label sequences grows exponentially with
the length of the sequence

▶ with binary labels, there are 2n different label sequences of a sequence of
length n (232 = 4 billion)

⇒ most labels won’t be observed even in very large training data sets
• This approach fails because it has massive sparse data problems
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A better approach
to sequence labelling

• Idea: train a supervised classifier to predict the label of one word at a time
B-LOC I-LOC O O O O O B-LOC O
Western Australia is the largest state in Australia .

• Avoids sparse data problems in label space
• As well as current word, classifiers can use previous and following words
as features

• But this approach can produce inconsistent label sequences
O B-LOC I-LOC I-ORG O O O O
The New York Times is a newspaper .

⇒ Track dependencies between adjacent labels
▶ “chicken-and-egg” problem that Hidden Markov Models and Conditional
Random Fields solve!
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Introduction to
Hidden Markov models

• Hidden Markov models (HMMs) are a simple sequence labelling model
• HMMs are noisy channel models generating

P(X,Y ) = P(X | Y )P(Y )

▶ the source model P(Y ) is a Markov model (e.g., a bigram language model)

P(Y ) =

n+1∏
i=1

P(Yi | Yi−1)

▶ the channel model P(X | Y ) generates each Xi independently, i.e.,

P(X | Y ) =

n∏
i=1

P(Xi | Yi)

• At testing time we only knowX, so Y is unobserved or hidden
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Terminology in
Hidden Markov Models

• Hidden Markov models (HMMs) generate pairs of sequences (x,y)
• The sequence x is called:

▶ the input sequence, or
▶ the observations, or
▶ the visible data

because x is given when an HMM is used for sequence labelling
• The sequence y is called:

▶ the label sequence, or
▶ the tag sequence, or
▶ the hidden data

because y is unknown when an HMM is used for sequence labelling
• A y ∈ Y is sometimes called a hidden state because an HMM can be viewed
as a stochastic automaton

▶ each different y ∈ Y is a state in the automaton
▶ the x are emissions from the automaton
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Hidden Markov models

• AHidden Markov Model (HMM) defines a joint distribution P(X,Y ) over:
▶ item sequencesX = (X1, . . . ,Xn) and
▶ label sequences Y = (Y0 = ▷,Y1, . . . ,Yn,Yn+1 = ◁):

P(X,Y ) =

( n∏
i=1

P(Yi | Yi−1)P(Xi | Yi)
)
P(Yn+1 | Yn)

• HMMs can be expressed as Bayes nets, and standard message-passing
inference algorithms work well with HMMs

▷ Y1 Y2 Y3 Y4 ◁

X1 X2 X3 X4
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Conditional random fields

• Conditional Random Fields (CRFs) are the Markov Random Field
generalisation of HMMs.

P(X,Y ) =
1

Z

( n∏
i=1

θYi−1,Yi ψYi,Xi

)
θYn,Yn+1

• CRFs are usually used to define conditional distributions P(Y | X) over
label sequences Y given observed sequencesX

• CRFs can be expressed using the undirected MRF graphical models

▷ Y1 Y2 Y3 Y4 ◁

X1 X2 X3 X4
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Advantages of CRFs over HMMs

• Recall that in MRFs, conditioning on a node deletes the node and all edges
connected to it

▶ after conditioning on X all that remains is a linear chain

⇒ Complexity of computing P(Y | X=x) does not depend on complexity of
connections betweenX and Y

⇒ We can use arbitrary features to connectX and Y
▶ must optimise conditional likelihood for training to be tractable

▷ Y1 Y2 Y3 Y4 ◁

X1 X2 X3 X4
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Recurrent neural nets (RNNs)

• Recurrent neural nets replace the atomic state of HMMs and CRFs with a
distributed activation vector.

•
•
•
•
•

◦ • ◦ ◦ ◦
x1

• • • • •

•
•
•
•
•

◦ • ◦ ◦ ◦
x2

• • • • •

•
•
•
•
•

◦ • ◦ ◦ ◦
x3

• • • • •

•
•
•
•
•

◦ • ◦ ◦ ◦
x4

• • • • •

•
•
•
•
•

• The same latent feature and transition matrices are used at each time step.
• RNNs are state-of-the-art language models and sequence labelling models
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Outline

Overview of computational linguistics and natural language processing

Key ideas in NLP and CL
The noisy channel model
Language models
Sequence labelling models
Expectation Maximisation (EM)

Grammars and parsing

Conclusion and future directions

Non-parametric Bayesian extensions to grammars

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 58/170



Ideal training data for acoustic models

• The acoustic model P(a | t) in a speech recogniser predicts the acoustic
waveform a given a text transcript t

• Ideal training data for an acoustic model would:
▶ segment the acoustic waveform into phones
▶ map the phones to words in the text

• Manually segmenting and labelling speech is very expensive!
• Expectation Maximisation lets us induce this information from cheap
sentence level transcripts
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Ideal training data for
translation models

• The translation model P(f | e) in a MT system:
▶ predicts the translation of each word or phrase, and
▶ predicts the reordering or words and phrases

• Ideal training data would align words and phrases in the source and target
language sentences

Sasha wants to buy a car

Sasha will einen Wagen kaufen
• Manually aligning words and phrases is very expensive!
• Expectation Maximisation lets us induce this information from cheap
sentence aligned translations
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What Expectation Maximisation does

• Expectation Maximisation (and related techniques such as Gibbs sampling
and Variational Bayes) are “recipies” for generalising maximum likelihood
supervised learning methods to unsupervised learning problems

▶ they are techniques for hidden variable imputation

• Intuitive idea behind the EM algorithm:
▶ if we had a good acoustic model/translation model,
we could use it to compute the phoneme labelling/word alignment

• Intuitive description of the EM algorithm:
guess an initial model somehow:
repeat until converged:
use current model to label the data
learn a new model from the labelled data

• Amazingly, this provably converges under very general conditions, and
• it converges to a local maximum of the likelihood
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Forced alignment for
training speech recognisers

• Speech recogniser training typically uses forced alignment to produce a
phone labelling of the training data

• Inputs to forced alignment:
▶ a speech corpus with sentence-level transcripts
▶ a pronouncing dictionary, mapping words to their possible phone sequences
▶ an acoustic modelmapping phones to waveforms trained on a small amount of
data

• Forced alignment procedure (a version of EM)
repeat until converged:
for each sentence s in the training data:
use pronouncing dictionary to find all possible phone sequences for s
use current acoustic model to compute probability

of each possible alignment of each phone sequence
keep most likely phone alignments for s

retrain acoustic model based on most likely phone alignments
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Mathematical description of EM

• Input: data x̃ and a model P(x, z, θ) where finding the “visible data” MLE θ̂ would be
easy if we knew x̃ and z̃:

θ̂ = argmax
θ

log Pθ(x̃, z̃)

• The “hidden data” MLE ̂̂
θ (which EM approximates) is:̂̂

θ = argmax
θ

log Pθ(x̃) = argmax
θ

log
∑
z

Pθ(x̃, z)

• The EM algorithm:
initialise θ(0) somehow (e.g., randomly)
for t = 1, 2, . . . until convergence:
E-step: set Q(t)(z) = Pθ(t−1)(x̃, z)
M-step: set θ(t) = argmaxθ

∑
z Q

(t)(z) log Pθ(x̃, z)

• θ(t) converges to a local maximum of the hidden data likelihood
▶ the Q(z) distributions impute values for the hidden variable z
▶ in practice we summarise Q(z) with expected values of the sufficient statistics

for θ
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EM versus directly
optimising log likelihood

• It’s possible to directly optimise the “hidden data” log likelihood with a
gradient-based approach (e.g., SGD, L-BFGS):

̂̂
θ = argmax

θ
log Pθ(x̃) = argmax

θ
log
∑
z
Pθ(x̃, z)

• The log likelihood is typically not convex⇒ local maxima
• If the model is in the exponential family (most NLP models are), the
derivatives of the log likelihood are the same expectations as required for
EM
⇒ both EM and direct optimisation are equally hard to program

• EM has no adjustable parameters, while SGD and L-BFGS have adjustable
parameters (e.g., step size)

• I don’t know of any systematic study, but in my experience:
▶ EM starts faster⇒ if you’re only going to do a few iterations, use EM
▶ after many iterations, L-BFGS converges faster (quadratically)
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A word alignment matrix
for sentence translation pair

They have full access to workingdocuments
Ils
ont
accès
à

tous
le

documents
de

travail

• Can we use this to learn the probability P(f | e) = θf,e of English word e
translating to French word f?
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Learning P(f | e) from
a word-aligned corpus
• Aword alignment a pairs each French
word fk with its English translation eak

▶ an English word may be aligned with
several French words

▶ ♢ generates French words with no
English translation

• Let P(f | e) = θf,e. The MLE θ̂ is:

θ̂f,e =
nf,e(a)
n·,e(a)

, where:

nf,e(a) = number of times f aligns to e

n·,e(a) =
∑
f

nf,e(a)

= number of times e aligns to anything

Ils
ont
accès
à

tous
le

de
travail

They
have

♢0
1
2
3
4
5
6
7

full
access
to

working
documents documents

faePosition

a = (1, 2, 4, 5, 3, 0, 7, 0, 6)
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Sentence-aligned parallel corpus
(Canadian Hansards)

• English: e
provincial officials are consulted through conference calls and negotiated
debriefings .
they have full access to working documents .
consultations have also taken place with groups representing specific
sectors of the Canadian economy , including culture , energy , mining ,
telecommunications and agrifood .

• French: f
les fonctionnaires provinciaux sont consultés par appels conférence et
comptes rendus .
ils ont accès à tous les documents de travail .
les consultations ont aussi eu lieu avec de les groupes représentant de les
secteurs précis de le économie canadienne , y compris la culture , le énergie
, les mines , les télécommunications et le agro - alimentaire .

• Word alignments a are not included!
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Learning word translations θ

and alignments a with EM

• It is easy to learn translation probabilities θ fromword-aligned data
(e,f ,a)

• But the available data is only sentence aligned (e,f)
▶ a is a hidden variable

• This is a perfect problem for Expectation Maximisation!
▶ simultaneously learn translation probabilities θ and word alignments a

• It turns out that a very stupid probabilistic model of Pθ(f ,a | e) (IBM
Model 1) plus EM produces good word alignments a!

▶ IBM developed more sophisticated models, up to IBMModel 5
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The IBM Model 1 generative story

• IBMModel 1 defines Pθ(A,F | E)
▶ θf,e is probability of generating French word f when aligned to English word e

• Each French word Fk, k = 1, . . . ,n is generated independently conditional
on English words e = (e1, . . . , em)

• To generate French word Fk given English words e:
▶ generate an alignment Ak ∈ 1, . . . ,m for Fk uniformly at random
▶ generate French word Fk from θeak

Fk

Ak

θeEj
nm E
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Using IBM1 to predict
word alignments a

• IBM1 generates all word alignments with same probability
• But conditional on the English and French words, IBM1 generates
non-uniform word alignments

• Probability of kth French word aligning to j English word:

P(Ak=j | E=e,Fk=f) =
P(Ak=j,Fk=f | E=e)

P(Fk=f | E=e)

=
P(Ak=j)P(Fk=f | Ej=ej)∑m

j′=1 P(Ak=j′)P(Fk=f | Ej′=ej′)

=
θf,ej∑m

j′=1 θf,ej′
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Example alignment calculation
• English and French strings:

e = (the,morning) f = (le,matin)

• English word to French word translation probabilities:

θ =

the a morning evening
le 0.7 0.1 0.2 0.2
un 0.1 0.7 0.2 0.2

matin 0.1 0.1 0.3 0.3
soir 0.1 0.1 0.3 0.3

• Alignment probability calculation:

P(A1=1 | E=(the,morning),F1=le) =
θle,the

θle,the + θle,morning

= 0.7/(0.7 + 0.2)

P(A2=2 | E=(the,morning),F2=matin) =
θmatin,morning

θmatin,the + θmatin,morning

= 0.3/(0.1 + 0.3)



“Viterbi” EM for estimating
translation probabilities

• We could learn transition probabilities θ easily if we had word-aligned
data, but we only have sentence aligned data

• Suppose we knew the true θ (and French really was English + IBM1). We
could:

▶ use θ to compute themost likely alignment âk for each French word fk
▶ pretend âk is the true alignment ak
▶ count the (English word, French word) co-occurences n̂ according to â
▶ estimate θ̂ from n̂

• Now suppose θ̂
(0)

is a rough estimate to θ (and French is English + IBM1)
▶ run this procedure to get a new estimate θ̂

(1)
; maybe it’ll be better than θ̂

(0)

• This is called Viterbi EM because it uses themost-likely alignment â
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Viterbi EM example iteration
• English and French strings:

e = ((the,morning), (the, evening))
f = ((le,matin), (le, soir))

• English word to French word translation probabilities:

t̂(0) =

the morning evening
le 0.7 0.4 0.4

matin 0.2 0.3 0.3
soir 0.1 0.3 0.3

• Maximum probability alignments:
the → le (twice),morning → matin, evening → soir

• Counts derived from these alignments:

n̂ =

the morning evening
le 2 0 0

matin 0 1 0
soir 0 0 1



Viterbi EM example iteration (cont.)

• Counts derived from the alignments:

n̂ =

the morning evening
le 2 0 0

matin 0 1 0
soir 0 0 1

• Normalise counts to update P(f | e) probability estimates:

t̂(1) =

the morning evening
le 1.0 0 0

matin 0 1.0 0
soir 0 0 1.0

⇒ Resolved translation ambiguity formorning and evening
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Problems with Viterbi EM

• Viterbi EM is too optimistic about the alignments
▶ Our translation probability estimates θ̂

(i)
express our uncertainty about true

alignments
▶ But Viterbi EM assumes the most likely alignment is correct, and all others are
wrong

• Because Viterbi EM makes a “hard” choice about alignments, it can “get
stuck” at a suboptimal alignment

▶ k-means clustering is a kind of Viterbi EM procedure
▶ There are “real EM” generalisations of the k-means algorithm

• “Real” EM doesn’t commit to a single alignment like Viterbi EM does
• But in some applications Viterbi EM uses much less memory than “real”
EM, so Viterbi EM is all we can do!

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 75/170



From Viterbi EM to EM

• The probability of aligning kth French word to jth English word:

P(Ak=j | E=e,Fk=f) =
θf,ej∑m

j′=1 θf,ej′

• Viterbi EM assumes most probable alignment âk is true alignment
• EM distributes fractional counts according to P(Ak=j | E,Fk)
• Thought experiment: imagine e = (morning evening), f = (matin soir)
occurs 1,000 times in our corpus

• Suppose our current model θ̂ says P(matin → evening) = 0.6 and
P(matin → morning) = 0.4

• Viterbi EM gives all 1,000 counts to (matin, evening)
• EM gives 600 counts to (matin, evening) and 400 counts to
(matin,morning)
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The EM algorithm for estimating
translation probabilities

• The EM algorithm for estimating English word to French word translation
probabilities θ:

Initialise θ̂
(0)

somehow (e.g., randomly)
For iterations i = 1, 2, . . . , :

E-step: compute the expected counts n̂(i) using θ̂
(i−1)

M-step: set θ̂
(i+1)

to the MLE for θ given n̂(i)

• Recall: the MLE (Maximum Likelihood Estimate) for θ is the relative
frequency

• The EM algorithm is guaranteed to converge to a local maximum
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The E-step:
calculating the expected counts

Clear n̂
For each sentence (f , e) in training data:
for each French word position k = 1, . . . , |f | :
for each English word position j = 1, . . . , |e| :
n̂fk,ej + = P(Ak=j | E=e,Fk = fk)

Return n̂

• Recall that:

P(Ak=j | E=e,Fk=f) =
θf,ej∑m

j′=1 θf,ej′

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 78/170



EM example iteration

• English word to French word translation probabilities:

t̂(0) =

the morning evening
le 0.7 0.4 0.4

matin 0.2 0.3 0.3
soir 0.1 0.3 0.3

• Probability of French to English alignments P(A | E,F )
▶ Sentence 1: e = (the,morning),f = (le,matin)

P(A | E,F ) =

le matin
the 0.64 0.4

morning 0.36 0.6

▶ Sentence 2: e = (the, evening),f = (le, soir)

P(A | E,F ) =

le soir
the 0.64 0.25

evening 0.36 0.75



EM example iteration (cont.)

• Probability of French to English alignments P(A | E,F )
▶ Sentence 1: e = (the,morning),f = (le,matin)

P(A | E,F ) =

le matin
the 0.64 0.4

morning 0.36 0.6

▶ Sentence 2: e = (the, evening),f = (le, soir)

P(A | E,F ) =
le soir

the 0.64 0.25
evening 0.36 0.75

• Expected counts derived from these alignments:

n̂ =

the morning evening
le 1.28 0.36 0.36

matin 0.4 0.6 0
soir 0.25 0 0.75
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EM example iteration (cont.)

• Expected counts derived from these alignments:

n̂ =

the morning evening
le 1.28 0.36 0.36

matin 0.4 0.6 0
soir 0.25 0 0.75

• Normalise counts to estimate English word to French word probability
estimates:

t̂(1) =

the morning evening
le 0.66 0.38 0.32

matin 0.21 0.62 0
soir 0.13 0 0.68

⇒ Resolved translation ambiguity formorning and evening
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Determining convergence
of the EM algorithm

• It’s possible to prove that an EM iteration never decreases the likelihood of
the data

▶ the likelihood is the probability of the training data under the current model
▶ usually the likelihood increases rapidly with the first few iterations, and then
starts decreasing much slower

▶ often people just run 10 EM iterations

• Tracing the likelihood is a good way of debugging an EM implementation
▶ the theorem says “likelihood never decreases”
▶ but the likelihood can get extremely small
⇒ to avoid underflow, calculate − log likelihood (which should decrease on every

iteration)

• It’s easy to calculate the likelihood while calculating the expected counts
(see next slide)
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Calculating the likelihood

• Recall: the probability of French word Fk = f is:

P(Fk=f | E=e) =
1

|e|

|e|∑
j=1

θf,ej

• You need
∑|e|

j=1 θfk,ej to calculate the alignment probabilities anyway

P(Ak=j | E=e,Fk=fk) =
θf,ej∑m

j′=1 θf,ej′

• The negative log likelihood is:

− logL =
∑

(e,f)∈D

|f |∑
k=1

− log P(Fk=fk | E=e)

=
∑

(e,f)∈D

|f |∑
k=1

− log 1

|e|

|e|∑
j=1

θfk,ej

where the first sum is over all the sentence pairs in the training data
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IBM1 − log likelihood
on Hansards corpus

Iteration

− logL

107

5×106

0

0 1 2 3 4 5 6 7 8 9 10
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Alignments found by IBM1
from Hansards corpus

the le 0.36
to à 0.29
of de 0.58
and et 0.79
in dans 0.24
that que 0.49
a un 0.42
is est 0.53
i je 0.79
it il 0.32

legislation loi 0.45
federal fédéral 0.69

c c 0.69
first première 0.37
plan régime 0.58
any ne 0.16
only seulement 0.29
must doit 0.26
could pourrait 0.29
how comment 0.43

add ajouter 0.32
claims revendications 0.35
achieve atteindre 0.21
else autre 0.37

quality qualité 0.77
encourage encourager 0.28
adopted adoptées 0.16
success succès 0.60

representatives représentants 0.70
gave a 0.30
vinyl vinyle 0.29

continuous maintient 0.06
tractor est 0.36
briefs mémoires 0.19

unethical ni 0.21
rcms mrc 0.25

specifies montré 0.05
proportionately proportionnellement 0.32

videos vidéos 0.23
girlfriend amie 0.15
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From IBM1 to
phrase-based translation models

• IBMmodel 1 over-simplifies in many respects:
▶ it translates each word independently
⇒ translate multi-word “phrases” rather than words
▶ it doesn’t model word reordering, i.e., P(Ak | E) is uniform
⇒ alignments should depend on:

– location k of French word in sentence
– alignments of neighbouring French words

▶ it doesn’t model “fertility”, i.e., check that each English word is translated
approximately once

• Modern statistical MT systems correct these problems
• Interestingly, IBM1 still plays a central role in modern SMT because it is not
bad at word alignment

▶ alignments are more reliable if you run IBM1 in both directions (i.e., e→ f and
f → e) and merge the results

▶ alignments are useful for identifying “phrases” for phrase-based translation

• A phrase-based translation system is similiar to a word-based system,
except that the tokens are larger
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Identifying “phrases”
given word alignments

They have full access to workingdocuments
Ils
ont
accès
à

tous
le

documents
de

travail
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Outline

Overview of computational linguistics and natural language processing

Key ideas in NLP and CL

Grammars and parsing

Conclusion and future directions

Non-parametric Bayesian extensions to grammars
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Syntactic phrase structure and parsing

• Words compose to form phrases, which
recursively compose to form larger phrases and
sentences

▶ this recursive structure can be represented by a
tree

▶ to “parse” a sentencemeans to identify its
structure

• Each phrase has a syntactic category

S

NP

D

the

N

cat

VP

V

chased

NP

D

the

N

dog

• Phrase structure helps identify semantic roles,
i.e.,who did what to whom

▶ Entities are typically noun phrases
▶ Propositions are often represented by sentences

• Syntactic parsing is currently used for:
▶ named entity recognition and classification
▶ machine translation
▶ automatic summarisation

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 89/170



Outline

Overview of computational linguistics and natural language processing

Key ideas in NLP and CL

Grammars and parsing
Context-free grammars
Probabilistic context-free grammars
Learning probabilistic context-free grammars
Parsing with PCFGs
Dependency parsing

Conclusion and future directions

Non-parametric Bayesian extensions to grammars
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Context-Free Grammars

• Context-Free Grammars (CFGs) are a simple formal model of
compositional syntax

• A probabilistic version of CFG is easy to formulate
• CFG parsing algorithms are comparatively simple
• We know that natural language is not context-free
⇒ more complex models, such as Chomsky’s transformational grammar

• But by splitting nonterminal labels PCFGs can approximate natural
language fairly well

• There are efficient dynamic-programming algorithms for Probabilistic
Context Free Grammar inference that can’t be expressed as graphical
model inference algorithms (as far as I know)
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Informal presentation of CFGs

Grammar rules

S→ NP VP
NP→ Det N
VP→ V NP
Det→ the
Det→ a
N→ cat
N→ dog
V→ chased
V→ liked

Parse tree

S
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Informal presentation of CFGs

Grammar rules

S→ NP VP
NP→ Det N
VP→ V NP
Det→ the
Det→ a
N→ cat
N→ dog
V→ chased
V→ liked

Parse tree

S

NP VP

Det N

the cat

V NP

chased Det N

the dog
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How to check if a CFG generates a tree

• A CFG G = (N,V,R,S) generates a labelled, finite, ordered tree t iff:
▶ t’s root node is labelled S,
▶ for every node n in t labelled with a terminal v ∈ V, n has no children
▶ for every node n in t labelled with a nonterminal A ∈ N, there is a rule

A→ α ∈ R such that α is the sequence of labels of n’s children
[N = {S,NP,VP,Det,N,V} “N”s are different!
V = {the, a, cat,dog, chased, liked}

R =


S→ NP VP NP→ Det N
VP→ V VP→ V NP
Det→ a Det→ the
N→ cat N→ dog
V→ chased V→ liked



S

NP

Det

the

N

cat

VP

V

chased

NP

Det

the

N

dog

• A CFG G generates a string of terminals w iffw is the terminal yield of a
tree that G generates

▶ E.g., this CFG generates the cat chased the dog
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CFGs can generate infinitely many trees

S→ NP VP VP→ V VP→ V S
NP→ Sam NP→ Sasha V→ thinks V→ snores

S

NP

Sam

VP

V

snores

S

NP

Sasha

VP

V

thinks

S

NP

Sam

VP

V

snores

S

NP

Sam

VP

V

thinks

S

NP

Sasha

VP

V

thinks

S

NP

Sam

VP

V

snores
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Syntactic ambiguity

• Ambiguity is pervasive in human languages

S

NP

I

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

the

N

telescope

S

NP

I

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

the

N

telescope

• Grammars can generate multiple trees with the same terminal yield
⇒ A combinatorial explosion in the number of parses

▶ number of parses usually is an exponential function of sentence length
▶ some of our grammars generate more that 10100 parses for some sentences
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What is “context free” about a CFG?

• Grammars were originally viewed as string rewriting systems
• A rule α→ β permits a string α to rewrite to string β

S→ NP VP
NP→ dogs
VP→ V
V→ bark

S
⇒ NP VP
⇒ dogs VP
⇒ dogs V
⇒ dogs bark

• The Chomsky hierarchy of grammars is based on the shapes of α and β

▶ Unrestricted: no restriction on α or β, undecidable recognition
▶ Context sensitive: |α| ≤ |β|, PSPACE-complete recognition
▶ Context free: |α| = 1, polynomial-time recognition
▶ Regular: |α| = 1, only one nonterminal at right edge in β,
linear time recognition (finite state machines)

• Context sensitive and unrestricted grammars don’t have much application in NLP
• Themildly context-sensitive hierarchy lies between context-free and
context-sensitive
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Grammars often over-generate

• In a CFG, the possible expansions of a node depend only on its label
▶ how one node expands does not influence how other nodes expand
▶ the label is the “state” of a CFG

• Example: the following grammar over-generates
S→ NP VP NP→ D N VP→ V NP
NP→ she NP→ her D→ the
V→ likes N→ cat

S

NP

she

VP

V

likes

NP

D

the

N

cat

S

NP

D

the

N

cat

VP

V

likes

NP

her

S

NP

her

VP

V

likes

NP

she
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S
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Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP
1.0 ×
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP

Sasha
1.0 × 0.5 ×
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP

Sasha V S
1.0 × 0.5 × 0.2 ×
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP

Sasha V S

thinks

1.0 × 0.5 × 0.2 × 0.7 ×
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP

Sasha V S

thinks NP VP

1.0 × 0.5 × 0.2 × 0.7 × 1.0 ×
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP

Sasha V S

thinks NP VP

Sam

1.0 × 0.5 × 0.2 × 0.7 × 1.0 × 0.5 ×
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP

Sasha V S

thinks NP VP

Sam V

1.0 × 0.5 × 0.2 × 0.7 × 1.0 × 0.5 × 0.8 ×
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Introduction to
Probabilistic Context-Free Grammars

• Intuitive description of Probabilistic Context-Free Grammars (PCFGs):
▶ rules have probabilities
▶ the probability of a tree is the product of the probability of the rules that

generated it

• Example:
1.0 S→ NP VP 0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha 0.7 V→ thinks 0.3 V→ snores

S

NP VP

Sasha V S

thinks NP VP

Sam V

snores

1.0 × 0.5 × 0.2 × 0.7 × 1.0 × 0.5 × 0.8 × 0.3 = 0.0084
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Probabilistic Context-Free Grammars
(PCFGs)

• A PCFG is a 5-tuple (N,V,R,S,p) where:
▶ (N,V,R, S) is a CFG
▶ pmaps each rule in R to a value in [0, 1] where for each nonterminal A ∈ N:∑

A→α∈RA

pA→α = 1.0

where RA is the subset of rules in R expanding A

• Example:
1.0 S→ NP VP
0.8 VP→ V 0.2 VP→ V S
0.5 NP→ Sam 0.5 NP→ Sasha
0.7 V→ thinks 0.3 V→ snores
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PCFGs define
probability distributions over trees

• A CFG G defines a (possibly infinite) set of trees TG
• A PCFG G defines a probability PG(t) for each t ∈ TG

▶ P(t) is the product of the pA→α of the rules A→ α used to generate t
▶ If nA→α(t) is the number of times rule A→ α is used in generating t, then

P(t) =
∏

A→α∈R

pnA→α(t)
A→α

• Example: If t is the following tree:
S

NP

Sam

VP

V

snores

then nNP→Sam(t) = 1 and nV→thinks(t) = 0
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PCFGs define probability distributions
over strings of terminals

• The yield of a tree is the sequence of its leaf labels
▶ Example:

yield


S

NP

Sam

VP

V

snores

 = Sam snores

• If x is a string of terminals, let TG(x) be the subset of trees in TG with yield x
• Then the probability of a terminal string x is the sum of the probabilities of
trees with yield x, i.e.:

PG(x) =
∑

t∈TG(x)

PG(t)

⇒ PCFGs can be used as language models
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PCFGs as recursive
mixture distributions

• Given the PCFG rule:
A→ B1 . . . Bn

the distribution over strings for A is the concatenation of the product of the
distributions for B1, . . . ,Bn

• Given the two PCFGs rules:

A→ B A→ C

the distribution over strings for A are amixture of the distributions over
strings for B and C with weights pA→B and pA→C

• A PCFG with the rules:
A→ AB A→ C

defines a recursive mixture distribution where the strings of A begin with a
C followed by zero or more Bs, with probabilities decaying as an exponential
function of the number of Bs.
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Treebank corpora contain
phrase-structure analyses

• A treebank is a corpus where every sentence has been (manually) parsed
▶ the Penn WSJ treebank has parses for 49,000 sentences

S

NP-SBJ

DT

The

JJ

new
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options

VP
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carry

PRT

RP

out

NP

NP

NN
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PP
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IN

that

S
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NN

pension

NN
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,

S-ADV
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-NONE-

*-1

PP-PRD

IN
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NN

pressure

S
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-NONE-

*

VP

VP
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to

VP

VB

relax

NP

PRP$

its

JJ
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NN
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NNS

rules
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and

VP

TO

to

VP

VB

provide

NP
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more

NN
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NNS

options

,

,

VP

VBN
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NP
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.
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Learning PCFGs from treebanks

• Learning a PCFG from a treebank D
▶ Count how often each rule A→ α and each nonterminal A appears in D
▶ Relative frequency a.k.a. Maximum Likelihood estimator:

p̂A→α =
nA→α

nA
, where:

nA→α = number of times A→ α is used in D
nA = number of times A appears in D

▶ Add-1 smoothed estimator:

̂̂pA→α =
nA→α + 1

nA + |RA|
, where:

RA = subset of rules R that expand nonterminal A
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Learning PCFGs from treebanks
example (1)

D =



S

NP

she
VP

V

likes
NP

D

the
N

cat

S

NP

D

the
N

cat

VP

V

likes
NP

her

S

NP

Sam
VP

V

purrs


• Nonterminal counts:

nS = 3 nNP = 5 nVP = 3
nD = 2 nN = 2 nV = 3

• Rule counts:
nS→NP VP = 3 nVP→V NP = 2 nVP→V = 1
nNP→D N = 2 nNP→she = 1 nNP→her = 1
nNP→Sam = 1 nD→the = 2 nN→cat = 2
nV→likes = 2 nV→purrs = 1
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Learning PCFGs from treebanks
example (2)

• Nonterminal counts:
nS = 3 nNP = 5 nVP = 3
nD = 2 nN = 2 nV = 3

• Rule counts:
nS→NP VP = 3 nVP→V NP = 2 nVP→V = 1
nNP→D N = 2 nNP→she = 1 nNP→her = 1
nNP→Sam = 1 nD→the = 2 nN→cat = 2
nV→likes = 2 nV→purrs = 1

• Estimated rule probabilities:

p̂S→NP VP = 3/3 p̂VP→V NP = 2/3 p̂VP→V = 1/3
p̂NP→D N = 2/5 p̂NP→she = 1/5 p̂NP→her = 1/5
p̂NP→Sam = 1/5 p̂D→the = 2/2 p̂N→cat = 2/2
p̂V→likes = 2/3 p̂V→purrs = 1/3
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Accuracy of treebank PCFGs

• Parser accuracy is usually measured by f-score on a held-out test corpus
• A treebank PCFG (as described above) does fairly poorly (≈ 0.7 f-score)
• Accuracy can be improved by refining the categories

▶ wide variety of programmed and fully automatic category-splitting procedures
▶ modern PCFG parsers achieve f-score ≈ 0.9

• Category splitting dramatically increases the number of categories, and
hence rules and parameters in PCFG

▶ recall bias-variance tradeoff: category splitting reduces bias, but increases
variance

⇒ smoothing is essential, and details of smoothing procedure make a big impact
on parser f-score
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Parent annotation of a treebank

• Parent annotation is a simple category-splitting procedure where the
parent’s label is added to every non-terminal label

• Original trees:
S

NP

she
VP

V

likes
NP

D

the
N

cat

S

NP

D

the
N

cat

VP

V

likes
NP

her

• After parent annotation:
S

NPˆS

she
VPˆS

VˆVP

likes
NPˆVP

DˆNP

the
NˆNP

cat

S

NPˆS

DˆNP

the
NˆNP

cat

VPˆS

VˆVP

likes
NPˆVP

her
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Why does parent annotation
improve parser accuracy?

• After parent annotation:
S

NPˆS

she
VPˆS

VˆVP

likes
NPˆVP

DˆNP

the
NˆNP

cat

S

NPˆS

DˆNP

the
NˆNP

cat

VPˆS

VˆVP

likes
NPˆVP

her

• Parent annotation adds important linguistic context
▶ rules NP→ she and NP→ her get replaced with
NPˆS→ she and NPˆVP→ her

⇒ no longer over-generates her likes she
• But number of rules grows: the Penn WSJ treebank induces

▶ 74,169 rules before parent annotation
▶ 93,386 rules after parent annotation

• So sparse data becomes more of a problem after parent annotation
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Goal of PCFG parsing

• Given a PCFG G and a string of terminals x, we want to find themost
probable parse tree t̂(x) in the set of parses TG(x) that G generates for x

t̂(x) = argmax
t∈TG(x)

PG(t)

• Naive algorithm to find t̂(x):
▶ enumerate all trees with a terminal yield of length |x|
▶ if yield(t) = x and PG(t) is greater than probability of best tree seen so far, keep

t and PG(t)
▶ return tree with highest probability
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Why is PCFG parsing hard?

• Broad-brush ideas behind probabilistic parsing:
▶ to avoid problems of coverage and robustness, grammar generates all possible

parses (or at least most of the possibly useful ones)
▶ probability distribution distinguishes “good” parses from “bad” ones

⇒ Even moderately long sentences have an astronomical number of parses
▶ there are sentences in WSJ PTB with over 10100 parses

⇒ no hope that parsing via exhaustive enumeration will be practical
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High-level overview of PCFG parsing

• All the efficient PCFG parsers I know of involve two steps:
▶ binarise grammar, i.e., transform it so it has no rules A→ α where |α| > 2

– this can be done as a pre-processing step, or
– on-the-fly as part of the parsing algorithm

▶ use dynamic programming to search for optimal parses of substrings of x

• Together these permit us to parse e.g., 100-word sentences in millions or
billions of operations (rather than the 10100 that the naive algorithm
requires)
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PCFG example
(used to show parsing algorithm)

D =



S

NP

I

VP

V

saw

NP

NP

men

PP

P

with

NP

telescopes

S

NP

I

VP

V

saw

NP

men

PP

P

with

NP

telescopes


R =


1 S → NP VP 0.5 VP → V NP 0.5 VP → V NP PP

0.29 NP → I 0.29 NP → men 0.29 NP → telescopes
0.14 NP → NP PP 1 V → saw 1 P → with
1 PP → P NP
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Rule binarisation

• Our dynamic programming algorithm requires all rules to have at most two
children

• Binarisation: replace ternary and longer rules with a sequence of binary
rules

▶ replace rule p A → B1 B2 . . . Bm with rules

p A→ B1_B2_ . . ._Bm−1 Bm
1.0 B1_B2_ . . ._Bm−1 → B1_B2_ . . ._Bm−2 Bm−1

1.0 B1_B2 → B1 B2

• Example: rule 0.5 VP→ V NP PP is replaced with:
0.5 VP → V_NP PP
1.0 V_NP → V NP

• This can expand the number of rules in the grammar
▶ The WSJ PTB PCFG has:

– 74,619 rules before binarisation
– 89,304 rules after binarisation
– 109,943 rules with both binarisation and parent annotation
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PCFG example after binarisation

D =



S

NP

I

VP

V

saw

NP

NP

men

PP

P

with

NP

telescopes

S

NP

I

VP

V_NP

V

saw

NP

men

PP

P

with

NP

telescopes


R =

 1 S → NP VP 0.5 VP → V NP 0.29 NP → I
0.29 NP → men 0.29 NP → telescopes 0.14 NP → NP PP
1 V → saw 1 PP → P NP 1 P → with
0.5 VP → V_NP PP 1 V_NP → V NP
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String positions

• String positions are a convenient way of identifying substrings of a fixed
string x

• Informally, string positions are integers naming the “spaces” between
words

• If |x| = n, the a string position for x is an integer between 0 to n inclusive
• If x = (x0, . . . , xn−1), the pair of string positions (i, j), i ≤ j identifies
substring xi, . . . , xj−1.

• Example: In the string

| I | saw | men | with | telescopes |

0 1 2 3 4 5

the pair of string positions (1, 4) identifies saw men with
• Question: what substring does (0, 5) identify?
• Question: what substring does (2, 2) identify?
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Chomsky-normal form

• We’ll assume that our PCFG G is in Chomsky-normal form (CNF), i.e.,
every rule is of the form:

▶ A→ B C, where A,B,C ∈ N (i.e., A,B,C are nonterminals), or
▶ A→ v, where v ∈ V (i.e., A is a nonterminal and v is a terminal)

• Binarisation is a key step in bringing arbitrary PCFGs into CNF
• Our example grammar is in CNF

1 S → NP VP 0.5 VP → V NP 0.29 NP → I
0.29 NP → men 0.29 NP → telescopes 0.14 NP → NP PP
1 V → saw 1 PP → P NP 1 P → with
0.5 VP → V_NP PP 1 V_NP → V NP
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Introduction to
dynamic programming parsing

• Key idea: find most probable parse trees with top node A for each substring
(i, k) of string x

▶ find most probable parse trees for shorter substrings first
▶ use these to find most probable parse trees for longer substrings

• If k = i+ 1, then most probable parse tree is A → xi
• If k > i+ 1 then most probable parse tree for A can only be formed by:

▶ finding a mid-point j, where i < j < k, and
▶ combining a most probable parse tree for B spanning (i, j) with
▶ a most probable parse tree for C spanning (j, k)
▶ using some rule A→ B C ∈ R

0 i j k n

B C

A
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Dynamic programming
parsing algorithm

• Given a PCFG G = (N,V,R,S,p) in CNF and a string x where |x| = n,
fill a table Q[A, i, k] for each A ∈ N and 0 ≤ i < k ≤ n

▶ Q[A, i, k] will be set to the maximum probability of any parse with top node A
spanning (i, k)

• Algorithm:
for each i = 0, . . . ,n− 1:
Q[A, i, i+ 1] = pA→xi

for ℓ = 2, . . . ,n :
for i = 0, . . . ,n− ℓ :
k = i+ ℓ
for each A ∈ N :
Q[A, i, k] = max

j
max
A→B C

pA→B C Q[B, i, j] Q[C, j, k]

return Q[S, 0,n] (max probability of S)

• In recursion, the midpoint j ranges over i+ 1, . . . , k− 1,
and the rule A → B C ranges over all rules with parent A

• Keep back-pointers from each Q[A, i, k] to optimal children
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Dynamic programming
parsing example

• Grammar in CNF:

1 S → NP VP 0.5 VP → V NP 0.29 NP → I
0.29 NP → men 0.29 NP → telescopes 0.14 NP → NP PP
1 V → saw 1 PP → P NP 1 P → with
0.5 VP → V_NP PP 1 V_NP → V NP

• String x to parse:

| I | saw | men | with | telescopes |
0 1 2 3 4 5

• Base case (ℓ = 1)

Q[NP, 0, 1] = 0.29 Q[V, 1, 2] = 1 Q[NP, 2, 3] = 0.29
Q[P, 3, 4] = 1 Q[NP, 4, 5] = 0.29

• Recursive case ℓ = 2:
Q[VP, 1, 3] = 0.15 from Q[V, 1, 2] and Q[NP, 2, 3]

Q[V_NP, 1, 3] = 0.29 from Q[V, 1, 2] and Q[NP, 2, 3]
Q[PP, 3, 5] = 0.29 from Q[P, 3, 4] and Q[NP, 4, 5]
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Dynamic programming
parsing example (cont)

• Recursive case ℓ = 3:
Q[S, 0, 3] = 0.044 from Q[NP, 0, 1] and Q[VP, 1, 3]

Q[NP, 2, 5] = 0.011 from Q[NP, 2, 3] and Q[PP, 3, 5]

• Recursive case ℓ = 4:

Q[VP, 1, 5] = 0.042 from Q[V_NP, 1, 3] and Q[PP, 3, 5]

(alternative parse from Q[V, 1, 2] and Q[NP, 2, 5] only has probability 0.0055)
• Recursive case ℓ = 6:

Q[S, 0, 5] = 0.012 from Q[NP, 0, 1] and Q[VP, 1, 5]

• By chasing backpointers, we find the following parse:

(S (NP I) (VP (V_NP (V saw) (NP men)) (PP (P with) (NP telescopes))))

• After removing the “binarisation categories”:

(S (NP I) (VP (V saw) (NP men) (PP (P with) (NP telescopes))))
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Running time of
dynamic programming parsing

• The dynamic programming parsing algorithm enumerates all possible
string positions 0 ≤ i < j < k ≤ n, where n = |x| is the length of the string to
be parsed

• There are O(n3) of these, so this will take O(n3) time
• For each possible (i, j, k) triple, it considers allm = |R| rules in the
grammar. This takes O(m) time.

⇒ The dynamic programming parsing algorithm runs in O(mn3) time
• This is much better than the exponential time of the naive algorithm, but
with large grammars it can still be very slow

• Question: what are the space requirements of the algorithm?
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Non-parametric Bayesian extensions to grammars

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 126/170



Dependency grammars and dependency parses

our expert expects a courier took the package

sbj

comp

det det sbj
dobj

det

• Dependency grammar describes syntactic structure in terms of syntactic
relationships between words

• Not all natural language syntax can be described this way (but enough can
for dependency grammar to be useful for information extraction)

• Dependency parses can be constructed very quickly (important for e.g.
parsing the web)
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package
Stack Buffer

Initial state

• Shift-reduce dependency parsing actions:
▶ shift: moves next word from buffer to stack
▶ left reduce: pops 2nd item from stack, and attaches it to top item
▶ right reduce: pops top item from stack, and attaches it to 2nd top item
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package

det

Stack Buffer
Operation: Left reduce

• Shift-reduce dependency parsing actions:
▶ shift: moves next word from buffer to stack
▶ left reduce: pops 2nd item from stack, and attaches it to top item
▶ right reduce: pops top item from stack, and attaches it to 2nd top item
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package

det sbj

Stack Buffer
Operation: Left reduce

• Shift-reduce dependency parsing actions:
▶ shift: moves next word from buffer to stack
▶ left reduce: pops 2nd item from stack, and attaches it to top item
▶ right reduce: pops top item from stack, and attaches it to 2nd top item
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package

det sbj det

Stack Buffer
Operation: Left reduce

• Shift-reduce dependency parsing actions:
▶ shift: moves next word from buffer to stack
▶ left reduce: pops 2nd item from stack, and attaches it to top item
▶ right reduce: pops top item from stack, and attaches it to 2nd top item
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package

det sbj det sbj det

Stack Buffer
Operation: Left reduce
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package

det sbj det sbj det
dobj

Stack Buffer
Operation: Right reduce

• Shift-reduce dependency parsing actions:
▶ shift: moves next word from buffer to stack
▶ left reduce: pops 2nd item from stack, and attaches it to top item
▶ right reduce: pops top item from stack, and attaches it to 2nd top item
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package

det sbj det sbj det
dobj

comp

Stack Buffer
Operation: Right reduce

• Shift-reduce dependency parsing actions:
▶ shift: moves next word from buffer to stack
▶ left reduce: pops 2nd item from stack, and attaches it to top item
▶ right reduce: pops top item from stack, and attaches it to 2nd top item
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Shift-reduce incremental
dependency parsing

our expert expects a courier took the package

det sbj det sbj det
dobj

comp

Stack Buffer
Operation: Accept

• Shift-reduce dependency parsing actions:
▶ shift: moves next word from buffer to stack
▶ left reduce: pops 2nd item from stack, and attaches it to top item
▶ right reduce: pops top item from stack, and attaches it to 2nd top item
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Predicting the next parse move

• Every dependency parse corresponds to sequence of parsing actions
⇒ Train a classifier to predict the next parsing action given the current parser

state
• The parser state consists of:

▶ the next words on the buffer,
▶ the top words on the parse stack, and
▶ other properties of the subtrees on the stack

• From a dependency treebank we can read off the sequence of parsing
actions that generate the gold-standard parse

• More complex approaches try to minimise the sequence loss (Searn,
Dagger)
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State of the art parsing algorithms

• State-of-the-art syntactic parsers come in two varieties: phrase structure
and dependency parsers

• Phrase structure parsers are often effectively PCFGs with hundreds of
thousands of states

▶ “coarse to fine” search algorithms using dynamic programming
▶ discriminatively trained, with the PCFG probability as a “feature”

• Dependency parsers are often incremental shift-reduce parsers without
dynamic programming

▶ each move is predicted locally by a classifier
▶ beam search to avoid “garden pathing”

• State-of-the-art systems achieve over 90% f-score (accuracy)
• Major internet companies are reported to parse the web several times a day
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Summary

• Computational linguistics and natural language processing:
▶ were originally inspired by linguistics,
▶ but now they are almost applications of machine learning and statistics

• But they are unusual ML applications because they involve predicting very
highly structured objects

▶ phrase structure trees in syntactic parsing
▶ entire sentences in speech recognition and machine translation

• We solve these problems using standard methods from machine learning:
▶ define a probabilistic model over the relevant variables
▶ factor the model into small components that we can learn
▶ examples: HMMs, CRFs and PCFGs

• Often the relevant variables are not available in the training data
▶ Expectation-Maximisation, MCMC, etc. can impute the values of the hidden

variables
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The future of NLP

• NLP applications are exploding, driven mainly by:
▶ the information explosion (much of which is text)
▶ the mobile computing revolution (talk with our computers)

• The major internet companies are investing in NLP at a scale not seen
before

▶ the knowledge graph and similiar information repositories provide much
richer information than available before

• Topic modelling and opinion mining likely to be widely used to track rapidly
changing document collections (e.g., social media)
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Areas for future research (1)

• Improving existing NLP and CL models (parsing, relation extraction,
machine translation, etc.)

▶ explore new models for parsing, named entity linking, etc (these problems
aren’t solved!)

▶ apply new ideas from machine learning, e.g., deep learning
• Combine and extend models to produce new NLP applications

▶ integrate syntactic parsing and machine translation
▶ parse speech data (and detect/correct speech disfluencies)
▶ joint models of synatctic parsing, named entity linking, and relation extraction
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Areas for future research (2)

• Find new knowledge sources (e.g., kinds of training data) or new ways of
exploiting existing ones

▶ develop new indirectly supervised learning procedures to overcome the
labelled data bottleneck

▶ use the Knowledge Graph and similiar resources to improve parsing and
information extraction

• Develop models in which natural language is just one of many kinds of
information used:

▶ integrate language and vision
▶ integrate language with external databases (e.g., financial data, health records)
▶ integrate qualitative and quantitative information (e.g., don’t tokenise all
numbers to NUMBER)
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Deeper questions facing the field

• Our scientific understanding of semantics (meanings), world knowledge
and real-world inference is still very poor

▶ can existing methods scale up, or will we need a radical breakthrough?
• NLP (like most of ML) reduces learning to optimisation

▶ we have good methods for estimating weights for features
▶ but identifying possibly-useful features is a “black art”

• Deep learning learns latent feature representation for words
▶ can it supplant manually-crafted features?

• Hierarchical non-parametric Bayesian methods offer a mathematical
framework for learning the relevant features as well as their weights

▶ the base distribution generates (a possibly infinite number of) potentially
useful elements

▶ from which a finite subset are actually instantiated, based on the data
▶ can non-parametric Bayes be integrated with deep learning?
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PCFGs as products of multinomials

• The choice of rule to expand a state in an HMM or a nonterminal in a PCFG
is a draw from a multinomial distribution

⇒ HMMs and PCFGs can be viewed as products of multinomial distributions
⇒ Dirichlet distributions are conjugate priors for HMMs and PCFGs

▶ Bayesian inference for HMMs and PCFGs generally assumes Dirichlet priors

⇒ Non-parametric generalisations of multinomials should also let us
generalise HMMs and PCFGs
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Bayesian inference
for Dirichlet-multinomials

• Predictive probability (probability of next event) with uniform Dirichlet
prior with mass α overm outcomes and observed data Z1:n = (Z1, . . . ,Zn)

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

where nk(Z1:n) is number of times k appears in Z1:n
• Example: Coin (m = 2), α = 1, Z1:2 = (heads,heads)

▶ P(Z3 = heads | Z1:2, α) ∝ 2.5
▶ P(Z3 = tails | Z1:2, α) ∝ 0.5
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Dirichlet-multinomials
with many outcomes

• Predictive probability:

P(Zn+1 = k | Z1:n, α) ∝ nk(Z1:n) + α/m

• Suppose the number of outcomesm ≫ n. Then:

P(Zn+1 = k | Z1:n, α) ∝

 nk(Z1:n) if nk(Z1:n) > 0

α/m if nk(Z1:n) = 0

• Butmost outcomes will be unobserved, so:

P(Zn+1 ̸∈ Z1:n | Z1:n, α) ∝ α
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From Dirichlet-multinomials
to Chinese Restaurant Processes

…
• Suppose number of outcomes is unbounded
butwe pick the event labels

• If we number event types in order of occurrence
⇒ Chinese Restaurant Process

Z1 = 1

P(Zn+1 = k | Z1:n, α) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m+ 1
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Chinese Restaurant Process (0)

• Customer→ table mapping Z =

• P(z) = 1

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m+ 1
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Chinese Restaurant Process (1)

α

• Customer→ table mapping Z = 1

• P(z) = α/α

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m+ 1
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Chinese Restaurant Process (2)

1 α

• Customer→ table mapping Z = 1, 1

• P(z) = α/α× 1/(1 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m+ 1
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Chinese Restaurant Process (3)

2 α

• Customer→ table mapping Z = 1, 1, 2

• P(z) = α/α× 1/(1 + α)× α/(2 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m+ 1

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 146/170



Chinese Restaurant Process (4)

2 1 α

• Customer→ table mapping Z = 1, 1, 2, 1

• P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | Z1:n) ∝
{

nk(Z1:n) if k ≤ m = max(Z1:n)
α if k = m+ 1
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Labeled Chinese Restaurant Process (0)

• Table→ label mapping Y =

• Customer→ table mapping Z =

• Output sequenceX =

• P(X) = 1

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (1)

fish

α

• Table→ label mapping Y = fish
• Customer→ table mapping Z = 1

• Output sequenceX = fish
• P(X) = α/α× P0(fish)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (2)

fish

1 α

• Table→ label mapping Y = fish
• Customer→ table mapping Z = 1, 1

• Output sequenceX = fish,fish
• P(X) = P0(fish)× 1/(1 + α)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (3)

fish

2

apple

α

• Table→ label mapping Y = fish,apple
• Customer→ table mapping Z = 1, 1, 2

• Output sequenceX = fish,fish,apple
• P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Labeled Chinese Restaurant Process (4)

fish

2

apple

1 α

• Table→ label mapping Y = fish,apple
• Customer→ table mapping Z = 1, 1, 2

• Output sequenceX = fish,fish,apple,fish
• P(X) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

• Base distribution P0(Y) generates a label Yk for each table k
• All customers sitting at table k (i.e., Zi = k) share label Yk
• Customer i sitting at table Zi has label Xi = YZi
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Summary: Chinese
Restaurant Processes

• Chinese Restaurant Processes (CRPs) generalize Dirichlet-Multinomials to
an unbounded number of outcomes

▶ concentration parameter α controls how likely a new outcome is
▶ CRPs exhibit a rich get richer power-law behaviour

• Labeled CRPs use a base distribution to label each table
▶ base distribution can have infinite support
▶ concentrates mass on a countable subset
▶ power-law behaviour⇒ Zipfian distributions

FACULTY OF SCIENCE AND ENGINEERING | DEPARTMENT OF COMPUTING 153/170



Nonparametric extensions of PCFGs

• Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied tables)
depends on the data

• Two obvious nonparametric extensions of PCFGs:
▶ let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG
▶ let the number of rules grow unboundedly

– “new” rules are compositions of several rules from original grammar
– equivalent to caching tree fragments

⇒ adaptor grammars

• No reason both can’t be done together …
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Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG rules as in a
CFG

• A subset of the nonterminals are adapted
• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
▶ by picking a rule and recursively expanding its children, or
▶ by generating a previously generated tree (with probability proportional to the
number of times previously generated)

• Implemented by having a CRP for each adapted nonterminal
• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs
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Adaptor grammar for morphology (0)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme⋆

Generated words:
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Adaptor grammar for morphology (1a)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme⋆

Generated words:
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Adaptor grammar for morphology (1b)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme⋆

Generated words:
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Adaptor grammar for morphology (1c)

Word→ Stem Suffix

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme⋆
Suffix

s

Generated words:
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Adaptor grammar for morphology (1d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme⋆
Suffix

s

Generated words: cats
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Adaptor grammar for morphology (2a)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme⋆
Suffix

s

Generated words: cats
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Adaptor grammar for morphology (2b)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme⋆
Suffix

s

Generated words: cats
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Adaptor grammar for morphology (2c)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme⋆
Suffix

s

Generated words: cats
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Adaptor grammar for morphology (2d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme⋆
Suffix

s

Generated words: cats, dogs
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Adaptor grammar for morphology (3)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme⋆
Suffix

s

Generated words: cats, dogs, cats
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Adaptor grammars
as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

▶ it learns from the trees it generates
▶ if an adapted subtree has been used frequently in the past, it’s more likely to be
used again

• but the sequence of trees is exchangable (important for sampling)
• An unadapted nonterminal A expands using A → β with probability θA→β

• Each adapted nonterminal A is associated with a CRP (or PYP) that caches
previously generated subtrees rooted in A

• An adapted nonterminal A expands:
▶ to a subtree τ rooted in A with probability proportional to the number of times

τ was previously generated
▶ using A → β with probability proportional to αAθA→β
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Properties of adaptor grammars

• Possible trees are generated by CFG rules
but the probability of each adapted tree is learned separately

• Probability of adapted subtree τ is proportional to:
▶ the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

▶ plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can bemore probable than their parts
• PCFG rule probabilities estimated from table labels
⇒ effectively learns from types, not tokens
⇒makes learner less sensitive to frequency variation in input
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Applications of adaptor grammars

• Main application until now has been inmodelling human language
acquisition

▶ unsupervised word segmentation
▶ exploring the role of

– information about the non-linguistic context
– syllabic structure
– prosodic structure

• By exploiting the connection between PCFGs and LDA topic models, we
can:

▶ develop topical collocation models
e.g., New York Times,White House

▶ learn the structure of proper names
e.g.,Mr Pierre E. van Winken
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Interested in Machine Learning and Computational Linguistics?

We’re recruiting bright PhD students and post-docs.

ContactMark.Johnson@MQ.edu.au for more information.
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