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Summary

• Background on word segmentation and phonology
▶ Liang et al and Berg-Kirkpatrick et al MaxEnt word segmentation models
▶ Smolenksy’s Harmony theory and Optimality theory of phonology
▶ Goldwater et al MaxEnt phonology models

• A joint MaxEnt model of word segmentation and phonology
▶ because Berg-Kirkpatrick’s and Goldwater’s models are MaxEnt models, and

MaxEnt models can have arbitrary features, it is easy to combine them
▶ Harmony theory and sign constraints on MaxEnt feature weights

• Experimental evaluation on Buckeye corpus
▶ better results than Börschinger et al 2014 on a harder task
▶ Harmony theory feature weight constraints improve model performance
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Word segmentation and phonological alternation

• Overall goal: model children’s acquisition of words

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries in the data,
and hence words of the language

j Í u ▲ w Í ɑ Í n Í t ▲ t Í u ▲ s Í i ▲ ð Í ə ▲ b Í ʊ Í k
ju wɑnt tu si ðə bʊk

“you want to see the book”
• But a word’s pronunciation can vary, e.g, final /t/ in /wɑnt/ can delete

▶ can we identify the underlying forms of words
▶ can we learn how pronunciations alternate?
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Prior work in word segmentation

• Brent et al 1996 proposed a Bayesian unigram segmentation model

• Goldwater et al 2006 proposed a Bayesian non-parametric bigram
segmentation model that captures word-to-word dependencies

• Johnson et al 2008 proposed a hierarchical Bayesian non-parametric model
that could learn and exploit phonotactic regularities (e.g., syllable structure
constraints)

• Liang et al 2009 proposed a maximum likelihood unigram model with a
word-length penalty term

• Berg-Kirkpatrick et al 2010 reformulated the Liang model as a MaxEnt model
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The Berg-Kirkpatrick word segmentation model

• Input: sequence of utterances D = (w1, . . . ,wn)
▶ each utterance wi = (si ,1, . . . , si ,mi ) is a sequence of (surface) phones

• The model is a unigram model, so probability of word sequence w is:

P(w | θ) =
∑

s1...sℓ
s.t.s1...sℓ=w

ℓ∏
j=1

P(sj | θ)

• The probability of a word P(s | θ) is a MaxEnt model:

P(s | θ) =
1
Z

exp(θ · f (s)), where:

Z =
∑
s ′∈S

exp(θ · f (s ′))

• The set S of possible surface forms is the set of all substrings in D shorter
than a length bound
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Aside: the set S of possible word forms

P(s | θ) =
1
Z

exp(θ · f (s)), where:

Z =
∑
s ′∈S

exp(θ · f (s ′))

• Our estimators can be understood as adjusting the feature weights θ so the
model doesn’t “waste” probability on forms s that aren’t useful for analysing
the data

• In the generative non-parametric Bayesian models, S is the set of all possible
strings

• In these MaxEnt models, S is the set of substrings that actually occur in the
data

• How does the difference in S affect the estimate of θ?

• Could we use the negative sampling techniques of Mnih et al 2012 to estimate
MaxEnt models with infinite S?
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The word length penalty term
• Easy to show that the MLE segmentation analyses each sentence as a single

word
▶ the MLE minimises the KL-divergence between the data distribution and the

model’s distribution

⇒ Liang and Berg-Kirkpatrick add a double-exponential word length penalty

P(w | θ) =
∑

s1...sℓ
s.t.s1...sℓ=w

ℓ∏
j=1

P(sj | θ) exp(−|si |d )

⇒ P(w | θ) is deficient (i.e.,
∑

w P(w | θ) < 1)
▶ because we use a word length penalty in the same way, our models are deficient

also

• The loss function they optimise is an L2 regularised version of:

LD(θ) =
n∏

i=1

P(wi | θ)
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Sensitivity to word length penalty factor d
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Phonological alternation

• Words are often pronounced in different ways depending on the context
• Segments may change or delete

▶ here we model word-final /d/ and /t/ deletion
▶ e.g., /w ɑ n t t u/ ⇒ [w ɑ n t u]

• These alternations can be modelled by:
▶ assuming that each word has an underlying form which may differ from the

observed surface form
▶ there is a set of phonological processes mapping underlying forms into surface

forms
▶ these phonological processes can be conditioned on the context

– e.g., /t/ and /d/ deletion is more common when the following segment is a
consonant

▶ these processes can also be nondeterministic
– e.g., /t/ and /d/ deletion doesn’t always occur even when the following segment

is a consonant
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Harmony theory and Optimality theory

• Harmony theory and Optimality theory are two models of linguistic phenomena
(Smolensky 2005)

• There are two kinds of constraints:
▶ faithfulness constraints, e.g., underlying /t/ should appear on surface
▶ universal markedness constraints, e.g., ⋆tC

• Languages differ in the importance they assign to these constraints:
▶ in Harmony theory, violated constraints incur real-valued costs
▶ in Optimality theory, constraints are ranked

• The grammatical analyses are those which are optimal
▶ often not possible to simultaneously satisfy all constraints
▶ in Harmony theory, the optimal analysis minimises the sum of the costs of the

violated constraints
▶ in Optimality theory, the optimal analysis violates the lowest-ranked constraint

– Optimality theory can be viewed as a discrete approximation to Harmony theory
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Harmony theory as Maximum Entropy models

• Harmony theory models can be viewed as Maximum Entropy a.k.a. log-linear
a.k.a. exponential models

Harmony theory MaxEnt models

underlying form u and surface form s event x = (s, u)
Harmony constraints MaxEnt features f(s, u)
constraint costs MaxEnt feature weights θ
Harmony −θ · f(s, u)

P(u, s) =
1
Z

exp−θ · f(s, u)
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Learning Harmonic grammar weights

• Goldwater et al 2003 learnt Harmonic grammar weights from
(underlying,surface) word form pairs (i.e., supervised learning)
▶ now widely used in phonology, e.g., Hayes and Wilson 2008

• Eisenstadt 2009 and Pater et al 2012 infer the underlying forms and learn
Harmonic grammar weights from surface paradigms alone

• Linguistically, it makes sense to require the weights −θ to be negative since
Harmony violations can only make a (s, u) pair less likely (Pater et al 2009)
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Integrating word segmentation and phonology

• Prior work has used generative models
▶ generate a sequence of underlying words from Goldwater’s bigram model
▶ map the underlying phoneme sequence into a sequence of surface phones

• Elsner et al 2012 learn a finite state transducer mapping underlying phonemes
to surface phones
▶ for computational reasons they only consider simple substitutions

• Börschinger et al 2013 only allows word-final /t/ to be deleted

• Because these are all generative models, they can’t handle arbitrary feature
dependencies (which a MaxEnt model can, and which are needed for Harmonic
grammar)
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Possible (underlying,surface) pairs

• Because Berg-Kirkpatrick’s word segmentation model is a MaxEnt model, it is
easier to integrate it with Harmonic Grammar/MaxEnt models of phonology

• P(x) is a distribution over surface form/underlying form pairs x = (s, u)
where:
▶ s ∈ S, where S is the set of length-bounded substrings of D, and
▶ s = u or s ∈ p(u), where p ∈ P is a phonological alternation

– our model has two alternations, word-final /t/ deletion and word-final /d/
deletion

▶ we also require that u ∈ S (i.e., every underlying form must appear somewhere
in D)

• Example: In Buckeye data, the candidate (s, u) pairs include ([l.ih.v], /l.ih.v/),
([l.ih.v], /l.ih.v.d/) and ([l.ih.v], /l.ih.v.t/)
▶ these correspond to “live”, “lived” and the non-word “livet”
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Probabilistic model and optimisation objective
• The probability of word-final /t/ and /d/ deletion depends on the following

word ⇒ distinguish the contexts C = {C,V,#}

P(s, u | c , θ) =
1
Zc

exp(θ · f (s, u, c)), where:

Zc =
∑

(s,u)∈X
exp(θ · f (s, u, c)) for c ∈ C

• We optimise an L1 regularised log likelihood QD(θ), with the word length
penalty applied to the underlying form u

Q(s | c , θ) =
∑

u:(s,u)∈X
P(s, u | c , θ) exp(−|u|d )

Q(w | θ) =
∑

s1...sℓ
s.t.s1...sℓ=w

ℓ∏
j=1

Q(sj | c , θ)

QD(θ) =
n∑

i=1

log Q(wi | θ)− λ ||θ||1
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MaxEnt features

• Here are the features f (s, u, c) where s = [l.ih.v], u = /l.ih.v.t/ and c = C
▶ Underlying form lexical features: A feature for each underlying form u. In our

example, the feature is <U l ih v t>. These features enable the model to
learn language-specific lexical entries.
There are 4,803,734 underlying form lexical features (one for each possible
substring in the training data).

▶ Surface markedness features: The length of the surface string (<#L 3>), the
number of vowels (<#V 1>), the surface prefix and suffix CV shape
(<CVPrefix CV> and <CVSuffix VC>), and suffix+context CV shape
(<CVContext _C> and <CVContext C _C>).
There are 108 surface markedness features.

▶ Faithfulness features: A feature for each divergence between underlying and
surface forms (in this case, <*F t>).
There are two faithfulness features.
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L1 regularisation and sign constraints

• We chose to use L1 regularisation because it promotes weight sparsity (i.e.,
solutions where most weights are zero)
▶ rather than assigning every possible lexical entry and constraint a non-zero

weight (as L2 would), we may identify the subset of lexical entries and
constraints relevant to the language

▶ in turns out that L1 and L2 regularisation produce similiar results

• The L1 regularised log-likelihood is discontinuous at zero
▶ gradient-based methods like LBFGS can’t handle this discontinuity
⇒ the OWLQN extension of LBFGS stops the line minimisation whenever it

crosses an orthant boundary (Andrew et al 2007)
▶ easy to extend this to impose sign constraints on weights

• Sign constraints we explored:
▶ Lexical entry weights must be positive (i.e., you learn what words are in the

language)
▶ Harmony faithfulness and markedness constraint weights must be negative
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Determining the possible surface and underlying forms

• The set of possible surface forms S is the set of all substrings in the training
data of length ≤ 15

• X contains possible (surface,underlying) word pairs. For each s ∈ S,
(s, s) ∈ X , and (s, s + /d/) ∈ X if s + /d/ ∈ S (same for /t/)

P(s, u | c , θ) =
1
Zc

exp(θ · f (s, u, c)), where:

Zc =
∑

(s,u)∈X
exp(θ · f (s, u, c)) for c ∈ C

Q(s | c , θ) =
∑

u:(s,u)∈X
P(s, u | c , θ) exp(−|u|d )

∂ log Q(s | c , θ)
∂θ

= E
�
f (s, u, c) exp(−|u|d ) | s, c , θ

�
− E [f (s, u, c) | c , θ]

• The first expectation sums over underlying forms u : (s, u) ∈ X , while the
second expectation sums over all (s, u) ∈ X
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Dynamic programming for log Q(w | θ)

Q(w | θ) =
∑

s1...sℓ
s.t.s1...sℓ=w

ℓ∏
j=1

Q(sj | c , θ)

QD(θ) =
n∑

i=1

log Q(wi | θ)− λ ||θ||1

• We can sum/maximise over all s1 . . . sℓ such that s1 . . . sℓ = w by using
dynamic programming

y u w ɑ n t u s ð ə b ʊ k
• A forward-backward type calculation calculates the expectations required to

compute ∂ log Q(w)/∂θ
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Data preparation procedure

• Data from Buckeye corpus of conversational speech (Pitt et al 2007)
▶ provides an underlying and surface form for each word

• Data preparation as in Börschinger et al 2013
▶ we use the Buckeye underlying form as our underlying form
▶ we use the Buckeye underlying form as our surface form as well . . .
▶ except that if the Buckeye underlying form ends in a /d/ or /t/ and the surface

form does not end in that segment our surface form is the Buckeye underlying
form with that segment deleted

• Example: if Buckeye u = /l.ih.v.d/ “lived”, s = [l.ah.v]
then our u = /l.ih.v.d/, s = [l.ih.v]

• Example: if Buckeye u = /l.ih.v.d/ “lived”, s = [l.ah.v.d]
then our u = /l.ih.v.d/, s = [l.ih.v.d]
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Data statistics

• The data contains 48,796 sentences and 890,597 segments.

• The longest sentence has 187 segments.

• The “gold” segmentation has 236,996 word boundaries, 285,792 word tokens,
and 9,353 underlying word types.

• The longest word has 17 segments.

• Of the 41,186 /d/s and 73,392 /t/s in the underlying forms, 24,524 /d/s and
40,720 /t/s are word final, and of these 13,457 /d/s and 11,727 /t/s are
deleted.

• All possible substrings of length 15 or less are possible surface forms S
• There are 4,803,734 possible word types and 5,292,040 possible

surface/underlying word type pairs.

• Taking the 3 contexts derived from the following word into account, there are
4,969,718 possible word+context types.

• When all possible surface/underlying pairs are considered in all possible
contexts there are 15,876,120 possible surface/underlying/context triples.
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Overall segmentation scores

Börschinger et al. 2013 Our model

Surface token f-score 0.72 0.76 (0.01)
Underlying type f-score — 0.37 (0.02)
Deleted /t/ f-score 0.56 0.58 (0.03)
Deleted /d/ f-score — 0.62 (0.19)

• Results summary for our model compared to Börschinger et al (2013)
▶ their model only recovers word-final /t/ deletions and was run on data without

word-final /d/ deletions, so it is solving a simpler problem

• Surface token f-score is the standard token f-score

• Underlying type or “lexicon” f-score measures the accuracy with which the
underlying word types are recovered.

• Deleted /t/ and /d/ f-scores measure the accuracy with which the model
recovers segments that don’t appear in the surface.

• These results are averaged over 40 runs (standard deviations in parentheses)
with the word length penalty d = 1.525 applied to underlying forms
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The effect of feature weight constraints
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• The effect of constraints on feature weights on surface token f-score.
• “OT” indicates that the markedness and faithfulness features are required to

be non-positive
• “Lexical” indicates that the underlying lexical features are required to be

non-negative.
27 / 33



Number of underlying /d/ and /t/ posited
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• The effect of feature weight constraints on the number of deleted underlying
/d/ and /t/ segments posited by the model (d = 1.525).

• The red diamond indicates the 13,457 deleted underlying /d/ and 11,727
deleted underlying /t/ in the “gold” data.
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Regularised log-likelihood
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• The regularised log-likelihood as a function of the number of non-zero weights
for different constraints on feature weights (d = 1.525).
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The number of words posited by the model
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• The number of underlying types proposed by the model as a function of the
number of non-zero weights, for different constraints on feature weights
(d = 1.525).

• There are 9,353 underlying types in the “gold” data.
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Deleted segment f-score
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• F-score for deleted /d/ and /t/ recovery as a function of word length penalty
d and whether all surface/underlying pairs X are included in all contexts C

• OT + Lexical weight constraints
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Conclusion and future work

• Word segmentation and phonology can be integrated in a MaxEnt framework
to produce state-of-the-art results
▶ sensitivity to the word length penalty is a major drawback
▶ can this be set in a principled way?

• Constraining the feature weights associated with Markedness and Faithfulness
constraints improves the procedure’s performance considerably

• Can we generalise the approach to cover a wider range of phonological
processes?

• Can we generalise the approach to cover morpho-phonological processes,
where a single form has several hierarchical structures?
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