# Sign constraints on feature weights improve a joint model of word segmentation and phonology 

Mark Johnson<br>Macquarie University

Joint work with Joe Pater, Robert Staubs and Emmanuel Dupoux

## Summary

- Background on word segmentation and phonology
- Liang et al and Berg-Kirkpatrick et al MaxEnt word segmentation models
- Smolenksy's Harmony theory and Optimality theory of phonology
- Goldwater et al MaxEnt phonology models
- A joint MaxEnt model of word segmentation and phonology
- because Berg-Kirkpatrick's and Goldwater's models are MaxEnt models, and MaxEnt models can have arbitrary features, it is easy to combine them
- Harmony theory and sign constraints on MaxEnt feature weights
- Experimental evaluation on Buckeye corpus
- better results than Börschinger et al 2014 on a harder task
- Harmony theory feature weight constraints improve model performance


## Outline

Background

# A joint model of word segmentation and phonology 

Computational details

Experimental results

Conclusion

## Word segmentation and phonological alternation

- Overall goal: model children's acquisition of words
- Input: phoneme sequences with sentence boundaries (Brent)
- Task: identify word boundaries in the data, and hence words of the language

> ju want tu si ðə buk
> "you want to see the book"

- But a word's pronunciation can vary, e.g, final /t/ in /want/ can delete
- can we identify the underlying forms of words
- can we learn how pronunciations alternate?


## Prior work in word segmentation

- Brent et al 1996 proposed a Bayesian unigram segmentation model
- Goldwater et al 2006 proposed a Bayesian non-parametric bigram segmentation model that captures word-to-word dependencies
- Johnson et al 2008 proposed a hierarchical Bayesian non-parametric model that could learn and exploit phonotactic regularities (e.g., syllable structure constraints)
- Liang et al 2009 proposed a maximum likelihood unigram model with a word-length penalty term
- Berg-Kirkpatrick et al 2010 reformulated the Liang model as a MaxEnt model


## The Berg-Kirkpatrick word segmentation model

- Input: sequence of utterances $D=\left(w_{1}, \ldots, w_{n}\right)$
- each utterance $w_{i}=\left(s_{i, 1}, \ldots, s_{i, m_{i}}\right)$ is a sequence of (surface) phones
- The model is a unigram model, so probability of word sequence $w$ is:

$$
\mathrm{P}(w \mid \theta)=\sum_{\substack{s_{1} \ldots s_{\ell} \\ \text { s.t. } s_{1} \ldots s_{\ell}=w}} \prod_{j=1}^{\ell} \mathrm{P}\left(s_{j} \mid \theta\right)
$$

- The probability of a word $P(s \mid \theta)$ is a MaxEnt model:

$$
\begin{aligned}
\mathrm{P}(s \mid \theta) & =\frac{1}{Z} \exp (\theta \cdot f(s)), \text { where: } \\
Z & =\sum_{s^{\prime} \in \mathcal{S}} \exp \left(\theta \cdot f\left(s^{\prime}\right)\right)
\end{aligned}
$$

- The set $\mathcal{S}$ of possible surface forms is the set of all substrings in $D$ shorter than a length bound


## Aside: the set $\mathcal{S}$ of possible word forms

$$
\begin{aligned}
\mathrm{P}(s \mid \theta) & =\frac{1}{Z} \exp (\theta \cdot f(s)), \text { where: } \\
Z & =\sum_{s^{\prime} \in \mathcal{S}} \exp \left(\theta \cdot f\left(s^{\prime}\right)\right)
\end{aligned}
$$

- Our estimators can be understood as adjusting the feature weights $\theta$ so the model doesn't "waste" probability on forms $s$ that aren't useful for analysing the data
- In the generative non-parametric Bayesian models, $\mathcal{S}$ is the set of all possible strings
- In these MaxEnt models, $\mathcal{S}$ is the set of substrings that actually occur in the data
- How does the difference in $\mathcal{S}$ affect the estimate of $\theta$ ?
- Could we use the negative sampling techniques of Mnih et al 2012 to estimate MaxEnt models with infinite $\mathcal{S}$ ?


## The word length penalty term

- Easy to show that the MLE segmentation analyses each sentence as a single word
- the MLE minimises the KL-divergence between the data distribution and the model's distribution
$\Rightarrow$ Liang and Berg-Kirkpatrick add a double-exponential word length penalty

$$
\mathrm{P}(w \mid \theta)=\sum_{\substack{s_{1} \ldots s_{\ell} \\ \text { s.t. } s_{1} \ldots s_{\ell}=w}} \prod_{j=1}^{\ell} \mathrm{P}\left(s_{j} \mid \theta\right) \exp \left(-\left|s_{i}\right|^{d}\right)
$$

$\Rightarrow \mathrm{P}(w \mid \theta)$ is deficient (i.e., $\left.\sum_{w} \mathrm{P}(w \mid \theta)<1\right)$

- because we use a word length penalty in the same way, our models are deficient also
- The loss function they optimise is an $L_{2}$ regularised version of:

$$
L_{D}(\theta)=\prod_{i=1}^{n} \mathrm{P}\left(w_{i} \mid \theta\right)
$$

## Sensitivity to word length penalty factor $d$



## Phonological alternation

- Words are often pronounced in different ways depending on the context
- Segments may change or delete
- here we model word-final /d/ and /t/ deletion
- e.g., /w a n t t u/ $\Rightarrow\left[\begin{array}{lll}\mathrm{w} & \mathrm{a} & \mathrm{n} \text { t } \mathrm{u}\end{array}\right]$
- These alternations can be modelled by:
- assuming that each word has an underlying form which may differ from the observed surface form
- there is a set of phonological processes mapping underlying forms into surface forms
- these phonological processes can be conditioned on the context
- e.g., /t/ and /d/ deletion is more common when the following segment is a consonant
- these processes can also be nondeterministic
- e.g., /t/ and /d/ deletion doesn't always occur even when the following segment is a consonant


## Harmony theory and Optimality theory

- Harmony theory and Optimality theory are two models of linguistic phenomena (Smolensky 2005)
- There are two kinds of constraints:
- faithfulness constraints, e.g., underlying /t/ should appear on surface
- universal markedness constraints, e.g., ${ }^{\star} t C$
- Languages differ in the importance they assign to these constraints:
- in Harmony theory, violated constraints incur real-valued costs
- in Optimality theory, constraints are ranked
- The grammatical analyses are those which are optimal
- often not possible to simultaneously satisfy all constraints
- in Harmony theory, the optimal analysis minimises the sum of the costs of the violated constraints
- in Optimality theory, the optimal analysis violates the lowest-ranked constraint
- Optimality theory can be viewed as a discrete approximation to Harmony theory


## Harmony theory as Maximum Entropy models

- Harmony theory models can be viewed as Maximum Entropy a.k.a. log-linear a.k.a. exponential models


## Harmony theory

## MaxEnt models

| underlying form $u$ and surface form $s$ | event $x=(s, u)$ |
| :--- | :--- |
| Harmony constraints | MaxEnt features $\boldsymbol{f}(s, u)$ |
| constraint costs | MaxEnt feature weights $\theta$ |
| Harmony | $-\boldsymbol{\theta} \cdot \boldsymbol{f}(s, u)$ |

$$
\mathrm{P}(u, s)=\frac{1}{Z} \exp -\boldsymbol{\theta} \cdot \boldsymbol{f}(s, u)
$$

## Learning Harmonic grammar weights

- Goldwater et al 2003 learnt Harmonic grammar weights from (underlying,surface) word form pairs (i.e., supervised learning)
- now widely used in phonology, e.g., Hayes and Wilson 2008
- Eisenstadt 2009 and Pater et al 2012 infer the underlying forms and learn Harmonic grammar weights from surface paradigms alone
- Linguistically, it makes sense to require the weights $-\theta$ to be negative since Harmony violations can only make a ( $s, u$ ) pair less likely (Pater et al 2009)


## Integrating word segmentation and phonology

- Prior work has used generative models
- generate a sequence of underlying words from Goldwater's bigram model
- map the underlying phoneme sequence into a sequence of surface phones
- Elsner et al 2012 learn a finite state transducer mapping underlying phonemes to surface phones
- for computational reasons they only consider simple substitutions
- Börschinger et al 2013 only allows word-final /t/ to be deleted
- Because these are all generative models, they can't handle arbitrary feature dependencies (which a MaxEnt model can, and which are needed for Harmonic grammar)


## Outline

## Background

A joint model of word segmentation and phonology

Computational details

Experimental results

Conclusion

## Possible (underlying,surface) pairs

- Because Berg-Kirkpatrick's word segmentation model is a MaxEnt model, it is easier to integrate it with Harmonic Grammar/MaxEnt models of phonology
- $P(x)$ is a distribution over surface form/underlying form pairs $x=(s, u)$ where:
- $s \in \mathcal{S}$, where $\mathcal{S}$ is the set of length-bounded substrings of $D$, and
- $s=u$ or $s \in p(u)$, where $p \in \mathcal{P}$ is a phonological alternation
- our model has two alternations, word-final /t/deletion and word-final /d/ deletion
- we also require that $u \in \mathcal{S}$ (i.e., every underlying form must appear somewhere in $D$ )
- Example: In Buckeye data, the candidate ( $s, u$ ) pairs include ([I.ih.v], /I.ih.v/), ([l.ih.v], /l.ih.v.d/) and ([l.i.h.v], /l.ih.v.t/)
- these correspond to "live", "lived" and the non-word "livet"


## Probabilistic model and optimisation objective

- The probability of word-final $/ \mathrm{t} / \mathrm{and} / \mathrm{d} /$ deletion depends on the following word $\Rightarrow$ distinguish the contexts $\mathcal{C}=\{\mathrm{C}, \mathrm{V}, \#\}$

$$
\begin{aligned}
\mathrm{P}(s, u \mid c, \theta) & =\frac{1}{Z_{c}} \exp (\theta \cdot f(s, u, c)), \text { where: } \\
Z_{c} & =\sum_{(s, u) \in \mathcal{X}} \exp (\theta \cdot f(s, u, c)) \text { for } c \in \mathcal{C}
\end{aligned}
$$

- We optimise an $L_{1}$ regularised $\log$ likelihood $Q_{D}(\theta)$, with the word length penalty applied to the underlying form $u$

$$
\begin{aligned}
Q(s \mid c, \theta) & =\sum_{u:(s, u) \in \mathcal{X}} \mathrm{P}(s, u \mid c, \theta) \exp \left(-|u|^{d}\right) \\
Q(w \mid \theta) & =\sum_{\substack{s_{1} \ldots s_{\ell} \\
\text { s.t. } s_{1} \ldots l_{\ell}=w}} \prod_{j=1}^{\ell} Q\left(s_{j} \mid c, \theta\right) \\
Q_{D}(\theta) & =\sum_{i=1}^{n} \log Q\left(w_{i} \mid \theta\right)-\lambda\|\theta\|_{1}
\end{aligned}
$$

## MaxEnt features

- Here are the features $f(s, u, c)$ where $s=[$ I.ih. $v], u=/ I$.ih.v.t/ and $c=C$
- Underlying form lexical features: A feature for each underlying form $u$. In our example, the feature is $\langle\mathrm{U} l$ ih v t$\rangle$. These features enable the model to learn language-specific lexical entries.
There are 4,803,734 underlying form lexical features (one for each possible substring in the training data).
- Surface markedness features: The length of the surface string (<\#L 3>), the number of vowels (<\#V 1>), the surface prefix and suffix CV shape (<CVPrefix CV> and <CVSuffix VC>), and suffix+context CV shape (<CVContext _C> and <CVContext C _C>).
There are 108 surface markedness features.
- Faithfulness features: A feature for each divergence between underlying and surface forms (in this case, <*F t>).
There are two faithfulness features.


## $L_{1}$ regularisation and sign constraints

- We chose to use $L_{1}$ regularisation because it promotes weight sparsity (i.e., solutions where most weights are zero)
- rather than assigning every possible lexical entry and constraint a non-zero weight (as $L_{2}$ would), we may identify the subset of lexical entries and constraints relevant to the language
- in turns out that $L_{1}$ and $L_{2}$ regularisation produce similiar results
- The $L_{1}$ regularised log-likelihood is discontinuous at zero
- gradient-based methods like LBFGS can't handle this discontinuity
$\Rightarrow$ the OWLQN extension of LBFGS stops the line minimisation whenever it crosses an orthant boundary (Andrew et al 2007)
- easy to extend this to impose sign constraints on weights
- Sign constraints we explored:
- Lexical entry weights must be positive (i.e., you learn what words are in the language)
- Harmony faithfulness and markedness constraint weights must be negative


## Outline

## Background

# A joint model of word segmentation and phonology 

Computational details

Experimental results

Conclusion

## Determining the possible surface and underlying forms

- The set of possible surface forms $\mathcal{S}$ is the set of all substrings in the training data of length $\leq 15$
- $\mathcal{X}$ contains possible (surface, underlying) word pairs. For each $s \in \mathcal{S}$, $(s, s) \in \mathcal{X}$, and $(s, s+/ d /) \in \mathcal{X}$ if $s+/ d / \in \mathcal{S}$ (same for $/ \mathrm{t} /$ )

$$
\begin{aligned}
\mathrm{P}(s, u \mid c, \theta) & =\frac{1}{Z_{c}} \exp (\theta \cdot f(s, u, c)), \text { where: } \\
Z_{c} & =\sum_{(s, u) \in \mathcal{X}} \exp (\theta \cdot f(s, u, c)) \text { for } c \in \mathcal{C}
\end{aligned}
$$

$$
Q(s \mid c, \theta)=\sum_{u:(s, u) \in \mathcal{X}} \mathrm{P}(s, u \mid c, \theta) \exp \left(-|u|^{d}\right)
$$

$$
\frac{\partial \log Q(s \mid c, \theta)}{\partial \theta}=E\left[f(s, u, c) \exp \left(-|u|^{d}\right) \mid s, c, \theta\right]-E[f(s, u, c) \mid c, \theta]
$$

- The first expectation sums over underlying forms $u:(s, u) \in \mathcal{X}$, while the second expectation sums over all $(s, u) \in \mathcal{X}$


## Dynamic programming for $\log Q(w \mid \theta)$

$$
\begin{aligned}
Q(w \mid \theta) & =\sum_{\substack{s_{1} \ldots s_{\ell} \\
\text { s.t. } s_{1} \ldots s_{\ell}=w}} \prod_{j=1}^{\ell} Q\left(s_{j} \mid c, \theta\right) \\
Q_{D}(\theta) & =\sum_{i=1}^{n} \log Q\left(w_{i} \mid \theta\right)-\lambda\|\theta\|_{1}
\end{aligned}
$$

- We can sum/maximise over all $s_{1} \ldots s_{\ell}$ such that $s_{1} \ldots s_{\ell}=w$ by using dynamic programming

- A forward-backward type calculation calculates the expectations required to compute $\partial \log Q(w) / \partial \theta$


## Outline

## Background

A joint model of word segmentation and phonology

Computational details

Experimental results

Conclusion

## Data preparation procedure

- Data from Buckeye corpus of conversational speech (Pitt et al 2007)
- provides an underlying and surface form for each word
- Data preparation as in Börschinger et al 2013
- we use the Buckeye underlying form as our underlying form
- we use the Buckeye underlying form as our surface form as well ...
- except that if the Buckeye underlying form ends in a /d/ or $/ t /$ and the surface form does not end in that segment our surface form is the Buckeye underlying form with that segment deleted
- Example: if Buckeye $u=/$ I.ih.v.d/ "lived", $s=[$ I.ah.v] then our $u=/$ I.i.h.v.d/, $s=[$ l.ih.v]
- Example: if Buckeye $u=/$ l.ih.v.d/ "lived", $s=$ [l.ah.v.d] then our $u=/$ l.ih.v.d/, $s=[$ l.ih.v.d]


## Data statistics

- The data contains 48,796 sentences and 890,597 segments.
- The longest sentence has 187 segments.
- The "gold" segmentation has 236,996 word boundaries, 285,792 word tokens, and 9,353 underlying word types.
- The longest word has 17 segments.
- Of the $41,186 / \mathrm{d} / \mathrm{s}$ and $73,392 / \mathrm{t} / \mathrm{s}$ in the underlying forms, $24,524 / \mathrm{d} / \mathrm{s}$ and $40,720 / \mathrm{t} / \mathrm{s}$ are word final, and of these $13,457 / \mathrm{d} / \mathrm{s}$ and $11,727 / \mathrm{t} / \mathrm{s}$ are deleted.
- All possible substrings of length 15 or less are possible surface forms $\mathcal{S}$
- There are $4,803,734$ possible word types and $5,292,040$ possible surface/underlying word type pairs.
- Taking the 3 contexts derived from the following word into account, there are 4,969,718 possible word+context types.
- When all possible surface/underlying pairs are considered in all possible contexts there are $15,876,120$ possible surface/underlying/context triples.


## Overall segmentation scores

| Börschinger et al. 2013 |  | Our model |
| :--- | :---: | :---: |
| Surface token f-score | 0.72 | $\mathbf{0 . 7 6}(0.01)$ |
| Underlying type f-score | - | $0.37(0.02)$ |
| Deleted /t/f-score | 0.56 | $\mathbf{0 . 5 8}(0.03)$ |
| Deleted /d/f-score | - | $0.62(0.19)$ |

- Results summary for our model compared to Börschinger et al (2013)
- their model only recovers word-final /t/ deletions and was run on data without word-final /d/ deletions, so it is solving a simpler problem
- Surface token f-score is the standard token f-score
- Underlying type or "lexicon" f-score measures the accuracy with which the underlying word types are recovered.
- Deleted /t/ and /d/f-scores measure the accuracy with which the model recovers segments that don't appear in the surface.
- These results are averaged over 40 runs (standard deviations in parentheses) with the word length penalty $d=1.525$ applied to underlying forms


## The effect of feature weight constraints



- The effect of constraints on feature weights on surface token f-score.
- "OT" indicates that the markedness and faithfulness features are required to be non-positive
- "Lexical" indicates that the underlying lexical features are required to be non-negative.


## Number of underlying /d/ and /t/ posited



```
Sign
constraints
on weights
- None
\triangle OT
- Lexical
+ OT+Lexical
```

- The effect of feature weight constraints on the number of deleted underlying $/ \mathrm{d} /$ and $/ \mathrm{t} /$ segments posited by the model $(d=1.525)$.
- The red diamond indicates the 13,457 deleted underlying /d/ and 11,727 deleted underlying /t/ in the "gold" data.


## Regularised log-likelihood



- The regularised log-likelihood as a function of the number of non-zero weights for different constraints on feature weights $(d=1.525)$.


## The number of words posited by the model



```
Sign
constraints
on weights
    - None
    \triangle OT
    - Lexical
    + OT+Lexical
```

- The number of underlying types proposed by the model as a function of the number of non-zero weights, for different constraints on feature weights ( $d=1.525$ ).
- There are 9,353 underlying types in the "gold" data.


## Deleted segment f-score



- F-score for deleted /d/ and /t/ recovery as a function of word length penalty $d$ and whether all surface/underlying pairs $\mathcal{X}$ are included in all contexts $\mathcal{C}$
- OT + Lexical weight constraints


## Outline

## Background

A joint model of word segmentation and phonology

Computational details

Experimental results

Conclusion

## Conclusion and future work

- Word segmentation and phonology can be integrated in a MaxEnt framework to produce state-of-the-art results
- sensitivity to the word length penalty is a major drawback
- can this be set in a principled way?
- Constraining the feature weights associated with Markedness and Faithfulness constraints improves the procedure's performance considerably
- Can we generalise the approach to cover a wider range of phonological processes?
- Can we generalise the approach to cover morpho-phonological processes, where a single form has several hierarchical structures?

