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ML as an engineering discipline

• A mature engineering discipline should be able to predict
the cost of a project before it starts

• Collecting/producing training data is typically the most
expensive part of an ML or NLP project

• We usually have only the vaguest idea of how accuracy is
related to training data size and quality

I More data produces better accuracy
I Higher quality data (closer domain, less noise) produces
better accuracy

I But we usually have no idea how much data or what quality
of data is required to achieve a given performance goal

• Imagine if engineers designed bridges the way we build
systems!
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Goals of this research project

• Given desiderata (accuracy, speed, computational and data
resource pricing, etc.) for an ML/NLP system, design for a
system that meets these

• Example: design a classi�er that identi�es terrorism-related
tweets with at least 1% precision and 50% recall and handles
1M tweets/sec. Sample terrorism-related tweets cost $1
each, while random tweets cost $10−5 each.

I What hardware/software should I use?
I How many of each kind of tweet should I buy?
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What this paper contributes

• Studies how accuracy varies as a function of training data
size for several NLP models and tasks

• Discusses three methods for extrapolating accuracy
predictions as a function of training data size

• Proposes a new accuracy extrapolation task, provides
datasets and results for the three extrapolation methods
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Overview

• Three models of how Error (= 1 − accuracy) depends on
training data size n

I Power law: Error = bn−c
I Inverse square root: Error = a + bn−1/2
I Extended power law: Error = a + bn−c

• Parameters estimated from multiple runs using weighted
least squares regression

I Model is run on di�erent-sized subsets of training data
I Same test set is used to evaluate each run
I The evaluation of each model training/test run is a data point
I Each data point (run) is weighted by training data size n
I Perhaps another loss function would be more motivated?
I If evaluation returns f-score, assume Error = 1 − f-score?
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Error vs training size: MNIST digits (1)
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Power−law regression for MNIST logistic regression (shallow) and CNN (deep) models

• Error = 1 − Accuracy
• Error and training size axes have linear scale

I Highly non-linear relationship
I Non-linear regression (loess) to �t error curve
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Error vs training size: MNIST digits (2)
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Power−law regression for MNIST logistic regression (shallow) and CNN (deep) models

• Error = 1 − Accuracy
• Error axis has linear scale, training size axis has log scale

I Linear regression to �t error curve
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Power-law relationship
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Power−law regression for MNIST logistic regression (shallow) and CNN (deep) models

• Error = bn−c, where n = training data size
• Predicts that Error→ 0 as n→∞ if c > 0
• Linear relationship between log(Error) and log(n)
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Inverse square-root relationship
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Inverse sqrt regression for MNIST logistic regression (shallow) and CNN (deep) models

• Error = a + bn−1/2, where n = training data size
• Predicts that Error→ a as n→∞
• Inspired by Bias-Variance decomposition (Geman et al., 1992)

I a is a bias term due to model mis-speci�cation
I From Central Limit Theorem, variance ∝ 1/n
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Extended power law relationship
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Extended power−law regression for MNIST logistic regression (shallow) and CNN (deep) models

• Error = a + bn−c, where n = training data size
• Predicts that Error→ a as n→∞ if c > 0
• c = 1/2 (inverse sqrt) assumes test items are independent
⇒ c < 1/2 if there are dependencies among test items
• Estimating these parameters involves non-linear
least-squares optimisation, which can be unstable or fail
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Using an accuracy model to predict data
requirements

• High-level description:
I Determine error rate of target system on data sets of various
sizes

I Estimate parameters of accuracy model
I Find the training size n̂ that the accuracy model predicts
achieves the desired error rate

• More sophisticated approaches:
I Use bootstrap resampling for con�dence intervals on n̂

13 / 33



Outline

Introduction

Empirical models of accuracy vs training data size

Extrapolating accuracy in NLP applications

Related work

Conclusion

14 / 33



Error extrapolation task

• Given error on training data sets of size n/k (where k = 2 or
10) or less, predict error on data set size n.

I Report absolute di�erence of predicted and true error
I Perhaps an asymmetric loss would be more appropriate?

• All evaluations use same test set
• The training data subsets are all contained in the same
subset of size n/k

I Motivation: the only training data you have is of size n/k, but
you can do anything you want with it
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Extrapolating English dependency parsing
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• Black points: training error
• Red point: test error (which we are predicting)
• Orange: power law relationship, Error = bn−c
• Blue: inverse sqrt relationship, Error = a + bn−1/2
• Green: extended power law relationship, Error = a + bn−c
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Extrapolating Chinese dependency parsing

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1stMST 2ndMST jPTDP Stanford

C
hinese

10000 200003000040000 10000 200003000040000 10000 200003000040000 10000 200003000040000

0.25

0.30

0.35

0.40

train_size

er
ro

r

• Black points: training error
• Red point: test error (which we are predicting)
• Orange: power law relationship, Error = bn−c
• Blue: inverse sqrt relationship, Error = a + bn−1/2
• Green: extended power law relationship, Error = a + bn−c
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Dependency parsing, extrapolating 1⁄2 data

language parser obs plaw isqrt ext.plaw
1 Chinese 1stMST 9 0.00880 0.00724 0.00656
2 Chinese 2ndMST 9 0.00780 0.00806 0.00293
3 Chinese jPTDP 9 0.01096 0.00527 0.00313
4 Chinese Stanford 9 0.01641 0.00037 0.01109
5 English 1stMST 9 0.00412 0.00586 0.00183
6 English 2ndMST 9 0.00367 0.00591 0.00166
7 English jPTDP 9 0.00383 0.00413 0.00194
8 English Stanford 9 0.00581 0.00337 0.00067

• Extended power law is more accurate than other
extrapolations, except for Stanford parser on Chinese
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Dependency parsing, extrapolating 1⁄10 data
language parser obs plaw isqrt ext.plaw

1 Chinese 1stMST 4 0.00760 0.03715 0.04847
2 Chinese 2ndMST 4 0.00545 0.03927 0.02431
3 Chinese jPTDP 4 0.01665 0.03104 0.05008
4 Chinese Stanford 4 0.01891 0.02738 0.01873
5 English 1stMST 4 0.00939 0.01998
6 English 2ndMST 4 0.00973 0.01837
7 English jPTDP 4 0.00574 0.01792 0.01098
8 English Stanford 4 0.01920 0.00741 0.02195

• Extended power law regression failed to converge on 2
settings

• Power law regression gives most accurate extrapolation on 6
settings
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Extrapolating English POS tagging
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• Black points: training error
• Red point: test error (which we are predicting)
• Orange: power law relationship, Error = bn−c
• Blue: inverse sqrt relationship, Error = a + bn−1/2
• Green: extended power law relationship, Error = a + bn−c
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Extrapolating Chinese POS tagging
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• Black points: training error
• Red point: test error (which we are predicting)
• Orange: power law relationship, Error = bn−c
• Blue: inverse sqrt relationship, Error = a + bn−1/2
• Green: extended power law relationship, Error = a + bn−c
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POS tagging, extrapolating 1⁄2 data

language tagger obs plaw isqrt ext.plaw
1 Chinese jPTDP 9 0.00198 0.00289 0.00164
2 Chinese Marmot 9 0.00278 0.00180 0.00053
3 English jPTDP 9 0.00372 0.00182 0.00172
4 English Marmot 9 0.00198 0.00010 0.00037

• Extended power law gives most accurate extrapolation on 3
settings
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POS tagging, extrapolating 1⁄10 data

language tagger obs plaw isqrt ext.plaw
1 Chinese jPTDP 4 0.00867 0.00496 0.00703
2 Chinese Marmot 4 0.00603 0.00740 0.01932
3 English jPTDP 4 0.00769 0.00278
4 English Marmot 4 0.00634 0.00121

• Extended power law regression failed to converge on 2
settings

• Inverse sqrt regression gives most accurate extrapolation on
3 settings
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Machine translation
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• BLEU is close to linearly related to log training size
• Predicts that BLEU will grow unboundedly as training data
gets larger
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Our models applied to Machine Translation
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• Black points: training error, where Error = 1 − BLEU/100
• Red point: test error (which we are predicting)
• Orange: power law relationship, Error = bn−c
• Blue: inverse sqrt relationship, Error = a + bn−1/2
• Green: extended power law relationship, Error = a + bn−c
(FAILED TO CONVERGE)
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Predicting accuracy as a function of training
size
• Mukherjee et al. (2003) and Figueroa et al. (2012) predict
classi�er accuracy in a biomedical setting by �tting a
power-law curve equivalent to one used here

• Beleites et al. (2013) discuss classi�er accuracy with very
small training sets (tens of examples) in chemical
applications

• Hajian-Tilaki (2014) discusses how ROC and AUC vary with
sample size in biomedical applications

• Cho et al. (2015) investigate how much data is needed to
train a medical image deep learning system

• Sun et al. (2017) observe that performance of a deep
learning machine translation system increases even with
very large training data sets
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Sample complexity

• Sample complexity is the name used in machine learning for
the relationship between classi�er accuracy and training
data size

• Plays an important theoretical role in Empirical Risk
Minimisation and Support Vector Machines

• Not studied empirically, AFAIK
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Power calculations

• In statistics, a power calculation is used to determine how
many samples are required in an experiment to test a
hypothesis

I Widely used in drug trials
• Given a hypothesis test and an e�ect size (di�erence
between two conditions), a power calculation returns the
sample size for which it is likely that the test will reject the
null hypothesis
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Bias-Variance Trade-o�
• Geman et al. (1992) decompose the squared error of a
• regression model into two terms:

I A bias term, due to model errors
I A variance term, due to statistical noise

• As the model gets more complex, bias decreases but
variance increases

• Bias does not vary with training data size n, but variance
should decrease as 1/n if observations are independent

I If observations are not independent, variance will decrease
more slowly

• Domingos (2000a) and Domingos (2000b) generalise the
Bias-Variance decomposition to 0 − 1 loss and squared loss

I They also propose a bootstrap procedure to estimate Bias
and Variance
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Conclusion and future work
• If ML and NLP are to become reliable engineering
disciplines, we need to be able to predict how much e�ort a
project will require

• Training data is often the most expensive and di�cult
resource to acquire⇒ need to predict training data
requirements

• This paper describes three di�erent procedures for
extrapolating the performance of a system on a large
training data set from the performance on a smaller data set

• We introduce an extrapolation task that compares
extrapolation procedures

• Undoubtedly there are much better ways of extrapolating
system performance!
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