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ML as an engineering discipline
• A mature engineering discipline should be able to predict
the cost of a project before it starts
• Collecting/producing training data is typically the most
expensive part of an ML or NLP project
• We usually have only the vaguest idea of how accuracy is
related to training data size and quality
I More data produces better accuracy
I Higher quality data (closer domain, less noise) produces
better accuracy

I But we usually have no idea how much data or what quality of
data is required to achieve a given performance goal

• Imagine if engineers designed bridges the way we build
systems!

See statistical power analysis for experimental design, e.g., Cohen (1992)
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Goals of this research project

• Given desiderata (accuracy, speed, computational and data
resource pricing, etc.) for an ML/NLP system, design for a
system that meets these.
• Example: design a semantic parser for a target application
domain that achieves 95% accuracy across a given range of
queries.
I What hardware/software should I use?
I How many labelled training examples do I need?

• Idea: Extrapolate performance from small pilot data to
predict performance on much larger data
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What this paper contributes

• Studies di�erent methods for predicting accuracy on a full
dataset from results on a small pilot dataset
• We propose new accuracy extrapolation task, provide results
for the 9 extrapolation methods on 8 text corpora
I Uses the fastText document classi�er and corpora (Joulin
et al., 2016)

• Investigates three extrapolation models and three item
weighting functions for predicting accuracy as a function of
training data size
I Easily inverted to estimate training size required to achieve a
target accuracy

• Highlights the importance of hyperparameter tuning and
item weighting in extrapolation
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Overview
• Extrapolation models of how error e (= 1 − accuracy)
depends on training data size n
I Power law: ê(n) = bnc

I Inverse square-root: ê(n) = a + bn−
1/2

I Biased power law: ê(n) = a + bnc

• Extrapolation model estimated from multiple runs using
weighted least squares regression
I Model trained on di�erent-sized subsets of pilot data
I Same test set is used to evaluate each run
I The evaluation of each model training/test run is a training
data point for extrapolation model

• Weighting functions for least squares regression
I constant weight (1)
I linear weight (n)
I binomial weight (n/e(1 − e))

See e.g., Haussler et al. (1996); Mukherjee et al. (2003); Figueroa et al. (2012); Beleites et al. (2013); Hajian-Tilaki (2014); Cho et al.

(2015); Sun et al. (2017); Barone et al. (2017); Hestness et al. (2017)
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Accuracy extrapolation task

Corpus Labels Train (K) Test (K)

Development
ag_news 4 120 7.6
dbpedia 14 560 70
amazon_review_full 5 3,000 650
yelp_review_polarity 2 560 38

Evaluation
amazon_review_polarity 2 3,600 400
sogou_news 5 450 60
yahoo_answers 10 1,400 60
yelp_review_full 5 650 50

• FastText document classi�er
& data
I 4 development corpora
I 4 evaluation corpora
I Joulin et al. (2016)’s
train/test division

• Pilot data is 0.5 or 0.1 of
train data
• Goal: use pilot data to
predict test accuracy when
trained on full train data
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Extrapolation on ag_news corpus
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• Extrapolation with biased
power-law model
(ê(n) = a + bnc) and
binomial weights (n/e(1 − e))
• Extrapolation from
0.5 training data is
generally good
• Extrapolation from
0.1 training data is poor
unless hyperparameters
are optimised at each
subset of pilot data
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Relative residuals (ê/e − 1) on dev corpora
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RMS relative residuals on test corpora
Pilot
data

amazon
review
polarity

sogou
news

yahoo
answers

yelp
review
full

Overall

= 0.1 0.1016 0.2752 0.0519 0.0496 0.1510
≤ 0.1 0.0209 0.1900 0.0264 0.0406 0.0986

= 0.5 0.0338 0.0438 0.0254 0.0160 0.0315
≤ 0.5 0.0049 0.0390 0.0053 0.0046 0.0200

• Based on dev corpora results, use:
I biased power law model (ê(n) = a + bnc)
I binomial item weights (n/e(1 − e))

• Evaluate extrapolations with RMS of relative residuals
(ê/e − 1)
• Larger pilot data⇒ smaller extrapolation error
• Optimise hyperparameters at each pilot subset
⇒ smaller extrapolation error
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Conclusions and future work

• The �eld need methods for predicting how much training
data a system needs to achieve a target performance
• We introduced an extrapolation task for predicting a
classi�er’s accuracy on a large dataset from a small pilot
dataset
• Highlight the importance of hyperparameter tuning and item
weighting
• Future work: extrapolation methods that don’t require
expensive hyperparameter optimisation
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We are recruiting PhD students and
Postdocs!

Centre for Research in AI and Language (CRAIL)
Macquarie University

Parsing, Dialog, Deep Unsupervised Learning, Language in Context
Vision and Language, Language for Robot Control

• We are recruiting top PhD Students and Postdoc Researchers
I With generous pay and top-up scholarships to $41K tax-free

• Send CV and sample papers to Mark.Johnson@MQ.edu.au
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