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Overview

• The	image	captioning	problem
• Dependency	evaluation	of	captions	(SPICE)
• Controlling	generation	with	specialised decoding
• Summary
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Image	captioning
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Evaluating	automatic	
captions	using	SPICE
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Evaluating	captions	automatically

• Benchmark datasets require fast to compute, 
accurate and inexpensive evaluation metrics

• Good metrics can be ‘climbed’ in the development-
validation loop

• The Evaluation Task:
• Given a candidate caption ci and a set of m

reference captions Ri = {ri1,…,rim}, compute a score 
Si that represents similarity between ci and Ri.
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The	state	of	the	art

• BLEU: Precision with brevity penalty, 
geometric mean over n-grams

• ROUGE-L: F-score based on Longest 
Common Substring

• METEOR: Align fragments, take harmonic 
mean of precision & recall

• CIDEr: Cosine similarity with TF-IDF weighting
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The	current	state	of	the	art
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False	positives	in	N-gram	based	
evaluation

A	giraffe	standing	on	top	of	a	green	
field.

A	young	girl	standing	on	top	of	a	
tennis	court.
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N-gram	overlap	isn’t	necessary

• A	shiny	metal	pot	filled	with	some	diced	veggies.
• A	pan	on	the	stove	with	chopped	vegetables	
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Score	this	caption	out	of	10
“A young girl standing on 
top of a basketball court”

How would you score this caption?
• There is girl
• Girl is young
• Girl is standing

• There is court
• Court is for basketball
• Girl is on court

These are the propositional content of the utterance
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High	level	intuition	behind	SPICE

• Use	a	parser	to	identify	sets	of	propositions	in	
caption	and	gold	labels

• Count	the	overlap	between	proposition	sets
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Related	work

• Syntactic dependency parsing
– Klein & Manning: Accurate Unlexicalized Parsing, ACL 

2003

• Scene graphs for image retrieval
– Johnson et. al: Image Retrieval Using Scene Graphs, 

CVPR 2015

• Rule-based mapping from dependency parse to scene 
graph

– Schuster et. al: Generating semantically precise scene 
graphs from textual descriptions for improved image 
retrieval, EMNLP 2015
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SPICE	metric	calculation

• Synonymous nodes merged in G(S)
• Wordnet synsets used for tuple matching
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Example	of	scene	graph

• Scene graph (right) parsed from a set of 
reference captions (left)
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Good	caption	example	(1)
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Good	caption	example	(2)
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Poor	caption	example	(1)
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Poor	caption	example	(2)
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Properties	of	SPICE

• SPICE	measures	how	well	caption	models	recover	
objects,	attributes	and	relations

• Fluency	neglected	(as	with	n-gram	metrics)
• If	fluency	is	a	concern,	include	a	fluency	metric	
such	as	surprisal*

• To	model	human	judgement	as	closely	as	possible,	
build	a	task-specific	metric	ensemble

• *Hale,	J:	A	probabilistic	Earley Parser	as	a	Psycholinguistic	Model	
2001;		Levy,	R:	Expectation-based	syntactic	comprehension	2008
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Evaluation	on	MS	COCO	data	(1)

• Based	on	system	level	correlation	between	
automatic	scores	and	human	judgments	(using	
255k	human	judgments)

• Pearson	correlation	with	human	judgments	(M1)	is	
0.88	for	SPICE,	vs.	0.43	for	CIDEr and	0.53	for	
METEOR.	

• SPICE	ranks	human	captions	ahead	of	competition	
entries,	and	picks	the	same	top-5	competition	
entries	as	humans.
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Evaluation	on	MS	COCO	data	(2)
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Summary	of	SPICE

• SPICE measures how effectively image 
captions recover objects, attributes and 
relations

• Captures human judgment on model-
generated captions better than CIDEr, BLEU, 
METEOR and ROUGE

• Tuples can be categorized to provide detailed 
error analysis

• Offers scope for further improvement as better 
parsers are developed
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Guided	Open	Vocabulary	
Image	Captioning	with	
Constrained	Beam	Search

August	2017 23



Motivation	(1)

A	close	up	of	a	pizza	on	the	ground.
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Motivation	(2)

A	bird	standing	on	top	of	a	grass	covered	field.
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Prior	work	in	out-of-domain	captioning

• Source:	‘Deep	Compositional	Captioning:	Describing	Novel	Object	
Categories	without	Paired	Training	Data’,	Hendricks	et.	al.	CVPR	2016	oral
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Guided	open-vocabulary	captioning

Out-of-Domain image 
containing unseen object 
(‘suitcase’)

CNN-RNN
Captioning

Model

A cat sitting inside of
a suitcase.

cat, suitcase,
inside

Constrained
Beam
Search

Beam
Search

A cat sitting on top of
a refrigerator.

Open-vocab tags
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Overview	of	constrained	decoding
• Caption	generator	uses	pretrained word	embeddings

• Generates	words	not	seen	in	training	captions
• Image	labeller	trained	on	larger	label	vocabulary
• At	test	time:

• Image	labeller	identifies	key	words	that	caption	
must	contain

• Construct	a	finite	state	automaton	that	accepts	
captions	containing	key	words

• Decoder	has	a	beam	for	each	automaton	state
• Minimises	label	bias

• Output	is	highest	scoring	string in	a	final	beam



Base	model:	LRCN
• 2-layer	LSTM	network,	based	
on	LRCN1

• LSTM	inputs	at	level	1	and	2	
given	by:

• where	We is	a	word	embedding,	πt is	an	indicator	
column	vector, h1t is	the	output	of	the	first	layer,	and	I is	the	
input	image

1 Long-term	Recurrent	Convolutional	Networks	for	Visual	Recognition	and	Description,	
Donahue	et.	al.	CVPR	2015.	Figure	reproduced	from	Donahue	et.	al.	August	2017 29



Vocabulary	expansion
• Introduce pretrained GloVe2 300D embeddings at 

both the LSTM input and output layers (We):

• We fixed during training with minimal performance 
impact (using conventional cross-entropy loss).  

• Model learns to predict 300D vectors vt with a high 
dot-product similarity with the GloVe embedding of 
the correct output word.

• New vocabulary introduced at test time by 
concatenating the GloVe vector as an additional 
column to We

2 ‘GloVe:	Global	Vectors	for	Word	Representation’,	Pennington	et.	al.	EMNLP	2014	August	2017 30



Finite-state	multi-beam	decoder
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Experimental	setup	– MS	COCO

l Following Hendricks et. al., 8 objects removed 
from the caption training set: bus, racket, 
couch, suitcase, bottle, microwave, pizza, 
zebra (incl. plurals, synonyms)

l Image tag training set is unrestricted (formed 
by tokenizing captions)

l We re-use the image-tagger (Lexical 
Classifier) from trained by Hendricks et. al.
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Examples:	MS	COCO	(1)
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Examples:	MS	COCO	(2)
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Results	on	MS	COCO

August	2017 35



Captioning	ImageNet

l Can we leverage existing image labels?
l Base model using ResNet-50 CNN, trained 

on MS COCO + Flickr 30k (150k captions)
l Constrained beam search using the ground-

truth synset
l Intend to release captions for 1.2M images 

(ILSVRC 2012)
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ImageNet	examples
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Human	evaluation	on	ImageNet	(1)
l AMT evaluations, protocol identical to MS 

COCO Captioning Challenge 2015
l Workers compare two captions, 3 evaluations 

x 5k samples images
l For context, the best 2015 in-domain model 

achieved 11% ‘better’, 17% ‘equally good’
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Human	evaluation	on	ImageNet	(2)
• Clustering	class	labels	
illustrates	improvements	
across	all	categories

• 38%	equal	or	better	than	
human	on	birds

• Promising	for	combining	
fine-grained	object	
detectors	with	general	
captioning	models
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Future	work	on	constrained	
decoding

l Couple with Expectation-Maximization (EM) 
algorithm to learn from weakly-labelled images

l Ground tags in the image to tackle these failures:
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Conclusions

• Vision	+	language	/	zero-shot	learning
• Base	model	using	ResNet-50	CNN,	trained	on	MS	
COCO	+	Flickr	30k	(150k	captions)

• Constrained	beam	search	using	the	ground-truth	
synset

• Intend	to	release	captions	for	1.2M	images	(ILSVRC	
2012)
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Conclusions	and	future	
work
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Conclusions	and	future	work

• SPICE	evaluates	captions	by	comparing	their	
propositional	content	to	the	propositional	content	
of	reference	captions

• Our	guided	decoding	algorithm	uses	a	high-
precision	image	labeler	to	constrain	the	decoder

• Finite	state	constraints	on	decoder
• Multiple	beams	minimise label	bias

• Is	there	a	better	decoding	algorithm	than	left	to	
right	decoding?
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