Unsupervised phonemic Chinese word segmentation using Adaptor Grammars

Mark Johnson<sup>1</sup> and Katherine Demuth<sup>2</sup>

<sup>1</sup>Department of Computing

<sup>2</sup>Department of Linguistics

Macquarie University Sydney Australia

COLING, August 2010



# Talk outline

- Adaptor grammars are a framework for expressing *non-parametric hierarchical Bayesian models*
- They can be used to define *unsupervised word segmentation* models that learn:
  - word-internal structure: how words are composed out of syllables, and
  - inter-word structure: collocational dependencies between words
- Adaptor Grammars provide state-of-the-art unsupervised segmentation results for English: *will they work for Mandarin Chinese*?
  - can Adaptor Grammars model *lexical tone*?
  - does modelling lexical tone improve word segmentation accuracy?



Why study computational models of language acquisition?

- Hypothesis: acquisition, comprehension and production are *computational processes* 
  - computational models need not be just *descriptions* of language acquisition
  - a computational model should be able to *learn a language*
- Characterising computational models of acquisition:
  - the input (information available to learner)
  - the output (generalisations learner can make)
  - the algorithm used to map input to output
- Bayesian inference algorithms are optimal learners
  - computational generalisation of "ideal observer" theory
- Computational models let us study the effect of
  - changing the information in the input, and
  - altering the kinds of generalisations the learner can acquire

in ways that would be impractical or unethical with real children May be useful for designing experiments or theraputic interventions

# Unsupervised word segmentation

- Input: phoneme sequences with *sentence boundaries* (Brent)
  - English data produced from orthographic transcripts of child-directed speech by *looking up each word in a pronouncing dictionary*
- Task: identify *word boundaries*, and hence words, in unsegmented utterance (in ARPABET)

 $y \, {}_{\scriptscriptstyle \Delta} u \, {}_{\scriptscriptstyle \Delta} w \, {}_{\scriptscriptstyle \Delta} a \, {}_{\scriptscriptstyle \Delta} n \, {}_{\scriptscriptstyle \Delta} t \, {}_{\scriptscriptstyle \Delta} t \, {}_{\scriptscriptstyle \Delta} u \, {}_{\scriptscriptstyle \Delta} s \, {}_{\scriptscriptstyle \Delta} i \, {}_{\scriptscriptstyle \Delta} D \, {}_{\scriptscriptstyle \Delta} 6 \, {}_{\scriptscriptstyle \Delta} b \, {}_{\scriptscriptstyle \Delta} U \, {}_{\scriptscriptstyle \Delta} k$ 

- Useful cues for word segmentation:
  - Phonotactics and syllable structure (Fleck)
  - Inter-word dependencies (Goldwater)



# CFG models of word segmentation

Words  $\rightarrow$  Word Words  $\rightarrow$  Word Words Word  $\rightarrow$  Phons Phons  $\rightarrow$  Phon Phons  $\rightarrow$  Phon Phons Phon  $\rightarrow a \mid b \mid \dots$ 

- CFG trees can *describe* segmentation, but
- PCFGs can't distinguish good segmentations from bad ones
  - PCFG rules are too small a unit of generalisation
  - need to learn e.g., probability that bUk is a Word



#### Towards non-parametric grammars

 $\begin{array}{l} \text{Words} \rightarrow \text{Word} \\ \text{Words} \rightarrow \text{Word} \ \text{Words} \\ \text{Word} \rightarrow \textit{all possible phoneme sequences} \end{array}$ 

- Learn probability Word  $\rightarrow$  b U k
- But infinitely many possible Word expansions
   ⇒ this grammar is not a PCFG
- Given *fixed training data*, only finitely many useful rules
   ⇒ use data to choose Word rules as well as their probabilities
- Non-parametric models: parameters of model depend on data



Words

Word Words

Word

d 6

#### From PCFGs to Adaptor grammars

- An adaptor grammar is a PCFG where a subset of the nonterminals are *adapted*
- Adaptor grammar generative process:
  - to expand an *unadapted nonterminal B*: (just as in PCFG)
    - − select a *rule*  $B \rightarrow \beta \in R$  with prob.  $\theta_{B \rightarrow \beta}$ , and recursively expand nonterminals in *β*
  - ▶ to expand an *adapted nonterminal B*:
    - select a *previously generated subtree*  $T_B$  with prob.  $\propto$  number of times  $T_B$  was generated, or
    - select a *rule*  $B \rightarrow \beta \in R$  with prob.  $\propto \alpha_B \theta_{B \rightarrow \beta}$ , and recursively expand nonterminals in  $\beta$



#### Unigram adaptor grammar (Brent)

Words  $\rightarrow$  Word Words  $\rightarrow$  Word Words Word  $\rightarrow$  Phons Phons  $\rightarrow$  Phon Phons  $\rightarrow$  Phon Phons

Word nonterminal is adapted

To generate a Word:



• expand using Word  $\rightarrow$  Phons rule with prob.  $\propto \alpha_{Word}$ and recursively expand Phons



 $\Rightarrow$ 

# Properties of adaptor grammars

- Probability of regenerating an adapted subtree  $T_B \propto$  number of times  $T_B$  was previously generated
  - adapted subtrees are not independent
    - an adapted subtree can be *more probable* than the rules used to construct it
  - ▶ but they are *exchangable* ⇒ efficient sampling algorithms
  - ▶ "rich get richer" ⇒ Zipf power-law distributions
- Each adapted nonterminal is associated with a *Chinese Restaurant Process* or *Pitman-Yor Process* 
  - CFG rules define base distribution of CRP or PYP
- CRP/PYP parameters (e.g.,  $\alpha_B$ ) can themselves be estimated (e.g., slice sampling)



#### Abbreviatory notation

Words  $\rightarrow$  Word Words  $\rightarrow$  Word Words <u>Word</u>  $\rightarrow$  Phons Phons  $\rightarrow$  Phon Phons  $\rightarrow$  Phon Phons

is abbreviated as Words  $\rightarrow$  Word<sup>+</sup> <u>Word</u>  $\rightarrow$  Phon<sup>+</sup>





# Unigram model of word segmentation

- Unigram "bag of words" model (Brent):
  - generate a *dictionary*, i.e., a set of words, where each word is a random sequence of phonemes
    - Bayesian prior prefers smaller dictionaries
  - generate each utterance by choosing each word at random from dictionary
- Brent's unigram model as an Adaptor Grammar

$$\frac{\text{Words} \rightarrow \underline{\text{Word}}^{+}}{\underline{\text{Word}} \rightarrow \text{Phon}^{+}}$$

$$\frac{\frac{\text{Word}}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{\frac{Word}{\sqrt{Word}{\sqrt{\frac{Word}{\sqrt{Word}{\sqrt{\frac{Word}{\sqrt{Word}{\sqrt{Word}}}}}}}}}}}}}}}}}}$$

- Accuracy of word segmentation learnt: *56% token f-score* (same as Brent model)
- But we can construct many more word segmentation models using AGs



Adaptor grammar learnt from Brent corpus

- Initial grammar
  - 1 Words  $\rightarrow$  Word Words 1 Words  $\rightarrow$  Word
  - 1 <u>Word</u>  $\rightarrow$  Phon
  - 1 Phons  $\rightarrow$  Phon Phons 1 Phons  $\rightarrow$  Phon
  - 1 Phon  $\rightarrow D$

- 1 Phon  $\rightarrow G$
- 1 Phon  $\rightarrow A$  1 Phon  $\rightarrow E$

#### • A grammar learnt from Brent corpus

- 16625 Words  $\rightarrow$  Word Words 9791 Words  $\rightarrow$  Word
  - 1575  $\underline{Word} \rightarrow Phons$
  - 4962 Phons  $\rightarrow$  Phon Phons 1575 Phons  $\rightarrow$  Phon
    - 134 Phon  $\rightarrow D$  41 Phon  $\rightarrow G$
    - 180 Phon  $\rightarrow A$  152 Phon  $\rightarrow E$
    - 460 <u>Word</u>  $\rightarrow$  (Phons (Phon y) (Phons (Phon u)))
    - 446 <u>Word</u>  $\rightarrow$  (Phons (Phon *w*) (Phons (Phon *A*) (Phons (Phon *t*))))
    - 374 <u>Word</u>  $\rightarrow$  (Phons (Phon *D*) (Phons (Phon 6)))
    - 372 <u>Word</u>  $\rightarrow$  (Phons (Phon &) (Phons (Phon *n*) (Phons (Phon *d*))))



Undersegmentation errors with Unigram model

Words  $\rightarrow \underline{Word}^+ \qquad \underline{Word} \rightarrow Phon^+$ 

- Unigram word segmentation model assumes each word is generated independently
- But there are strong inter-word dependencies (collocations)
- Unigram model can only capture such dependencies by analyzing collocations as words (Goldwater 2006)



#### Collocations $\Rightarrow$ Words





- A <u>Colloc</u>(ation) consists of one or more words
- Both <u>Words</u> and <u>Collocs</u> are adapted (learnt)
- Significantly improves word segmentation accuracy over unigram model (74% f-score; ≈ Goldwater's bigram model)



## $Collocations \Rightarrow Words \Rightarrow Syllables$



• Rudimentary syllable model (an improved model might do better)

• With 2 Collocation levels, f-score = 84% .



Distinguishing internal onsets/codas helps in English

 $\begin{array}{l} \text{Sentence} \rightarrow \text{Colloc}^+ \\ \underline{\text{Word}} \rightarrow \text{SyllableIF} \\ \underline{\text{Word}} \rightarrow \text{SyllableI Syllable SyllableF} \\ \underline{\text{OnsetI}} \rightarrow \text{Consonant}^+ \\ \underline{\text{Nucleus}} \rightarrow \text{Vowel}^+ \end{array}$ 

 $\begin{array}{l} \underline{Colloc} \rightarrow Word^+ \\ \underline{Word} \rightarrow SyllableI SyllableF \\ SyllableIF \rightarrow (OnsetI) RhymeF \\ RhymeF \rightarrow Nucleus (CodaF) \\ \underline{CodaF} \rightarrow Consonant^+ \end{array}$ 



- With 2 <u>Colloc</u>ation levels, not distinguishing initial/final clusters, f-score = 84%
- With 3 <u>Colloc</u>ation levels, distinguishing initial/final clusters, ACQLFusc = 87%

#### **Collocations**<sup>2</sup> $\Rightarrow$ Words $\Rightarrow$ Syllables





#### Summary so far

• Word segmentation accuracy depends on the kinds of generalisations learnt.

| Generalization                              | Accuracy |
|---------------------------------------------|----------|
| words as units (unigram)                    | 56%      |
| + associations between words (collocations) | 79%      |
| + syllable structure                        | 87%      |

- Word segmentation accuracy improves when you learn other things as well
  - explain away potentially misleading generalizations



# Tone in Mandarin Chinese word segmentation

- Tone in Mandarin Chinese provides an additional dimension of information to the language learner
- It is necessary in order to distinguish lexical items, but how important is it for word segmentation?
- Approach:
  - construct a pair of otherwise identical corpora, one that contains tone and one that does not
  - run identical learning algorithms on both corpora
  - compare the accuracy with which each learns word segmentation



#### Mandarin Chinese corpus

- Used Tardif (1993) "Beijing" corpus (in Pinyin format)
  - deleted all "Child" utterances, and utterances with codes \$INTERJ, \$UNINT, \$VOC and \$PRMPT
  - corpus contains 50,118 utterances, consisting of 187,533 word tokens

zen3me gei3 ta1 bei1 shang4 lai2 (1.) ? ta1: (.) a1yi2 gei3 de (.) ta1 gei3 de . hen3 jian3dan1 .

- Used a Pinyin to IPA translation program to produce IPA format tsən<sup>214</sup>mv kei<sup>214</sup> t<sup>h</sup>a<sup>55</sup> pei<sup>55</sup> san<sup>51</sup> lai<sup>35</sup> t<sup>h</sup>a<sup>55</sup> a<sup>55</sup>i<sup>35</sup> kei<sup>214</sup> tv t<sup>h</sup>a<sup>55</sup> kei<sup>214</sup> tv xən<sup>214</sup> tçiɛn<sup>214</sup>tan<sup>55</sup>
- Moved tones from end of syllable to preceding vowel ts ə <sup>214</sup> n m r k e i <sup>214</sup> t<sup>h</sup> a <sup>55</sup> p e i <sup>55</sup> s a <sup>51</sup> ŋ l ai <sup>35</sup> t<sup>h</sup> a <sup>55</sup> a <sup>55</sup> i <sup>35</sup> k e i <sup>214</sup> t r t<sup>h</sup> a <sup>55</sup> k e i <sup>214</sup> t r x ə <sup>214</sup> n tç iɛ <sup>214</sup> n t a <sup>55</sup> n
  Optionally delete tones)

Unigram word segmentation adaptor grammar



# Collocation adaptor grammars

• Adaptor grammars with one level of collocation:

 $Collocs \rightarrow \underline{Colloc}^+ \qquad \underline{Colloc} \rightarrow Words \qquad Words \rightarrow \underline{Word}^+$ 

• Adaptor grammars with two levels of collocation:

 $\begin{array}{lll} \mbox{Colloc2s} \rightarrow \underline{\mbox{Colloc2}}^+ & \underline{\mbox{Colloc2}} \rightarrow \mbox{Collocs}^+ \\ \mbox{Collocs} \rightarrow \underline{\mbox{Colloc}}^+ & \underline{\mbox{Colloc}} \rightarrow \mbox{Words} & \mbox{Words} \rightarrow \underline{\mbox{Word}}^+ \end{array}$ 

• We experiment with up to three levels of collocation here



# Syllable structure adaptor grammars

• No distinction between word-internal and word-peripheral syllables

 $\begin{array}{l} \underline{Word} \rightarrow Syll \\ \underline{Word} \rightarrow Syll \ Syll \ Syll \ Syll \\ Syll \rightarrow (\underline{Onset})^? \ \underline{Rhy} \\ \underline{Rhy} \rightarrow \underline{Nucleus} \ \overline{(\underline{Coda}})^? \\ \underline{\underline{Coda}} \rightarrow C^+ \\ V \rightarrow ai \mid o \mid \ldots \end{array}$ 

 $\begin{array}{l} \underline{Word} \rightarrow Syll \; Syll \\ \underline{Word} \rightarrow Syll \; Syll \; Syll \; Syll \\ \underline{Onset} \rightarrow C^+ \\ \underline{Nucleus} \rightarrow V \; (V \mid Tone)^* \\ C \rightarrow \varepsilon \mid t \varepsilon^h \mid \dots \end{array}$ 

• Distinguishing word-internal and word-peripheral syllables

 $\begin{array}{l} \underline{Word} \rightarrow SyllIF\\ \underline{Word} \rightarrow SyllI \ SyllS \ SyllF\\ SyllIF \rightarrow (\underline{OnsetI})^{?} \ \underline{RhyF}\\ SyllF \rightarrow (\underline{OnsetI})^{?} \ \underline{RhyF}\\ \underline{OnsetI} \rightarrow C^{+}\\ \underline{CodaF} \rightarrow C^{+} \end{array}$ 

 $\begin{array}{l} \underline{Word} \rightarrow SyllI \; SyllF \\ \underline{Word} \rightarrow SyllI \; Syll \; Syll \; SyllF \\ \overline{SyllI} \rightarrow (\underline{OnsetI})^{?} \; \underline{Rhy} \\ Syll \rightarrow (\underline{Onset})^{?} \; \underline{Rhy} \\ RhyF \rightarrow \underline{Nucleus} \; (\underline{CodaF})^{?} \end{array}$ 



# Mandarin Chinese word segmentation results

• Word segmentation accuracy when input contains tones

|            | Syllables |         |             |
|------------|-----------|---------|-------------|
|            | None      | General | Specialised |
| Unigram    | 0.57      | 0.50    | 0.50        |
| Colloc     | 0.69      | 0.67    | 0.67        |
| $Colloc^2$ | 0.72      | 0.75    | 0.75        |
| $Colloc^3$ | 0.64      | 0.77    | 0.77        |

• Word segmentation accuracy when tones are removed from input

|            | Syllables |         |             |
|------------|-----------|---------|-------------|
|            | None      | General | Specialised |
| Unigram    | 0.56      | 0.46    | 0.46        |
| Colloc     | 0.70      | 0.65    | 0.65        |
| $Colloc^2$ | 0.74      | 0.74    | 0.73        |
| $Colloc^3$ | 0.75      | 0.76    | 0.77        |



#### **Comparable English results**

#### • English word segmentation results

|            | Syllables |         |             |
|------------|-----------|---------|-------------|
|            | None      | General | Specialised |
| Unigram    | 0.56      | 0.46    | 0.46        |
| Colloc     | 0.74      | 0.67    | 0.66        |
| $Colloc^2$ | 0.79      | 0.84    | 0.84        |
| $Colloc^3$ | 0.74      | 0.82    | 0.87        |



# Discussion of Mandarin Chinese word segmentation results

- Mandarin Chinese word segmentation results broadly consistent with English results
  - unigram segmentation accuracies are similiar
  - results for other models are lower than corresponding English results
- General improvement in accuracy as number of collocation levels increases
- Caveats: the English and Mandarin Chinese corpora are not directly comparable
  - Discourse context for Mandarin Chinese corpus was far more diverse than for English corpus
  - Mandarin Chinese children were older than English children



# Syllable structure and word segmentation

- Syllable structure and phonotactic constraints are very useful for English word segmentation, but are much less useful in Mandarin Chinese
  - perhaps surprising, because Mandarin Chinese has a very regular syllable structure
  - but perhaps this very predictability makes it less useful for identifying words?
  - not surprising that distinguishing word-peripheral syllables does not help, as Mandarin Chinese does not distinguish these



#### Tone and word segmentation

- Tones only have a small impact on segmentation accuracy
  - surprising, as they are required for lexical disambiguation
  - tones make a small improvement to simpler models (Unigram, Colloc) but no improvement with the more complex ones
    - perhaps tone is redundant given the inter-word context modelled by the Colloc<sup>2-3</sup> grammars?
- Perhaps there's a better way to represent tones in the input, or use tones in the model?
  - Neutral tones more common on function words perhaps this can improve segmentation accuracy?
  - Tone sandhi may give information about phonological word boundaries



# Conclusion and future work

- The adaptor grammar approach to word segmentation generalises to Mandarin Chinese
- Modelling inter-word dependencies (collocations) greatly improves word segmentation accuracy in Mandarin Chinese (as in English)
- Modelling syllable structure improves segmentation accuracy by a smaller amount in Mandarin Chinese (compared to English)
- Modelling tones improves segmentation accuracy of simpler models, but not of more complex models
- Future work:
  - Comparable multi-lingual corpora of infant-directed speech
  - More realistic, richer corpora (including multi-stratal input representations)
  - Model context-sensitive dependencies (e.g., phonological rules)



#### Interested in computational linguistics or its applications?

We're recruiting *PhD students*!.

Contact Mark.Johnson@mq.edu.au or Katherine.Demuth@mq.edu.au for more information.

