
Bayesian models of language acquisition

or

Where do the rules come from?

Mark Johnson

joint work with Tom Griffiths and Sharon Goldwater

November, 2007

1 / 60

Outline

Why computational linguistics?

Grammars (finite descriptions of languages)

Learning morphology with adaptor grammars

Word segmentation using adaptor grammars

Conclusions

Technical details

2 / 60

Why is there a field of computational linguistics?

• Language is a symbolic system (involves manipulation of
meaning-bearing entities)
⇒ linguistic processes are computational processes

• Linguistic processes have a computational dimension (alongside
formal, psychological, neurological, developmental, etc.)

• Empirical properties of linguistic processes motivating this work:

◮ speakers/hearers can produce and comprehend sentences
(parsing, generation)

◮ children, starting from the same initial state, can learn any
human language (acquisition)

◮ these processes are faced with an astronomically large number
of different possible sentences

3 / 60

Linguistic processing as inference

Comprehension Acquisition

sentence sentences

“grammar” “universal grammar”

meaning grammar
(parse)

• Research agenda: What information is used in these processes?

4 / 60

Bayesian learning

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

• A Bayesian model integrates information from multiple sources

◮ Likelihood reflects how well grammar fits input data
◮ Prior encodes a priori preferences for particular grammars

• The prior is as much a linguistic issue as the grammar

◮ Priors can be sensitive to linguistic structure (e.g., words
should contain vowels)

◮ Priors can encode linguistic universals and markedness

preferences

• Priors can prefer smaller grammars (Occam’s razor, MDL)

• A Bayesian model is not an implementation or algorithm

5 / 60

Outline

Why computational linguistics?

Grammars (finite descriptions of languages)

Learning morphology with adaptor grammars

Word segmentation using adaptor grammars

Conclusions

Technical details

6 / 60

Probabilistic context-free grammars

• Context-Free Grammars (CFGs) provide rules (building blocks) for
constructing phrases and sentences

• In a Probabilistic CFG (PCFG), each rule has a probability (cost)

• Probability of a tree is the product of the probabilities of the rules

used to construct it

Rule r P(θr) Rule r P(θr)
S → NP VP 1.0
NP → Hillary 0.75 NP → Barack 0.25
VP → barks 0.6 VP → snores 0.4

P

barksHillary

NP

S

VP

 = 0.45 P

snoresBarack

NP

S

VP

 = 0.1

7 / 60

Estimating PCFG rule probabilities from trees

barksHillary

NP

S

VP

barksHillary

NP

S

VP

barksBarack

NP

S

VP

• Prior over rule probabilities: product of Dirichlet distributions with
parameters αr for each rule r

• Conjugacy ⇒ posterior is also product of Dirichlets, with
parameters αr + nr , where nr is number of times r occurs in trees

Rule r αr nr αr + nr Sample θr Sample θr

S → NP VP 1 3 4 1 1
NP → Hillary 1 2 3 0.61 0.51
NP → Barack 1 1 2 0.39 0.49
VP → barks 1 3 4 0.93 0.72
VP → snores 1 0 1 0.07 0.28

8 / 60

The Dirichlet distribution

α = (0.1, 1)
α = (4, 1)
α = (3, 2)
α = (1, 1)

θ1

Dir(θ)

10.80.60.40.20

4

3

2

1

0

Dir(θ|α) =
Γ(

∑

i αi)
∏

i Γ(αi)

∏

i

θ
αi−1
i

• Increasingly concentrated when αi ≫ 1 or αi ≪ 1
• When αi ≪ 1, P(θi) is concentrated around 0
⇒ prior prefers not to use rule

9 / 60

Estimating rule probabilities from strings alone

Hillary barks
Barack barks
Barack barks

• No closed-form solution, but various Markov Chain Monte Carlo

sampling algorithms and Variational Bayes approximations have
been developed

• Guess initial production probabilities

• Repeat:
◮ produce sample parses for strings in training corpus
◮ count rules in sampled parse trees
◮ sample production probabilities from rule counts as before

• Repeat this long enough, converges to samples from posterior

• (It is possible to integrate out the rule probabilities)

10 / 60

Estimating rule probabilities for toy grammars

Initial rule probs
rule prob
· · · · · ·
VP → V 0.2
VP → V NP 0.2
VP → NP V 0.2
VP → V NP NP 0.2
VP → NP NP V 0.2
· · · · · ·
Det → the 0.1
N → the 0.1
V → the 0.1

“English” input (50 sentences)
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input (50 sentences)
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·

11 / 60

Probability of “English”

Iteration

Posterior
probability
of parses

(per sentence)

76543210
1e-05

0.0001

0.001

12 / 60

Rule probabilities from “English”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

76543210
0

0.25

0.5

0.75

1

13 / 60

Probability of “Japanese”

Iteration

Posterior
probability
of parses

(per sentence)

76543210
1e-05

0.0001

0.001

14 / 60

Rule probabilities from “Japanese”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

76543210
0

0.25

0.5

0.75

1

15 / 60

Summary so far

+ Simple algorithm for learning rule probabilities:
learn from your current “best guesses”

◮ requires learner to parse the input sentences

+ “Glass box” models: learner’s prior knowledge and learnt
generalizations are explicitly represented

– We’ve seen how to estimate the rule probabilities
Where do the rules come from?

16 / 60

Where do the rules come from?

• Maybe they’re all innate?

• Common approach: generate and prune

◮ generate a large “superset” grammar (from where?)
◮ use a “sparse” prior that prefers rules have zero probability
◮ estimate rule probabilities
◮ discard low probability rules

17 / 60

Estimation from real input

• ATIS treebank consists of 1,300 hand-constructed parse trees

• input consists of POS tags rather than words

• about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.

18 / 60

Probability of training strings

α = 1

Iteration

log P

4035302520151050

-14600

-14800

-15000

-15200

-15400

-15600

-15800

-16000

19 / 60

Accuracy of parses of training strings

α = 1

Iteration

Parse
Accuracy
(labeled

f-score)

4035302520151050

0.8

0.75

0.7

0.65

0.6

20 / 60

The PCFG model isn’t a good model of syntax

• Parse accuracy drops as likelihood increases

◮ higher likelihood 6⇒ better parses
◮ the statistical model is wrong

• Initialized estimator with correct parse trees

◮ started with true rules and their probabilities
⇒ poor performance not due to search error

• Evaluated on training data

◮ poor performance not due to over-learning

21 / 60

Why didn’t it learn the right grammar?

• Higher likelihood 6⇒ better parse accuracy
⇒ model is wrong

• What could be wrong?

◮ Wrong grammar (Klein and Manning, Smith and Eisner)
◮ Wrong training data (Yang)
◮ Grammar ignores semantics (Zettlemoyer and Collins)

⇒ Develop models of syntax/semantics mapping, e.g., from
sentences to (visual) contexts

⇒ Study simpler problems

22 / 60

Outline

Why computational linguistics?

Grammars (finite descriptions of languages)

Learning morphology with adaptor grammars

Word segmentation using adaptor grammars

Conclusions

Technical details

23 / 60

Learning agglutinative morphology

• Words consist of sequence of morphemes

e.g., talk + ing, jump + s, etc.

• Given unanalyzed words as input training data,
want to learn a grammar that:

◮ generates words as a sequence of morphemes, and
◮ correctly generates novel morphogical combinations not seen

in training data

• Training data: sequences of characters, e.g., # t a l k i n g #

• Where we’re going:

◮ CFGs are good ways of generating potentially useful structures
◮ but PCFGs are not good at describing the probability of

structures

24 / 60

A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char

Stem → Chars Chars → Char Chars

Suffix → Chars Char → a | b | c | . . .
Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar generates acceptable
structures

• But its units of generalization
(rules) are “too small” to learn
morphemes

25 / 60

A “CFG” with one rule per possible morpheme

Word → Stem Suffix

Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of rules (but only a finite number can be used
in any finite training data set)

• Assumes P(Word) = P(Stem)P(Suffix), which is false . . .

26 / 60

Relative frequencies of inflected verb forms

27 / 60

Adaptor grammars: informal description

• An adaptor grammar has a set of PCFG rules

• These determine the possible structures as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:

◮ by picking a rule and recursively expanding its children, or
◮ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Each adapted subtree behaves like a new rule added to the
grammar

• The PCFG rules of the adapted nonterminals determine the prior

over these trees

28 / 60

Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not

independent

◮ it learns from the trees it generates
◮ if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

• (but the sequence of trees is exchangable)

• An unadapted nonterminal A expands using A → β with
probability θA → β

• An adapted nonterminal A expands:

◮ to a tree τ rooted in A with probability proportional to the
number of times τ was previously generated

◮ using A → β with probability proportional to αAθA → β

29 / 60

Adaptor grammar morphology example

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

#

Word → Stem Suffix

Stem → # Chars

Suffix → #

Suffix → Chars #

Chars → Char

Chars → Char Chars

Char → a | . . . | z

• Stem and Suffix rules generate all possible stems and suffixes

• Adapt Word, Stem and Suffix nonterminals

• Sampler uses “Chinese restaurant” processes

30 / 60

Morphology adaptor grammar (0)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Stem restaurant
Stem → #

Stem → # Chars

Suffix restaurant
Suffix → #

Suffix → Chars#

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

31 / 60

Morphology adaptor grammar (1a)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

•

Stem restaurant
Stem → #

Stem → # Chars

Suffix restaurant
Suffix → #

Suffix → Chars#

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

32 / 60

Morphology adaptor grammar (1b)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

•

Stem restaurant
Stem → #

Stem → # Chars •

Suffix restaurant
Suffix → #

Suffix → Chars# •
Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

33 / 60

Morphology adaptor grammar (1c)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•
Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

34 / 60

Morphology adaptor grammar (1d)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•
Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

35 / 60

Morphology adaptor grammar (2a)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•

•

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

36 / 60

Morphology adaptor grammar (2b)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

37 / 60

Morphology adaptor grammar (2c)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

38 / 60

Morphology adaptor grammar (2d)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

39 / 60

Morphology adaptor grammar (3)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

•

40 / 60

Morphology adaptor grammar (4a)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•

•

•

•

Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

•

41 / 60

Morphology adaptor grammar (4b)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

•

•

•

•

•
Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

•

•

42 / 60

Morphology adaptor grammar (4c)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

Suffix

#

•

•

•

•

•
Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

•

•

43 / 60

Morphology adaptor grammar (4d)

. . .

. . .

. . .

Word restaurant
Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars#

Suffix

Char

s

#

Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

•
Chars factory
Chars → Char

Chars → CharChars

Char → a . . . z

•

•

•

44 / 60

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of a tree is:

proportional to the number of times seen before
⇒ “rich get richer” dynamics (Zipf distributions)
plus a constant times the probability of generating it via
PCFG expansion

⇒ Useful compound structures can be more probable than their parts

• PCFG rule probabilities estimated from table labels

⇒ learns from types, not tokens
⇒ dampens frequency variation

45 / 60

Learning Sesotho verbal morphology using an

adaptor grammar

re

sm

a

t

di

om

bon

v

a

m

“We see them”

Word

Prefix1

r e

Prefix2

a

Prefix3

d i

Stem

b o n

Suffix1

a

Word → (Prefix1) (Prefix2) (Prefix3) Stem (Suffix)

• Sesotho is a Bantu language with complex morphology, not much
phonology

• Demuth’s Sesotho corpus contains morphological parses for 2,283
distinct verb types

• An adaptor grammar finds morphological analyses for these verbs
◮ 62% f-score (morpheme accuracy)
◮ 41% words completely correct

46 / 60

Outline

Why computational linguistics?

Grammars (finite descriptions of languages)

Learning morphology with adaptor grammars

Word segmentation using adaptor grammars

Conclusions

Technical details

47 / 60

Unigram model of word segmentation

• Unigram model: each word is generated independently
• Input is unsegmented broad phonemic transcription (Brent)

Example: y u w a n t t u s i D 6 b u k
• Adaptor for Word non-terminal caches previously seen words

Words → Word+

Word → Char+

Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

Words

Word

h & v

Word

6

Word

d

Word

r I N k

• Unigram word segmentation on Brent corpus: 54% token f-score,
59% type f-score

48 / 60

Unigram model often finds collocations

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by analyzing
collocations as words

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

49 / 60

Combining morphology and word segmentation

Words → Word+

Word → Stem Suffix

Word → Stem

Stem → Char+

Suffix → Char+

Words

Word

Stem

w a n

Suffix

6

Word

Stem

k l o z

Suffix

I t

Words

Word

Stem

y u

Suffix

h & v

Word

Stem

t u

Word

Stem

t E l

Suffix

m i

• Adaptors for Word, Stem and Suffix terminals

• Doesn’t do a good job of learning morphology, but does find
interesting collocations

50 / 60

Modeling collocations improves segmentation

Sentence → Colloc+

Colloc → Word+

Word → Char⋆

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A collocation consists of one or more words

• Both words and collocations are adapted

• Significantly improves word segmentation accuracy over unigram
model (64% token f-score)

51 / 60

Simultaneously learning word segmentation and

syllable structure

Sentence → Word+

Word → Syllable+

Syllable → (Onset) Rhyme

Onset → Consonant+

Rhyme → Nucleus (Coda)
Nucleus → Vowel+

Coda → Consonant+

• Word, Syllable, Onset, Nucleus and Coda are all adapted

• Seems to do a fairly good job of identifying syllable boundaries

• Doesn’t do as well at segmentation as unigram model (46% token
f-score)

• but I haven’t tried tweaking the prior, or sampling longer . . .

52 / 60

Simultaneous word segmentation and syllable

structure

Sentence

Word

Syllable

Onset

y

Rhyme

Nucleus

u

Syllable

Onset

w

Rhyme

Nucleus

a

Coda

n t

Syllable

Onset

t

Rhyme

Nucleus

u

Word

Syllable

Onset

s

Rhyme

Nucleus

i

Word

Syllable

Onset

D

Rhyme

Nucleus

6

Syllable

Onset

b

Rhyme

Nucleus

U

Coda

k

53 / 60

Outline

Why computational linguistics?

Grammars (finite descriptions of languages)

Learning morphology with adaptor grammars

Word segmentation using adaptor grammars

Conclusions

Technical details

54 / 60

Summary and future work

• Adaptor grammars “adapt” their distribution to the strings they
have generated

• They learn the subtrees of an adapted nonterminal they generate

• This makes adaptor grammars non-parametric; the number of
subtrees they track depends on the data

• A variety of different linguistic phenomena can be described with
adaptor grammars

• Because they are grammars, they are easy to design and compose

• But they still have a “context-freeness” that makes it impossible to
express e.g., Goldwater’s bigram word segmentation model. Can
we add context-sensitivity in a manageable way?

• The MCMC sampling algorithm used does not seem to scale well to
large data or complicated grammars. Are there better estimators?

55 / 60

Outline

Why computational linguistics?

Grammars (finite descriptions of languages)

Learning morphology with adaptor grammars

Word segmentation using adaptor grammars

Conclusions

Technical details

56 / 60

From Chinese restaurants to Dirichlet processes

• Labeled Chinese restaurant processes take a base distribution PG

and return a stream of samples from a different distribution with
the same support

• The Chinese restaurant process is a sequential process, generating
the next item conditioned on the previous ones

• We can get a different distribution each time we run a CRP
(placing customers on tables and labeling tables are random)

• Abstracting away from sequential generation, a CRP maps PG to a
distribution over distributions DP(α, PG)

• DP(α, PG) is called a Dirichlet process with concentration

parameter α and base distribution PG

• Distributions in DP(α, PG) are discrete (w.p. 1) even if the base
distribution PG is continuous

57 / 60

PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in Chomsky-normal

form (i.e., all productions are of the form A → B C or A → w , where
A, B , C ∈ N and w ∈ T) is GS where:

GA =
∑

A → B C∈RA

θA → B CGB • GC +
∑

A → w∈RA

θA → wδw

(P • Q)(z) =
∑

xy=z

P(x)Q(y)

δw (x) = 1 if w = x and 0 otherwise

In fact, GA(x) = P(A ⇒⋆ x |θ), the sum of the probability of all trees
with root node A and yield x

58 / 60

Adaptor grammars

An adaptor grammar (G , θ, α) is a PCFG (G , θ) together with a
parameter vector α where for each A ∈ N, αA is the parameter of the
Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A → B C∈RA

θA → B CGB • GC +
∑

A → w∈RA

θA → wδw

The probabilistic language defined by the grammar is GS .
There is one Dirichlet Process for each non-terminal A where αA > 0.
Its base distribution HA is a mixture of the language generated by the
Dirichlet processes associated with other non-terminals.

59 / 60

Estimating adaptor grammars

• Need to estimate:

◮ table labels and customer count for each table
◮ (optional) probabilities of productions labeling tables

• Component-wise Metropolis-Hastings sampler

◮ ith component is the parse tree for input string i
◮ sample parse for input i using grammar estimated from parses

for other inputs

• Sampling directly from conditional distribution of parses seems
intractable

◮ construct PCFG approximation on the fly
◮ each table label corresponds to a production in PCFG

approximation

60 / 60

	Why computational linguistics?
	Grammars (finite descriptions of languages)
	Learning morphology with adaptor grammars
	Word segmentation using adaptor grammars
	Conclusions
	Technical details

