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Why is there a field of computational linguistics?

e Language is a symbolic system (involves manipulation of
meaning-bearing entities)
= linguistic processes are computational processes

e Linguistic processes have a computational dimension (alongside
formal, psychological, neurological, developmental, etc.)

e Empirical properties of linguistic processes motivating this work:

» speakers/hearers can produce and comprehend sentences
(parsing, generation)

» children, starting from the same initial state, can learn any
human language (acquisition)

» these processes are faced with an astronomically large number
of different possible sentences



Linguistic processing as

Comprehension
sentence

“grammar”

meaning
(parse)

inference

Acquisition
sentences

“universal grammar”

grammar

e Research agenda: What information is used in these processes?
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Bayesian learning

P(Hypothesis|Data) o P(Data|Hypothesis) P(Hypothesis)

~~

Posggrior Likel‘iﬂood Prior

A Bayesian model integrates information from multiple sources
» Likelihood reflects how well grammar fits input data
» Prior encodes a priori preferences for particular grammars

The prior is as much a linguistic issue as the grammar
» Priors can be sensitive to linguistic structure (e.g., words
should contain vowels)
» Priors can encode linguistic universals and markedness
preferences

Priors can prefer smaller grammars (Occam'’s razor, MDL)

A Bayesian model is not an implementation or algorithm
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Probabilistic context-free grammars

o Context-Free Grammars (CFGs) provide rules (building blocks) for
constructing phrases and sentences

e In a Probabilistic CFG (PCFG), each rule has a probability (cost)
e Probability of a tree is the product of the probabilities of the rules

used to construct it
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Estimating PCFG rule probabilities from trees

S S S

NP VP NP \A NP \A
\ \ \ \ \ \
Hillary barks Hillary barks Barack barks

e Prior over rule probabilities: product of Dirichlet distributions with
parameters «, for each rule r

e Conjugacy = posterior is also product of Dirichlets, with
parameters «, + n,, where n, is number of times r occurs in trees

Rule r o, n, a,+n. Sample #, Sample 6,
S — NP VP 1 3 4 1 1

NP — Hillary 1 2 3 0.61 0.51
NP — Barack 1 1 2 0.39 0.49
VP — barks 1 3 4 0.93 0.72
VP —snores 1 0 1 0.07 0.28



The Dirichlet distribution
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Dir(fla) = H ra, HQO"

e Increasingly concentrated when o; > 1 or o; < 1
e When a; < 1, P(6;) is concentrated around 0
= prior prefers not to use rule
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Estimating rule probabilities from strings alone

Hillary barks
Barack barks
Barack barks

No closed-form solution, but various Markov Chain Monte Carlo
sampling algorithms and Variational Bayes approximations have
been developed

Guess initial production probabilities

Repeat:
» produce sample parses for strings in training corpus
» count rules in sampled parse trees
» sample production probabilities from rule counts as before

Repeat this long enough, converges to samples from posterior

(It is possible to integrate out the rule probabilities)
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Estimating rule probabilities for toy grammars

Initial rule probs “English” input (50 sentences)
rule P"Ob the dog bites
T the dog bites a man
VP —V 0 2 a man gives the dog a bone

VP — V NP 0.2
VP — NPV 0.2
VP — VNP NP 0.2

VP — NP NPV 0.2 pseudo-Japanese” input (50 sentenc

the dog bites
the dog a man bites

Det — the a man the dog a bone gives

O
N — the 0.
V — the 0.

|_\|_\|_\

11 /60



Probability of “English”

0.001F
Posterior
probability
of parses
(per sentence)
0.0001
| | | | | | J
T2 3 4 5 6 7

Iteration
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Rule probabilities from “English”
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Rule
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Probability of “Japanese”

0.001
Posterior
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of parses
(per sentence)
0.0001
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Iteration
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Rule probabilities from “Japanese”

1~

0.75

Rule
probability 05k

0.25

0 1 2 3 4 5 6 7
Iteration
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Summary so far

-+ Simple algorithm for learning rule probabilities:
learn from your current “best guesses”

» requires learner to parse the input sentences

+ “Glass box" models: learner’s prior knowledge and learnt
generalizations are explicitly represented

— We've seen how to estimate the rule probabilities
Where do the rules come from?
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Where do the rules come from?

e Maybe they're all innate?
e Common approach: generate and prune

» generate a large “superset” grammar (from where?)

» use a “sparse” prior that prefers rules have zero probability
» estimate rule probabilities

» discard low probability rules
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Estimation from real input

e ATIS treebank consists of 1,300 hand-constructed parse trees
e input consists of POS tags rather than words
e about 1,000 PCFG rules are needed to build these trees

S
/\
VP ‘
/\
V‘B N‘P NP .
W
Show PRP NP DT JJ NNS ADJP
N | /\ /\
me PDT the nonstop flights PP
/\ \ /\
all II‘\I N‘P T‘O N‘P early II‘\I NP
from NNP to NNP in DT NN

Dallas Denver the morning
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Probability of training strings

log P
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Accuracy of parses of training strings

0.8

Parse
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The PCFG model isn't a good model of syntax

e Parse accuracy drops as likelihood increases

» higher likelihood #- better parses
» the statistical model is wrong

e Initialized estimator with correct parse trees

» started with true rules and their probabilities
= poor performance not due to search error

e Evaluated on training data
» poor performance not due to over-learning

21/60



Why didn't it learn the right grammar?

e Higher likelihood #- better parse accuracy
= model is wrong
e What could be wrong?
» Wrong grammar (Klein and Manning, Smith and Eisner)
» Wrong training data (Yang)
» Grammar ignores semantics (Zettlemoyer and Collins)

= Develop models of syntax/semantics mapping, e.g., from
sentences to (visual) contexts

= Study simpler problems
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Outline

Learning morphology with adaptor grammars
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Learning agglutinative morphology

Words consist of sequence of morphemes
e.g., talk + ing, jump + s, etc.

Given unanalyzed words as input training data,
want to learn a grammar that:

» generates words as a sequence of morphemes, and
» correctly generates novel morphogical combinations not seen
in training data

Training data: sequences of characters, eg., #talking #

Where we're going:
» CFGs are good ways of generating potentially useful structures

» but PCFGs are not good at describing the probability of
structures
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A CFG for stem-suffix morphology
Word —  Stem Suffix Chars —  Char

Stem —  Chars Chars —  Char Chars
Suffix —  Chars Char — al|bjc]|...
Word
Stem Suffix e Grammar generates acceptable
| | structures
Ch Ch . . L
ars § e But its units of generalization
Chars  Char  Chars (rules) are “too small” to learn
N RN morphemes

Char Chars i Cha Chars
[ N

t Char Chas n Cha Chars

PN | |
a Cfl1ar Chlars g Char

|
| Char #

|
k
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A "“CFG" with one rule per possible morpheme

Word —  Stem Suffix
Stem — all possible stems
Suffix —  all possible suffixes

Word Word
Stem Suffix Stem  Suffix
/\

tal king# jump#

e A rule for each morpheme
= “PCFG" can represent probability of each morpheme

e Unbounded number of rules (but only a finite number can be used
in any finite training data set)

o Assumes P(Word) = P(Stem)P(Suffix), which is false ...
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Relative frequencies of inflected verb forms

Relative frequency
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Adaptor grammars: informal description

e An adaptor grammar has a set of PCFG rules
e These determine the possible structures as in a CFG
e A subset of the nonterminals are adapted

e Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG
e Adapted nonterminals can expand in two ways:

» by picking a rule and recursively expanding its children, or
» by generating a previously generated tree (with probability
proportional to the number of times previously generated)

e Each adapted subtree behaves like a new rule added to the
grammar

e The PCFG rules of the adapted nonterminals determine the prior
over these trees
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Adaptor grammars as generative processes

The sequence of trees generated by an adaptor grammar are not
independent
» it learns from the trees it generates
» if an adapted subtree has been used frequently in the past, it's
more likely to be used again

(but the sequence of trees is exchangable)

An unadapted nonterminal A expands using A — (3 with
probability 04 — g

An adapted nonterminal A expands:

» to a tree 7 rooted in A with probability proportional to the
number of times 7 was previously generated
» using A — (3 with probability proportional to aafa — 3
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Adaptor grammar morphology example

Word Word
Stem Suffix Stem
N N Suffix
# Chars Chars #
P PN Suffix
Char  Chars Char Chars Chars
| N
t Cr|1ar % i Cr|1ar Chlars Chars
a Crllar Chlars n Crlmar Char
I Cr|1ar g
k

L

Stem Suffix
# Chars

#

Chars #
Char

Char Chars

al...|z

e Stem and Suffix rules generate all possible stems and suffixes

e Adapt Word, Stem and Suffix nonterminals

e Sampler uses “Chinese restaurant” processes
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Morphology adaptor grammar (0)

Word restaurant
Word — Stem Suffix
Stem restaurant
Stem — #
Stem — # Chars
Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (1a)

Word restaurant
Word — Stem Suffix
Stem restaurant
Stem — #
Stem — # Chars
Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (1b)

Word restaurant
Word — Stem Suffix
Stem restaurant
Stem — #
Stem — # Chars
Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (1c)

Word restaurant
Word — Stem Suffix
Stem
Stem restaurant ‘ Q Q Q
# Chars
Stem — # PN
Stem — # Chars b uy
Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (1d)

Word restaurant Slem Sffix
Word — Stem Suffix #/\Chals cn;\x: Q Q Q
AN
buy s
Stem
Stem restaurant N
# Chars
Stem — # PN
Stem — # Chars b uy
Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (2a)

Word restaurant Slem Sffix
Word — Stem Suffix #/\Chals cn;\x: Q Q Q
AN
buy s
Stem
Stem restaurant N
# Chars
Stem — # PN
Stem — # Chars b uy
Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (2b)

Word restaurant Slem Sffix
Word — Stem Suffix #/\Chals cn;\x: Q Q Q
AN
buy s
Stem
Stem restaurant N
# Chars
Stem — # PN
Stem — # Chars b uy
Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (2c)

Word restaurant
Word — Stem Suffix

Stem Stem
Stem restaurant
# Chars # Chars
Stem — #
Stem — # Chars b uy run

Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (2d)

Word restaurant sen a/m\ux

‘Word — Stem Suffix | # chas char #
b/f\ |
uy s

Stem
Stem restaurant £ s
Stem — #
Stem — # Chars b uy

Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (3)

Stem

Word restaurant
Word — Stem Suffix

Suffix
N

# Chas Char #
AN

buy s

Stem
Stem restaurant £ Chars
Stem — #
Stem — # Chars b uy

Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z

500
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Morphology adaptor grammar (4a)

Stem

Word restaurant
Word — Stem Suffix

Suffix
N

# Chas Char #
AN

buy s

Stem
Stem restaurant £ Chars
Stem — #
Stem — # Chars b uy

Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (4b)

Stem

Word restaurant
Word — Stem Suffix

Suffix
N

# Chas Char #
AN

buy s

Stem
Stem restaurant £ Chars
Stem — #
Stem — # Chars b uy

Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Morphology adaptor grammar (4c)

Stem

Word restaurant
Word — Stem Suffix

Suffix
N

# Chas Char #
AN

buy s

Stem
Stem restaurant £ Chars
Stem — #
Stem — # Chars b uy

Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z

Stem
PN

# Chars
TN
run

43 /60



Morphology adaptor grammar (4d)

Stem

Word restaurant
Word — Stem Suffix

Suffix
N

# Chas Char #
AN

buy s

Stem Stem
m r ran
Ste estaurant # Chars # Chars
Stem — #
Stem — # Chars b uy run

Suffix restaurant
Suffix — #
Suffix — Chars #

Chars factory
Chars — Char
Chars — Char Chars
Char — a...z
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Properties of adaptor grammars

e Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately
e Probability of a tree is:
proportional to the number of times seen before
= "rich get richer” dynamics (Zipf distributions)
plus a constant times the probability of generating it via
PCFG expansion
= Useful compound structures can be more probable than their parts
e PCFG rule probabilities estimated from table labels
= learns from types, not tokens
= dampens frequency variation
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Learning Sesotho verbal morphology using an

adaptor grammar

. Word
re ad bona

SMTOMV M Prefix1 Prefix2 Prefix3 Stem Suffixl
/\ | /NN

“We see them” \
r e a di bon a

Word —  (Prefixl) (Prefix2) (Prefix3) Stem (Suffix)

e Sesotho is a Bantu language with complex morphology, not much
phonology
e Demuth’s Sesotho corpus contains morphological parses for 2,283
distinct verb types
e An adaptor grammar finds morphological analyses for these verbs
» 62% f-score (morpheme accuracy)
» 41% words completely correct
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Outline

Word segmentation using adaptor grammars
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Unigram model of word segmentation

e Unigram model: each word is generated independently

e Input is unsegmented broad phonemic transcription (Brent)
Example: yuwanttusiD6buk

e Adaptor for Word non-terminal caches previously seen words
Words

Word Word Word Word Word Word

VAN /A VANV ANV AN DN\
Words — Word™ yuwanttu si D®66bUKk

Word — Char™ Words

Word Word Word Word
PN
h & v 6 dr I Nk

e Unigram word segmentation on Brent corpus: 54% token f-score,
59% type f-score
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Unigram model often finds collocations

e Unigram word segmentation model assumes each word is generated
independently

e But there are strong inter-word dependencies (collocations)

e Unigram model can only capture such dependencies by analyzing
collocations as words

Words
Word Word Word
AN\ SN
t ek D6 dOGgiQtt
Words
Word Word Word

y uwanttusiD®6DbU Kk
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Combining morphology and word segmentation

Words
Word Word
/\ /\
Words — Word™" Stem Sujfix /Stem\ Su/fgx
Word — Stem Suffix wanoekiIlogzlt
Word — Stem Word
Stem — Char™ e

Suffix — Char™ Word W?rd Word

Stem Suffix Stem Stem  Suffix

V2 N D NURVANRZ D NEVAN
yuhé&vitutEI mi@

e Adaptors for Word, Stem and Suffix terminals

e Doesn’t do a good job of learning morphology, but does find
interesting collocations
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Modeling collocations improves segmentation

Sentence — Colloc™
Colloc — Word™
Word — Char*

Sentence
Colloc Colloc Colloc
Word Word Word Word Word
%\

yuwanttwusi DE®6DbU Kk

e A collocation consists of one or more words
e Both words and collocations are adapted

e Significantly improves word segmentation accuracy over unigram
model (64% token f-score)

51/60



Simultaneously learning word segmentation and
syllable structure

Sentence — Word™

Word — Syllable™
Syllable — (Onset) Rhyme
Onset — Consonant™
Rhyme — Nucleus (Coda)
Nucleus — Vowel™

Coda — Consonant™

Word, Syllable, Onset, Nucleus and Coda are all adapted
Seems to do a fairly good job of identifying syllable boundaries

Doesn't do as well at segmentation as unigram model (46% token
f-score)

but | haven't tried tweaking the prior, or sampling longer . ..
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Simultaneous word segmentation and syllable

structure
Sentence
-
Word W?rd Word
Syllable Syllable Syllable Syllable Syllable Syllable
Onset Rhyme Onset Rhyme Onset Rhyme Onset Rhyme Onset Rhyme Onset Rhyme
I A et I i et B R
y Nucleus w Nucleus Coda t Nucleus s Nucleus D Nucleus b Nucleus Coda
| | /N | | | | \
u a nt u i 6 U k
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Summary and future work

e Adaptor grammars “adapt” their distribution to the strings they
have generated

e They learn the subtrees of an adapted nonterminal they generate

e This makes adaptor grammars non-parametric; the number of
subtrees they track depends on the data

e A variety of different linguistic phenomena can be described with
adaptor grammars

e Because they are grammars, they are easy to design and compose

e But they still have a “context-freeness” that makes it impossible to
express e.g., Goldwater's bigram word segmentation model. Can
we add context-sensitivity in a manageable way?

e The MCMC sampling algorithm used does not seem to scale well to
large data or complicated grammars. Are there better estimators?

55 /60



Outline

Technical details

56 / 60



From Chinese restaurants to Dirichlet processes

e Labeled Chinese restaurant processes take a base distribution Pg
and return a stream of samples from a different distribution with
the same support

e The Chinese restaurant process is a sequential process, generating
the next item conditioned on the previous ones

e We can get a different distribution each time we run a CRP
(placing customers on tables and labeling tables are random)

e Abstracting away from sequential generation, a CRP maps P to a
distribution over distributions DP(«, P¢)

e DP(«,Pg) is called a Dirichlet process with concentration
parameter o and base distribution Pg

e Distributions in DP(«, Pg) are discrete (w.p. 1) even if the base
distribution P¢ is continuous
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PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in Chomsky-normal
form (i.e., all productions are of the form A — B C or A — w, where
A/B,C e Nand w e T)is Gs where:

Gy = Z O0a — scGgp e Gc + Z O0a — Wiy

A — BCERy A — weRy

(PeQ)(z) = Y P(Q)

Xy=z

dw(x) = 1if w= x and 0 otherwise

In fact, Ga(x) = P(A =" x|0), the sum of the probability of all trees
with root node A and yield x
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Adaptor grammars

An adaptor grammar (G, 0, a) is a PCFG (G, 0) together with a
parameter vector o where for each A € N, a4 is the parameter of the
Dirichlet process associated with A.

GA ~ DP(O(A7 HA) if ap >0

= HA if OéAIO
Hy = Z 0a — BcGg o Gc + Z Oa — wow
A — BCERA A — WGRA

The probabilistic language defined by the grammar is Gs.

There is one Dirichlet Process for each non-terminal A where aq > 0.
Its base distribution Hp is a mixture of the language generated by the
Dirichlet processes associated with other non-terminals.

59 /60



Estimating adaptor grammars

e Need to estimate:

» table labels and customer count for each table

» (optional) probabilities of productions labeling tables
e Component-wise Metropolis-Hastings sampler

» ith component is the parse tree for input string i
» sample parse for input / using grammar estimated from parses
for other inputs

e Sampling directly from conditional distribution of parses seems
intractable

» construct PCFG approximation on the fly
» each table label corresponds to a production in PCFG
approximation
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