
“There exists today a very elaborate system of formal logic, and

specifically, of logic as applied to mathematics. This is a discipline with

many good sides, but also with certain serious weaknesses. . . .

Everybody who has worked in formal logic will confirm that it is one of

the technically most refractory parts of mathematics. The reason for

this is that it deals with rigid, all-or-none concepts, and has very little

contact with the continuous concept of the real or of complex number,

that is, with mathematical analysis. Yet analysis is the technically most

successful and best-elaborated part of mathematics. Thus formal logic

is, by the nature of its approach, cut off from the best cultivated

portions of mathematics, and forced onto the most difficult part of

mathematical terrain, into combinatorics.”

— John von Neumann

1

Collecting, err, Correcting
Speech Errors

Mark Johnson

Brown University

TAG+8, July 2006

Joint work with Eugene Charniak and Matt Lease

Supported by NSF grants IIS0095940 and DARPA GALE

2

Talk outline

• What are speech repairs, and why are they interesting?

• A noisy channel model of speech repairs

– combines two very different kinds of structures

– a novel model of interpreting ill-formed input

• “Rough copy” dependencies, context free and tree adjoining

grammars

• Reranking using machine-learning techniques

• Training and evaluating the model of speech errors

• RT04F evaluation

3

Speech errors in (transcribed) speech

• Restarts and repairs

Why didn’t he, why didn’t she stay at home?

I want a flight to Boston, uh, to Denver on Friday

• Filled pauses

I think it’s, uh, refreshing to see the, uh, support . . .

• Parentheticals

But, you know, I was reading the other day . . .

• “Ungrammatical” constructions

Bear, Dowding and Schriberg (1992), Charniak and Johnson (2001), Heeman and

Allen (1999), Nakatani and Hirschberg (1994), Stolcke and Schriberg (1996)

4

Why focus on speech repairs?

• Filled pauses are easy to recognize (in transcripts at least)

• Parentheticals are handled by current parsers fairly well

• Filled pauses and parentheticals improve constituent boundary

identification (just as punctuation does)

– parser performs slightly better with parentheticals and filled

pauses than with them removed

• Ungrammatical constructions aren’t necessarily fatal

– Statistical parsers learn constructions in training corpus

• . . . but speech repairs warrant special treatment, since the best

parsers badly misanalyse them . . . we will see why shortly

5

N-gram language models

• n-gram models capture dependencies between n adjacent words

$ → the → man → in → the → hat → drinks → red → wine → $

• Probabilities estimated from real corpora

• If model permits every word sequence to occur with non-zero

probability ⇒ model is robust

• Probability (rather than generativity) distinguishes “good” from

“bad” sentences

• These simple models work surprisingly well because they are

lexicalized (capture some semantic dependencies) and most

dependencies are local

6

Probabilistic Context Free Grammars

S

NP

D

the

N

man

PP

P

in

NP

D

the

N

hat

VP

V

drinks

NP

AP

red

N

wine

• Rules are associated with probabilities

• Probability of a tree is the product of the probabilities of its rules

• Most probable tree is “best guess” at correct syntactic structure

7

Head to head dependencies

S

NP

D

the

N

man

PP

P

in

NP

the

N

hat

VP

V

drinks

NP

AP

red

N

wineD
the hat

hatin

inmanthe

man

drinks

drinks

drinks wine

red wine

Rules:

S
drinks

→ NP
man

VP
drinks

VP
drinks

→ V
drinks

NP
wine

NP
wine

→ AP
red

N
wine

. . .

• Lexicalization captures many syntactic and semantic dependencies

• in right-branching structures, n-gram dependencies ⇔

head-to-head dependencies
8

The structure of repairs

. . . and you get,
︸ ︷︷ ︸

Reparandum

uh,
︸︷︷︸

Interregnum

you can get
︸ ︷︷ ︸

Repair

a system . . .

• The Reparandum is often not a syntactic phrase

• The Interregnum is usually lexically and prosodically marked, but

can be empty

• The Reparandum is often a “rough copy” of the Repair

– Repairs are typically short

– Repairs are not always copies

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”

9

Treebank representation of repairs

S

CC

and

EDITED

S

NP

PRP

you

VP

VBP

get

,

,

NP

PRP

you

VP

MD

can

VP

VB

get

NP

DT

a

NN

system

• The Switchboard treebank contains the parse trees for 1M words of

spontaneous telephone conversations

• Each reparandum is indicated by an EDITED node

(interregnum and repair are also annotated)

• But Charniak’s parser finds very few EDITED nodes!

10

The “true model” of repairs (?)

. . . and you get,
︸ ︷︷ ︸

Reparandum

uh,
︸︷︷︸

Interregnum

you can get
︸ ︷︷ ︸

Repair

a system . . .

• Speaker generates intended “conceptual representation”

• Speaker incrementally generates syntax and phonology,

– recognizes that what is said doesn’t mean what was intended,

– “backs up”, i.e., partially deconstructs syntax and phonology,

and

– starts incrementally generating syntax and phonology again

• but without a good model of “conceptual representation”, this

may be hard to formalize . . .

11

Approximating the “true model” (1)

CC

and

NP

DT

a

NN

system

you

PRP

NP

S

VP

VP

VB

get

can

MD

CC

and ,

NP

DT

a

NN

system

S

VP

VBP

getyou

PRP

NP

EDITED

,

S

VP

VP

VB

get

can

NP

PRP

you

MD

• Approximate semantic representation by syntactic structure

• Tree with reparandum and interregnum excised is what speaker

intended to say

• Reparandum results from attempt to generate Repair structure

• Dependencies are very different to those in “normal” language!

12

Approximating the “true model” (2)

I want a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday

• Use Repair string as approximation to intended meaning

• Reparandum string is “rough copy” of Repair string

– involves crossing (rather than nested) dependencies

• String with reparandum and interregnum excised is well-formed

– after correcting the error, what’s left should have high

probability

– use model of normal language to interpret ill-formed input

13

Helical structure of speech repairs

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Imean uh

a flight to Boston

to Denver on Friday

• Repair dependencies seem incompatible with standard syntactic

structures

• Can we have both syntactic structure and repair structure?

Joshi (2002), ACL Lifetime achievement award talk

14

The Noisy Channel Model

Source signal x

. . . and you can get a system . . .

Noisy signal u

. . . and you get, you can get a system . . .

Noisy channel model P(U |X)

Source model P(X)
(statistical parser)

• Noisy channel models combines two different submodels

• Bayes rule describes how to invert the channel

P(x|u) =
P(u|x)P(x)

P(u)
15

The channel model

I want a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday

• Channel model is a transducer producing source:output pairs

. . . a:a flight:flight ∅:to ∅:Boston ∅:uh ∅:I ∅:mean to:to Denver:Denver . . .

• only 62 different phrases appear in interregnum (uh, I mean)

⇒ unigram model of interregnum phrases

• Reparandum is “rough copy” of repair

– We need a probabilistic model of rough copies

– FSMs and CFGs can’t generate copy dependencies . . .

– but Tree Adjoining Grammars can

16

CFGs generate wwR dependencies (1)

a a

b b

c c

• CFGs generate nested dependencies between a string w and its

reverse wR

17

CFGs generate wwR dependencies (2)

a

a a

b b

c c

a a

• CFGs generate nested dependencies between a string w and its

reverse wR

18

CFGs generate wwR dependencies (3)

a

b

a a

b b

c c

a a

b b

• CFGs generate nested dependencies between a string w and its

reverse wR

19

CFGs generate wwR dependencies (4)

a

b

c

a a

b b

c c

a a

b b

c c

• CFGs generate nested dependencies between a string w and its

reverse wR

20

TAGs generate ww dependencies (1)

a

a

b

b

c

c

21

TAGs generate ww dependencies (2)

a
a

a

b

b

c

c

a

a

22

TAGs generate ww dependencies (3)

a

b

a

a

b

b

c

c

a

a

b

b

23

TAGs generate ww dependencies (4)

a

b

c

a

a

b

b

c

c

a

b

a

b

c

c

24

Derivation of a flight . . . (1)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday

25

Derivation of a flight . . . (2)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday
a:a

a

26

Derivation of a flight . . . (3)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday
a:a

flight:flight

a

flight

27

Derivation of a flight . . . (4)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday
a:a

flight:flight

a

flight

REPAIR

28

Derivation of a flight . . . (5)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday
a:a

flight:flight

0:uh

a

flight

REPAIR

uh

29

Derivation of a flight . . . (6)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday
a:a

flight:flight

0:uh

0:I 0:mean

a

flight

REPAIR

uh

I mean

30

Derivation of a flight . . . (7)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday
a:a

flight:flight

0:uh

0:I 0:mean

0:to

to:to

a

flight

REPAIR

uh

I mean

to:to

31

Derivation of a flight . . . (8)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday

0:to

a:a

flight:flight

to:to

0:uh

0:I 0:mean

0:Boston

Denver:Denver

a

flight

REPAIR

uh

I mean

to:to

Boston:Denver

32

Derivation of a flight . . . (9)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday

to:to

0:uh

0:I 0:mean

0:Boston

0:to

a:a

Denver:Denver

flight:flight

a

flight

REPAIR

uh

I mean

to:to

Boston:Denver

NON-REPAIR

33

Derivation of a flight . . . (10)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday

to:to

0:uh

0:I 0:mean

0:Boston

0:to

a:a

Denver:Denver

flight:flight

on:on

a

flight

REPAIR

uh

I mean

to:to

Boston:Denver

NON-REPAIR

on

34

Derivation of a flight . . . (11)

a:a flight:flight 0:to 0:Boston 0:uh

0:I 0:mean to:to Denver:Denver

on:on Friday:Friday

Friday:Fridayto:to

on:on

0:uh

0:I 0:mean

0:Boston

0:to

a:a

Denver:Denver

flight:flight

a

flight

REPAIR

uh

I mean

to:to

Boston:Denver

NON-REPAIR

on

Friday

35

Training data (1)

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• Switchboard corpus annotates reparandum, interregnum and repair

• Trained on Switchboard files sw[23]*.dps (1.3M words)

• Punctuation and partial words ignored

• 5.4% of words are in a reparandum

• 31K repairs, average repair length 1.6 words

• Number of training words: reparandum 50K (3.8%), interregnum

10K (0.8%), repair 53K (4%), too complicated 24K (1.8%)

36

Training data (2)

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

• Reparandum and repair word-aligned by minimum edit distance

– Prefers identity, POS identity, similar POS alignments

• Of the 57K alignments in the training data:

– 35K (62%) are identities

– 7K (12%) are insertions

– 9K (16%) are deletions

– 5.6K (10%) are substitutions

∗ 2.9K (5%) are substitutions with same POS

∗ 148 of 352 substitutions (42%) in heldout are not in training
37

Estimating the channel model

I want a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday

• Channel model is defined in terms of several simpler distributions:

Pr(repair|flight): Probability of a repair starting after flight

Pt(m|Boston,Denver), where m ∈ {copy, substitute, insert, delete, end}:

Probability of m after reparandum Boston and repair Denver

Pm(tomorrow|Boston,Denver): Probability that next reparandum

word is tomorrow

38

Estimated repair start probabilities

FridayonDenvertoflightawantI$

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

39

Implementation details (1)

• Don’t know how to efficiently search for best analysis using

Charniak parser LM

⇒ find 25-best hypothesized sources for each sentence using

simpler bigram LM

• Recalculate probability of each hypothesized source using

Charniak parsier LM

• Two different ways of combining channel and language model log

probabilities

– Add them (noisy channel model)

– Use them as features in a machine learning algorithm

⇒ a reranking approach to finding best hypothesis

40

Implementation details (2)

MaxEnt reranker

Parsing language model

Noisy channel model with bigram LM

Input string

25 highest scoring source hypotheses

Parses and probabilities for source hypotheses

Most likely source hypothesis

41

Evaluation of model’s performance

f-score error rate

NCM + bigram LM 0.75 0.45

NCM + parser LM 0.81 0.35

MaxEnt reranker using NCM + parser LM 0.87 0.25

MaxEnt reranker alone 0.78 0.38

• Evaluated on an unseen portion of Switchboard corpus

• f-score is a geometric average of EDITED words precision and

recall (bigger is better)

• error rate is the number of EDITED word errors made divided by

number of true edited words (smaller is better)

42

RT04F competition

Deterministic SU segmentation algorithm

Noisy channel model
(TAG channel model with bigram LM)

Parser−based language model

MaxEnt reranker

Deterministic FW and IP rule application

Input words and IP probs from SRI, ICSI and UW

Input words segmented into SUs

25 best edit hypotheses

Parses and string probabilities for each edit hypothesis

Best edit hypothesis

EW, FW and IP labels for input words

• RT04F evaluated meta-data ex-

traction

• Test material was unsegmented

speech

• ICSI, SRI and UW supplied us

with ASR output, SU bound-

aries and acoustic IP probabil-

ities

43

RT04F evaluation results

Task/error rate Oracle words ASR words

EDITED word detection 46.1 76.3

Filler word detection 23.7 40.0

Interruption point detection 28.6 55.9

• EDITED word detection used noisy channel reranker

• Filler word detection used deterministic rules

• Interruption point detection combined these two models

44

Evaluation of model’s performance

Error rate on dev2 data Oracle words ASR words

Full model 0.525 0.773

− parsing model 0.55 0.790

− repair model 0.567 0.805

− prosodic features 0.541 0.772

• Darpa runs a competitive evaluation (RT04) of speech

understanding systems

• EDITED word detection was one task in this evaluation

• Our system was not designed to deal with the RT04 data

– our system assumes input is segmented into sentences

45

Conclusion and future work

• Syntactic parsers make good language models

• Grammars are useful for lots of things besides syntax!

• Noisy channel model can combine very different kinds of models

– a lexicalized CFG model of syntactic structure

– a TAG model of “rough copy” dependencies in speech repairs

• Modern machine learning techniques are very useful

– can exploit prosodic and other kinds of information

• Noisy channel model of robust language comprehension

• Performs well in practice

• Future work:

– Repair detection/correction in languages other than English

– Semi-supervised and unsupervised training

46

