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Talk outline

• Empty nodes in the Penn treebank representations

• A pattern-matching algorithm

• Evaluating empty node accuracy

• Evaluation on gold standard and parser trees
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Empty nodes in Penn treebank
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• Empty nodes and co-indexation indicate non-local dependencies that are
important for semantic interpretation

• Likely to be important for question-answering and machine translation
3



Output of a statistical parser
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• The output of most modern statistical parsers only encode local
dependencies

– Collins (1997) discusses recovering WH dependencies

– SUBGs typically encode non-local dependencies
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Other previous work on empty nodes

Generative syntax: Non-local dependencies are a major theme

• Extremely complex theories

• Focuses on esoteric constructions

• Studies just a few kinds of non-local dependencies

Psycholinguistics: has studied interpretation of non-local dependencies

• Preferences for location of empty nodes

• How non-local dependencies affect complexity of sentence
processing

• The pattern-matching approach described here is:

– Theory neutral

– Data-driven: trained from tree-bank?

– Relatively straight-forward to implement

– Can serve as a base-line for more complex systems
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System architecture
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Empty node insertion via pattern-matching
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Pattern Parser output

• Patterns extracted from Penn treebank training corpus (sections 2-21)

• Patterns matched against parser output

• A matching pattern suggests a long-distance dependency
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Summary of empty nodes in Penn trees

Antecedent Category Label Count Description

NP NP * 18,334 NP trace (Passive)
Sam was seen *

NP * 9,812 NP PRO (implied subject)
* to sleep is nice

WHNP NP *T* 8,620 WH trace (questions, relative clauses)
the woman who you saw *T*

*U* 7,478 Empty units
$ 25 *U*

0 5,635 Empty complementizers
Sam said 0 Sasha snores
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Summary of empty nodes in Penn trees

Antecedent Category Label Count Description

S S *T* 4,063 Moved clauses
Sam had to go, Sasha explained *T*

WHADVP ADVP *T* 2,492 WH-trace
Sam explained how to leave *T*

SBAR 2,033 Empty clauses
Sam had to go, Sasha explained (SBAR)

WHNP 0 1,759 Empty relative pronouns
the woman 0 we saw

WHADVP 0 575 Empty relative pronouns
no reason 0 to leave

• Zipfian distribution of empty node types
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Two empty nodes in a long-distance dependency
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Pattern and parser output
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Empty compound SBAR
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Extraposition and adjunction
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Tree preprocessing

Auxiliary POS replacement: The POS of auxiliary verbs is, being, etc. are
replaced by AUX, AUXG, etc. (Charniak)

Transitivity relabelling: The POS labels of transitive verbs are suffixed
“ t”, e.g., likes is relabelled VBZ t

• Transitivity is hypothesised to be a powerful cue to empty node
placement

• Experiments on heldout data indicate this improves accuracy

• A verb is deemed transitive if it is followed by an NP with no
function tag at least 50% of the time in the training corpus

• Morphological analysis may improve transitivity identification
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Patterns and matchings

• A pattern is the minimal set of local trees that connects each empty node
with the nodes coindexed with it

• Indices are systematically renumbered?

• The implementation deals with adjunction and overlapping
long-distance dependencies

– Probably has a neglible effect on performance
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Empty node insertion

• Patterns are matched at each node in the tree

• Approximately 11,000 patterns

– Pattern matching is speeded by indexing patterns on their topmost
local tree

• Nodes in the tree to be matched are visited by a preorder traversal

– Matching and insertion of deep pattern may destroy the context of
a shallow one

– Biases the algorithm in favor of deeper patterns

16



Overlapping patterns
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• The most common pattern will match every context that the third most
common pattern matches (but not vice-versa)

• Preorder node traversal ensures that the third most common pattern
gets a chance to match
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Pattern extraction and selection

• Every pattern in training corpus is extracted

• For each pattern:

– c: the number of times extracted

– m: the number of times it matches some context in training corpus

∗ Difficult to estimate because a larger pattern might destroy the
context for a smaller one

– If discounted success probability < 1/2 the pattern is discarded

∗ Around 9,000 patterns remain after filtering

– Patterns are sorted by depth (deep patterns first)

∗ Exactly how patterns are sorted (e.g., frequency, discounted
success probability) doesn’t seem to matter
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The most common patterns

Count Match Pattern

5816 6223 (S (NP (-NONE- *)) VP)

5605 7895 (SBAR (-NONE- 0) S)

5312 5338 (SBAR WHNP-1 (S (NP (-NONE- *T*-1)) VP))

4434 5217 (NP QP (-NONE- *U*))

1682 1682 (NP $ CD (-NONE- *U*))

1327 1593 (VP VBN t (NP (-NONE- *)) PP)

700 700 (ADJP QP (-NONE- *U*))

662 1219 (SBAR (WHNP-1 (-NONE- 0)) (S (NP (-NONE- *T*-1)) VP))

618 635 (S S-1 , NP (VP VBD (SBAR (-NONE- 0) (S (-NONE- *T*-1)))) .)

499 512 (SINV “ S-1 , ” (VP VBZ (S (-NONE- *T*-1))) NP .)

361 369 (SINV “ S-1 , ” (VP VBD (S (-NONE- *T*-1))) NP .)
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Empty node recovery evaluation

• Two different evaluation methods

– Standard Parseval evaluation: evaluates empty node location, but not
coindexation

– Extended evaluation: evaluates both empty node location and
coindexation

• Evaluate on test trees without empty nodes and on parser output

Standard Parseval evaluation: Nodes identified by a triple 〈cat , left , right〉

(note left = right for empty nodes)

• G = set of empty nodes identified in gold-standard trees

• T = set of trees produced by parser?

P =
|G ∩ T |

|T |
R =

|G ∩ T |

|G|
f =

2 P R

P + R
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Empty node identification results

Empty node Section 23 Parser output

Category Label P R f P R f

(Overall) 0.93 0.83 0.88 0.85 0.74 0.79

NP * 0.95 0.87 0.91 0.86 0.79 0.82

NP *T* 0.93 0.88 0.91 0.85 0.77 0.81

0 0.94 0.99 0.96 0.86 0.89 0.88

*U* 0.92 0.98 0.95 0.87 0.96 0.92

S *T* 0.98 0.83 0.90 0.97 0.81 0.88

ADVP *T* 0.91 0.52 0.66 0.84 0.42 0.56

SBAR 0.90 0.63 0.74 0.88 0.58 0.70

WHNP 0 0.75 0.79 0.77 0.48 0.46 0.47
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Evaluation of empty nodes and their antecedents

• Each empty node is identified by a set of triples 〈cat , left , right〉
corresponding to

– the empty node itself

– each node co-indexed with the empty node

• In order to “get the empty node right”, the category and location of
each of its antecedents must be recovered

– Most empty nodes have zero or one antecedents

– Stringent requirement, which also evaluates parser accuracy

– Other measures (e.g., which only require identification of the head
of the antecedent) yield very similiar results
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Empty node and antecedent identification results

Empty node Section 23 Parser output

Antecedant POS Label P R f P R f

(Overall) 0.80 0.70 0.75 0.73 0.63 0.68

NP NP * 0.86 0.50 0.63 0.81 0.48 0.60

WHNP NP *T* 0.93 0.88 0.90 0.85 0.77 0.80

NP * 0.45 0.77 0.57 0.40 0.67 0.50

0 0.94 0.99 0.96 0.86 0.89 0.88

*U* 0.92 0.98 0.95 0.87 0.96 0.92

S S *T* 0.98 0.83 0.90 0.96 0.79 0.87

WHADVP ADVP *T* 0.91 0.52 0.66 0.82 0.42 0.56

SBAR 0.90 0.63 0.74 0.88 0.58 0.70

WHNP 0 0.75 0.79 0.77 0.48 0.46 0.47
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Discussion

• Empty node identification can be performed with reasonable accuracy

– Performance drop-off on parser trees

– Precision � recall ⇒ patterns may be too specialized
∗ Skeletal patterns trade precision for recall, but leave f-score

unchanged

• Antecedent recovery is considerably harder

– Only half of the bound NP PRO are recovered!
∗ Requires semantic/pragmatic information about interpretation
∗ 10 pages of rules/examples about NP PRO indexing in tagging

guidelines!
∗ Lexicalized patterns ought to help, but didn’t
∗ More sophisticated classifiers (boosted decision stubs) had very

similar performance to simple pattern matcher

– Many long distance dependencies (e.g., WH-dependencies) can on
average be reliably identified
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Conclusions and Future Work

• This paper proposed two Parseval-style measures to evaluate empty
node identification and antecedent identification

– Restricted to Penn treebank style representation of long distance
dependencies

• A simple pattern-matching post-processing approach to long-distance
dependency identification works reasonably well

• Provides a baseline against which to evaluate more sophisticated
systems

• Performance drop-off when using parser trees

⇒ a single system that integrates parsing and long distance
dependency identification may perform better
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