
A simple pattern-matching algorithm
for recovering empty nodes

Mark Johnson

Brown University

ACL’02, Philadelphia

Thanks to Eugene Charniak and fellow BLLIPers

NSF grants DMS 0074276 and ITR IIS 0085940

1



Talk outline

• Empty nodes in the Penn treebank representations

• A pattern-matching algorithm

• Evaluating empty node accuracy

• Evaluation on gold standard and parser trees

2



Empty nodes in Penn treebank

NP

NP

DT

the

NN

man

SBAR

WHNP-1

WP

who

S

NP

NNP

Sam

VP

VBZ t

likes

NP

-NONE-

*T*-1

• Empty nodes and co-indexation indicate non-local dependencies that are
important for semantic interpretation

• Likely to be important for question-answering and machine translation
3



Output of a statistical parser

NP

NP

DT

the

NN

man

SBAR

WHNP

WP

who

S

NP

NNP

Sam

VP

VBZ t

likes

• The output of most modern statistical parsers only encode local
dependencies

– Collins (1997) discusses recovering WH dependencies

– SUBGs typically encode non-local dependencies

4



Other previous work on empty nodes

Generative syntax: Non-local dependencies are a major theme

• Extremely complex theories

• Focuses on esoteric constructions

• Studies just a few kinds of non-local dependencies

Psycholinguistics: has studied interpretation of non-local dependencies

• Preferences for location of empty nodes

• How non-local dependencies affect complexity of sentence
processing

• The pattern-matching approach described here is:

– Theory neutral

– Data-driven: trained from tree-bank?

– Relatively straight-forward to implement

– Can serve as a base-line for more complex systems
5



System architecture

Treebank
sections 2-21

Extract
patterns

Empty node
patterns

Treebank
section 23

Parser
(Charniak)

Pattern
matcher

Parse trees
with LDDs

Training Parsing

6



Empty node insertion via pattern-matching

SBAR

WHNP-1 S

NP VP

VBZ t NP

-NONE-

*T*-1

NP

NP

DT

the

NN

man

SBAR

WHNP

WP

who

S

NP

NNP

Sam

VP

VBZ t

likes

Pattern Parser output

• Patterns extracted from Penn treebank training corpus (sections 2-21)

• Patterns matched against parser output

• A matching pattern suggests a long-distance dependency
7



Summary of empty nodes in Penn trees

Antecedent Category Label Count Description

NP NP * 18,334 NP trace (Passive)
Sam was seen *

NP * 9,812 NP PRO (implied subject)
* to sleep is nice

WHNP NP *T* 8,620 WH trace (questions, relative clauses)
the woman who you saw *T*

*U* 7,478 Empty units
$ 25 *U*

0 5,635 Empty complementizers
Sam said 0 Sasha snores

8



Summary of empty nodes in Penn trees

Antecedent Category Label Count Description

S S *T* 4,063 Moved clauses
Sam had to go, Sasha explained *T*

WHADVP ADVP *T* 2,492 WH-trace
Sam explained how to leave *T*

SBAR 2,033 Empty clauses
Sam had to go, Sasha explained (SBAR)

WHNP 0 1,759 Empty relative pronouns
the woman 0 we saw

WHADVP 0 575 Empty relative pronouns
no reason 0 to leave

• Zipfian distribution of empty node types

9



Two empty nodes in a long-distance dependency

NP

NP

DT

the

NN

man

SBAR

WHNP-1

-NONE-

0

S

NP

NNP

Sam

VP

VBZ t

likes

NP

-NONE-

*T*-1

10



Pattern and parser output

SBAR

WHNP-1

-NONE-

0

S

NP VP

VBZ t NP

-NONE-

*T*-1

NP

NP

DT

the

NN

man

SBAR

S

NP

NNP

Sam

VP

VBZ t

likes

Pattern Parser output

11



Empty compound SBAR

SINV

S-1

NP

NNS

changes

VP

VBD

occured

,

,

VP

VBD

said

SBAR

-NONE-

0

S

-NONE-

*T*-1

NP

NNP

Sam

12



Extraposition and adjunction

S

NP-13

NP

NNS

conferences

SBAR

-NONE-

*ICH*-2

VP

VBD

were

VP

VBN

held

NP

-NONE-

* -13

SBAR-2

WHNP-1

-NONE-

0

S

NP

-NONE-

*T*-1

VP

TO

to

VP

VB

chew

PP-CLR

IN

on

NP

...13



Tree preprocessing

Auxiliary POS replacement: The POS of auxiliary verbs is, being, etc. are
replaced by AUX, AUXG, etc. (Charniak)

Transitivity relabelling: The POS labels of transitive verbs are suffixed
“ t”, e.g., likes is relabelled VBZ t

• Transitivity is hypothesised to be a powerful cue to empty node
placement

• Experiments on heldout data indicate this improves accuracy

• A verb is deemed transitive if it is followed by an NP with no
function tag at least 50% of the time in the training corpus

• Morphological analysis may improve transitivity identification

14



Patterns and matchings

• A pattern is the minimal set of local trees that connects each empty node
with the nodes coindexed with it

• Indices are systematically renumbered?

• The implementation deals with adjunction and overlapping
long-distance dependencies

– Probably has a neglible effect on performance

15



Empty node insertion

• Patterns are matched at each node in the tree

• Approximately 11,000 patterns

– Pattern matching is speeded by indexing patterns on their topmost
local tree

• Nodes in the tree to be matched are visited by a preorder traversal

– Matching and insertion of deep pattern may destroy the context of
a shallow one

– Biases the algorithm in favor of deeper patterns

16



Overlapping patterns

S

NP

-NONE-

*

VP

SBAR

WHNP-1 S

NP

-NONE-

*T*-1

VP

The most common pattern The third most common pattern

• The most common pattern will match every context that the third most
common pattern matches (but not vice-versa)

• Preorder node traversal ensures that the third most common pattern
gets a chance to match

17



Pattern extraction and selection

• Every pattern in training corpus is extracted

• For each pattern:

– c: the number of times extracted

– m: the number of times it matches some context in training corpus

∗ Difficult to estimate because a larger pattern might destroy the
context for a smaller one

– If discounted success probability < 1/2 the pattern is discarded

∗ Around 9,000 patterns remain after filtering

– Patterns are sorted by depth (deep patterns first)

∗ Exactly how patterns are sorted (e.g., frequency, discounted
success probability) doesn’t seem to matter

18



The most common patterns

Count Match Pattern

5816 6223 (S (NP (-NONE- *)) VP)

5605 7895 (SBAR (-NONE- 0) S)

5312 5338 (SBAR WHNP-1 (S (NP (-NONE- *T*-1)) VP))

4434 5217 (NP QP (-NONE- *U*))

1682 1682 (NP $ CD (-NONE- *U*))

1327 1593 (VP VBN t (NP (-NONE- *)) PP)

700 700 (ADJP QP (-NONE- *U*))

662 1219 (SBAR (WHNP-1 (-NONE- 0)) (S (NP (-NONE- *T*-1)) VP))

618 635 (S S-1 , NP (VP VBD (SBAR (-NONE- 0) (S (-NONE- *T*-1)))) .)

499 512 (SINV “ S-1 , ” (VP VBZ (S (-NONE- *T*-1))) NP .)

361 369 (SINV “ S-1 , ” (VP VBD (S (-NONE- *T*-1))) NP .)

19



Empty node recovery evaluation

• Two different evaluation methods

– Standard Parseval evaluation: evaluates empty node location, but not
coindexation

– Extended evaluation: evaluates both empty node location and
coindexation

• Evaluate on test trees without empty nodes and on parser output

Standard Parseval evaluation: Nodes identified by a triple 〈cat , left , right〉

(note left = right for empty nodes)

• G = set of empty nodes identified in gold-standard trees

• T = set of trees produced by parser?

P =
|G ∩ T |

|T |
R =

|G ∩ T |

|G|
f =

2 P R

P + R

20



Empty node identification results

Empty node Section 23 Parser output

Category Label P R f P R f

(Overall) 0.93 0.83 0.88 0.85 0.74 0.79

NP * 0.95 0.87 0.91 0.86 0.79 0.82

NP *T* 0.93 0.88 0.91 0.85 0.77 0.81

0 0.94 0.99 0.96 0.86 0.89 0.88

*U* 0.92 0.98 0.95 0.87 0.96 0.92

S *T* 0.98 0.83 0.90 0.97 0.81 0.88

ADVP *T* 0.91 0.52 0.66 0.84 0.42 0.56

SBAR 0.90 0.63 0.74 0.88 0.58 0.70

WHNP 0 0.75 0.79 0.77 0.48 0.46 0.47

21



Evaluation of empty nodes and their antecedents

• Each empty node is identified by a set of triples 〈cat , left , right〉
corresponding to

– the empty node itself

– each node co-indexed with the empty node

• In order to “get the empty node right”, the category and location of
each of its antecedents must be recovered

– Most empty nodes have zero or one antecedents

– Stringent requirement, which also evaluates parser accuracy

– Other measures (e.g., which only require identification of the head
of the antecedent) yield very similiar results

22



Empty node and antecedent identification results

Empty node Section 23 Parser output

Antecedant POS Label P R f P R f

(Overall) 0.80 0.70 0.75 0.73 0.63 0.68

NP NP * 0.86 0.50 0.63 0.81 0.48 0.60

WHNP NP *T* 0.93 0.88 0.90 0.85 0.77 0.80

NP * 0.45 0.77 0.57 0.40 0.67 0.50

0 0.94 0.99 0.96 0.86 0.89 0.88

*U* 0.92 0.98 0.95 0.87 0.96 0.92

S S *T* 0.98 0.83 0.90 0.96 0.79 0.87

WHADVP ADVP *T* 0.91 0.52 0.66 0.82 0.42 0.56

SBAR 0.90 0.63 0.74 0.88 0.58 0.70

WHNP 0 0.75 0.79 0.77 0.48 0.46 0.47

23



Discussion

• Empty node identification can be performed with reasonable accuracy

– Performance drop-off on parser trees

– Precision � recall ⇒ patterns may be too specialized
∗ Skeletal patterns trade precision for recall, but leave f-score

unchanged

• Antecedent recovery is considerably harder

– Only half of the bound NP PRO are recovered!
∗ Requires semantic/pragmatic information about interpretation
∗ 10 pages of rules/examples about NP PRO indexing in tagging

guidelines!
∗ Lexicalized patterns ought to help, but didn’t
∗ More sophisticated classifiers (boosted decision stubs) had very

similar performance to simple pattern matcher

– Many long distance dependencies (e.g., WH-dependencies) can on
average be reliably identified

24



Conclusions and Future Work

• This paper proposed two Parseval-style measures to evaluate empty
node identification and antecedent identification

– Restricted to Penn treebank style representation of long distance
dependencies

• A simple pattern-matching post-processing approach to long-distance
dependency identification works reasonably well

• Provides a baseline against which to evaluate more sophisticated
systems

• Performance drop-off when using parser trees

⇒ a single system that integrates parsing and long distance
dependency identification may perform better

25


