Attention Shifting for Parsing Speech

Keith Hall and Mark Johnson

Brown University

ACL 2004

July 22, 2004

Attention Shifting

- Iterative best-first word-lattice parsing algorithm
- Posits a complete syntactic analyses for each path of a word-lattice
- Goals of Attention Shifting
 - Improve accuracy of best-first parsing on word-lattices (Oracle Word Error Rate)
 - Improve efficiency of word-lattice parsing (Number of parser operations)
 - Improve syntactic language modeling based on multi-stage parsing (Word Error Rate)
- Inspired by edge demeriting for efficient parsing Blaheta & Charniak demeriting (ACL99)

Outline

- Syntactic language modeling
- Word-lattice parsing
- Multi-stage best-first parsing

Noisy Channel

• Speech recognition: Noise model = Acoustic model

$$\arg\max_{W} P(W|A) = \arg\max_{W} P(A, W)$$

Syntactic Language Modeling

- Adding syntactic information to context (conditioning information) $P(W) = \prod_{k=1}^{k} P(w_{i} | \pi(w_{k}, \dots, w_{1}))$
- *n*-best reranking
 - Select *n*-best strings using some model (trigram)
 - Process each string independently
 - Select string with highest P(A, W)
- Charniak (ACL01), Chelba & Jelinek (CS&L00,ACL02), Roark (CL01)

Parsing word-lattice

- Compress lattice with Weighted FSM determinization and minimization (Mohri, Pereira, & Riley CS&L02)
- Use compressed word-lattice graph as the parse chart
- Structure sharing due to compressed lattice $VP \rightarrow NN VB$ covers string man is $VP \rightarrow VBZ$ covers string mans

Word-lattice example

 I WOULD NOT SUGGEST ANYONE MAKE A DECISION ON WHO TO VOTE FOR BASED ON A STUDY LIKE THIS (160 arcs, 72 nodes)

- average of 800 arcs/lattice (max 15000 arcs)
- average of 100 nodes/lattice (max 500 nodes)

Best-first Word-lattice Parsing

- Bottom-up best-first PCFG parser
- Stack-based search technique based on figure-of-merit
- Attempts to work on "likely" parts of the chart
- Ideal figure-of-merit: P(edge) = inside(edge) * outside(edge)
 details in (Hall & Johnson ASRU03)

Word-lattice Parsing

- First stage: best-first bottom-up PCFG parser
- Second stage: Charniak Parser Language Model (Charniak ACL01)
- Parsing from lattice allows structure sharing
- Combines search for candidate lattice paths with search for candidate parses

Multi-stage Deficiency

- First-stage PCFG parser selects parses for a subset of word-lattice paths
- Lexicalized syntactic analysis not performed on all of the word-lattice
- Covering entire word-lattice requires excessive over-parsing
 - 100X over-parsing produces forests too large for lexical-parser
 - additional pruning required, resulting in loss of lattice-paths
- Attention shifting algorithm addresses the coverage problem

Attention Shifting

- Iterative reparsing
 - 1. Perform best-first PCFG parsing (over-parse as with normal best-first parsing)
 - 2. Identify words not covered by a complete parse (unused word has 0 outside probability)
 - 3. Reset parse Agenda to contain unused words
 - 4. If Agenda $\neq \emptyset$ repeat
- Prune chart using inside/outside pruning
- At most |A| iterations (|A| = number of arcs)
- Forces coverage of word-lattice

Experimental Setup

- PCFG Parser trained on Penn WSJ Treebank f2-21,24 (speech-normalization via Roark's normalization)
 - Generated at most 30k local-trees for second-stage parser
- Lexicalized parser: Charniak's Language Model Parser (Charniak ACL01)
 - trained on parsed BLLIP99 corpus (30 million words of WSJ)
 - BLLIP99 parsed using Charniak string parser trained on Penn WSJ

Evaluation

- Evaluation set: NIST '93 HUB-1
 - 213 utterances
 - Professional readers reading WSJ text
- Word-lattices evaluated on:
 - *n*-best word-lattices using Chelba A^{*} decoder (50-best paths)
 - compressed acoustic word-lattices
- Metrics
 - Word-lattice accuracy (first-stage parser): Oracle Word Error Rate
 - Word-string accuracy (multi-stage parser): Word Error Rate
 - Efficiency: number of parser agenda operations

Results: *n*-best word-lattices

- Charniak parser run on each of the *n*-best strings (reranking) (4X over-parsing)
- n-best word-lattice: pruned acoustic word-lattices containing only n-best word-strings
- Oracle WER of *n*-best lattices: 7.75

Model	# edge pops	Oracle WER	WER
<i>n</i> -best (Charniak)	2.5 million	7.75	11.8
100x LatParse	3.4 million	8.18	12.0
10x AttShift	564,895	7.78	11.9

Results: Acoustic word-lattices

• Compressed acoustic lattices

Model	# edge pops	Oracle WER	WER
acoustic lats	N/A	3.26	N/A
100x LatParse	3.4 million	5.45	13.1
10x AttShift	1.6 million	4.17	13.1

Conclusion

- Attention shifting
 - Improves parsing efficiency
 - Increases first-stage accuracy (correcting for best-first search errors)
 - Does not improve multi-stage accuracy
- Pruning for second-stage parser constrains number of edges
- Useful for best-first word-lattices parsing