Multi-Component Word Sense Disambiguation

Massimiliano Ciaramita and Mark Johnson Brown University

BLLIP: http://www.cog.brown.edu/Research/nlp

Outline

- Pattern classification for WSD
 - Features
 - Flat multiclass averaged perceptron
- Multi-component WSD
 - Generating external training data
 - Multi-component perceptron
- Experiments and results

Pattern classification for WSD

English lexical sample: 57 test words: 32 verbs, 20 nouns, 5 adjectives. For each word w:

- 1. compile a training set: $\mathtt{S}(\mathtt{w}) = (\mathtt{x}_{\mathtt{i}}, \mathtt{y}_{\mathtt{i}})^{\mathtt{n}}$
 - $\bullet \ \mathbf{x}_i \in \mathbb{R}^d$ a vector of features
 - $\bullet \ y_{\mathtt{i}} \in Y(\mathtt{w}),$ one of the possible senses of \mathtt{w}
- **2.** learn a classifier on S(w): $H : \mathbb{R}^d \to Y(w)$
- 3. use the classifier to disambiguate the unseen test data

Features

- Standard feature set for wsd (derived from (Yoong and Hwee, 2002))
 - "A-DT newspaper-NN and-CC now-RB a-DT bank-NN have-AUX since-RB taken-VBN over-RB"
- POS of neighboring words $P_{x,x\in\{-3,-2,-1,0,+1,+2,+3\}}$; e.g., $P_{-1}=DT$, $P_0=NN,\ P_{+1}=AUX$, ...
- Surrounding words WS; e.g., $WS = take_v$, $WS = over_r$, $WS = newspaper_n$
- N-grams:
 - $-\operatorname{NG}_{x,x\in\{-2,-1,+1,+2\}}$; e.g., $\operatorname{NG}_{-2}=\operatorname{now}$, $\operatorname{NG}_{+1}=\operatorname{have}$, $\operatorname{NG}_{+2}=\operatorname{take}$
 - $-\operatorname{NG}_{x,y:(x,y)\in\{(-2,-1),(-1,+1),(+1,+2)\}};$ e.g., $\operatorname{NG}_{-2,-1}=\operatorname{now}_{-}a$, $\operatorname{NG}_{+1,+2}=\operatorname{have}_{-}since$

Syntactic features (Charniak, 2000)

- Governing elements under a phrase G_1 ; e.g., $G_1 = take_S$
- Governed elements under a phrase G_2 ; e.g., $G_2 = a_NP$, $G_2 = now_NP$
- Coordinates 00; e.g., 00 = newspaper

Multiclass Perceptron (Crammer and Singer, 2003)

- \bullet Discriminant function: $\mathtt{H}(\mathtt{x}; \mathbf{V}) = \arg\max_{\mathtt{r}=1}^k \langle \mathtt{v}_{\mathtt{r}}, \mathtt{x} \rangle$
- Input: $\mathbf{V} \in \mathbb{R}^{|Y(w)| \times d}$, $d \approx 200,000$, initialized as $\mathbf{V} = 0$
- \bullet Repeat T times passes over training data or epochs

```
Multiclass_Perceptron((x, y)^n, V)
1
      for i = 1 to i = n
2
      do E = \{r : \langle v_r, x_i \rangle > \langle v_v, x_i \rangle \}
3
           if |E| > 0
4
                then 1. \tau_r = 1 for r = y
5
                         2. \tau_r = 0 for r \notin E \cup \{y\}
                         3. \tau_{\mathbf{r}} = -\frac{1}{|\mathbf{E}|} for \mathbf{r} \in \mathbf{E}
6
7
                         for r = 1 to r = k
8
                         do v_r \leftarrow v_r + \tau_r x_i;
```

Averaged perceptron classifier

- \bullet Perceptron's output: $\mathbf{V}^{(0)},\ldots,\mathbf{V}^{(n)}$
- $\bullet \mathbf{V}^{(i)}$ is the weight matrix after the first i training items
- \bullet Final model: $\mathbf{V}=\mathbf{V}^{(n)}$
- Averaged perceptron: (Collins, 2002)
 - final model: $\mathbf{V} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{V}^{(i)}$
 - reduces the effect of over-training

Outline

- Pattern classification for WSD
 - Features
 - Flat multiclass perceptron
- Multi-component WSD
 - Generating external training data
 - Multi-component perceptron
- Experiments and results

Sparse data problem in WSD

- Thousands of word senses 120,000 in Wordnet 2.0
- Very specific classes 50% of noun synsets contain one noun
- Problem: training instances often too few for fine-grained semantic distinctions
- Solution:
 - 1. use the hierarchy of Wordnet to find similar word senses and generate external training data for these senses
 - 2. integrate task-specific and external data with perceptron
- Intuition to classify an instance of the noun disk additional knowledge about concepts such as other "audio" or "computer memory" devices could be helpful

Finding neighbor senses

- $disc_1 = memory device for information storing$
- disc₂ = phonograph record

Finding neighbor senses

- **neighbors(disc**₁) = floppy disk, hard disk, ...
- neighbors(disc₂) = audio recording, lp, soundtrack, audiotape, talking book, digital audio tape, ...

External training data

- Find neighbors: for each sense y of a noun or verb in the task a set \hat{y} of k = 100 neighbor senses is generated from the Wordnet hierarchy
- Generate new instances: for each synset in \hat{y} a training instance (x_i, \hat{y}_i) is compiled from the corresponding Wordnet glosses (definitions/example sentences) using the same set of features
- **Result**: for each noun/verb
 - 1. task-specific training data $(\mathbf{x}_{\mathtt{i}}, y_{\mathtt{i}})^n$
 - 2. external training data $(\mathtt{x}_{\mathtt{i}}, \boldsymbol{\hat{y}}_{\mathtt{i}})^{\mathtt{m}}$

- Simplification of hierarchical perceptron (Ciaramita et al., 2003)
- \bullet A weight matrix ${\bf V}$ is trained on the task-specific data
- \bullet A weight matrix ${\bf M}$ is trained on the external data
- Discriminant function:

$$\mathtt{H}(\mathtt{x}; \mathbf{V}, \mathbf{M}) = \arg \max_{\mathtt{y} \in \mathtt{Y}(\mathtt{w})} \lambda_{\mathtt{y}} \langle \mathtt{v}_{\mathtt{y}}, \mathtt{x} \rangle + \lambda_{\hat{\mathtt{y}}} \langle \mathtt{m}_{\hat{\mathtt{y}}}, \mathtt{x} \rangle$$

 $-\,\lambda_y$ is an adjustable parameter that weights each component's contribution: $\lambda_{\hat{y}}=1-\lambda_y$

Multi-Component Perceptron

\bullet The algorithm learns ${\bf V}$ and ${\bf M}$ independently

 $\texttt{Multi-Component_Perceptron}((x_i, y_i)^n, (x_i, \hat{y_i})^m, \mathbf{V}, \mathbf{M})$

- $1 \quad V \leftarrow 0$
- $\mathbf{2} \quad \mathbf{M} \leftarrow \mathbf{0}$
- **3**for t = 1 to i = T
- **4** do Multiclass_Perceptron $((x_i, y_i)^n, \mathbf{V})$
- $\textbf{5} \qquad \texttt{Multiclass_Perceptron}((x_{\texttt{i}}, y_{\texttt{i}})^{\texttt{n}}, \mathbf{M})$
- **6** Multiclass_Perceptron $((x_i, y_i)^m, \mathbf{M})$

Outline

- Pattern classification for WSD
 - Features
 - Flat multiclass averaged perceptron
- Multi-component WSD
 - Generating external training data
 - Multi-component perceptron
- Experiments and results

Experiments and results

- One classifier trained for each test word
- Adjectives: standard perceptron, only set T
- Verbs/nouns: multicomponent perceptron, set T and λ_y
- Cross-validation experiments on the training data for each test word:
 - 1. choose the value for λ_y ; $\lambda_y = 1$ use only the "flat" perceptron, or $\lambda_y = 0.5$ use both component equally weighted
 - **2.** choose the number of iterations $\ensuremath{\mathbb{T}}$
- Average T value = 13.9
- For 37 out of 52 nouns/verbs $\lambda_y = 0.5$; the two-component model is more accurate than the flat perceptron

English Lexical Sample Results

Measure	Precision	Recall	Attempted %
Fine all POS	71.1	71.1	100
Coarse all POS	78 .1	78.1	100
Fine verbs	72.5	72.5	100
Coarse verbs	80.0	80.0	100
Fine nouns	71.3	71.3	100
Coarse nouns	77.4	77.4	100
Fine adjectives	49.7	49.7	100
Coarse adjectives	63.5	63.5	100

Flat vs. Multi-component: cross validation on train

Conclusion

- Advantages of the multi-component perceptron trained on neighbors' data
 - Neighbors: one "supersense" for each sense, same amount of additional data per sense
 - Simpler model: smaller variance more homogeneous external data
 - Efficiency: fast and efficient training
 - Architecture: simple, easy to add any number of (weighted) "components"