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Motivation and summary

◮ What’s the relationship between CKY parsing and the Eisner/Satta
O(n3) PBDG parsing algorithm? (c.f., McAllester 1999)

◮ split-head encoding, collecting left and right dependents
separately

◮ unfold-fold transform reorganizes grammar for efficient CKY
parsing

◮ Approach generalizes to 2nd-order dependencies

◮ predict argument given governor and sibling (McDonald 2006)
◮ predict argument given governor and governor’s governor

◮ In principle can use any CFG parsing or estimation algorithm for
PBDGs

◮ transformed grammars typically too large to enumerate
◮ my CKY implementations transform grammar on the fly
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Projective Bilexical Dependency Grammars

◮ Projective Bilexical Dependency Grammar (PBDG)

0 gave Sandy gave
gave dog the dog
gave bone a bone

◮ A dependency parse generated by the PBDG

0 Sandy gave the dog a bone

◮ Weights can be attached to dependencies (and preserved in CFG
transforms)
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A naive encoding of PBDGs as CFGs
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Spurious ambiguity in naive encoding

◮ Naive encoding allows dependencies on different sides of head to
be freely reordered

⇒ Spurious ambiguity in CFG parses (not present in PBDG parses)
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Parsing naive CFG encoding takes O(n5) time

◮ A production schema such as

X
u

→ X
u
X

v

has 5 variables, and so can match input in O(n5) different ways
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Simple split-head encoding

◮ Replace input word u with a left variant uℓ and a right variant ur

(can be avoided in practice with fancy book-keeping)
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⇓
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◮ PCFG separately collects left dependencies and right dependencies
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Simple split-head CFG parse
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L
u

and
u
R heads are phrase-peripheral ⇒ O(n4)

◮ Heads of L
u
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u
R are always at right (left) edge
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The Unfold-Fold transform
◮ Unfold-fold originally proposed for transforming recursive programs;

used here to transform CFGs into new CFGs

◮ Unfolding a nonterminal replaces it with its expansion

A → α B γ

B → β1

B → β2

. . .

⇒

A → α β1 γ

A → α β2 γ

B → β1

B → β2

. . .

◮ Folding is the inverse of unfolding (replace RHS with nonterminal)

A → α β γ

B → β

. . .

⇒

A → α B γ

B → β

. . .

◮ Transformed grammar generates same language (Sato 1992)
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Unfold-fold converts O(n4) to O(n3) grammar

◮ Unfold X
v

responsible for O(n4) parse time
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Transformed grammar collects left and right

dependencies separately
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◮ X
v

constituents (which cause O(n4) parse time) no longer used
◮ Head annotations now all phrase peripheral ⇒ O(n3) parse time
◮ Dependencies can be recovered from parse tree
◮ Basically same as Eisner and Satta O(n3) algorithm

◮ explains why Inside-Outside sanity check fails for Eisner/Satta
◮ two copies of each terminal ⇒ each terminals’ Outside

probability is double the Inside sentence probability
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Parse using O(n3) transformed split-head grammar
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0 Sandy gave the dog a bone
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Parsing time of CFG encodings of same PBDG

CFG schemata sentences parsed / second
Naive O(n5) CFG 45.4

O(n4) simple split-head CFG 406.2
O(n3) transformed split-head CFG 3580.0

◮ Weighted PBDG; all pairs of heads have some dependency weight

◮ Dependency weights precomputed before parsing begins

◮ Timing results on a 3.6GHz Pentium 4 machine parsing section 24
of the PTB

◮ CKY parsers with grammars hard-coded in C (no rule lookup)

◮ Dependency accuracy of Viterbi parses = 0.8918 for all grammars

◮ Feature extraction is much slower than even naive CFG
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Predict argument based on governor and sibling
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◮ Very similar to second-order algorithm given by McDonald (2006)
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Predict argument based on governor and

governor’s governor

gave
M

R

bone

gave
r

gave
R L

the

the
ℓ

gave
M

the

the
r

dog
ℓ

L
dog

the
M

L

dog

dog
r

dog
R

gave
R L

a

a
ℓ

a
r

gave
M

a a
M

L

bone

L
bone

bone
ℓ

bone
r

bone
R

gave
R

L
gave

gave
ℓ

Sandy
r

Sandy
M

L

gave

Sandy
ℓ

L
Sandy

gave
M

R

dog

S

L
gave

◮ Because left and right dependencies are assembled separately, only
captures 2nd-order dependencies where one dependency is leftward
and other is rightward
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Conclusion and future work

◮ Presented a reduction from PBDGs to O(n3) parsable CFGs

◮ split-head CFG representation of PBDGs
◮ Unfold-fold transform

◮ CKY algorithm on resulting CFG simulates Eisner/Satta algorithm
on original PBDG

◮ Makes CFG techniques applicable to PBDGs

◮ max marginal parsing (Goodman 1996)
and other CFG parsing and estimation algorithms

◮ Can capture different dependencies, yielding different PDG models

◮ 2nd-order “horizontal” dependencies (McDonald 2006)
◮ what other combinations of dependencies can we capture?

(if we permit O(n4) parse time?)
◮ do any of these improve parsing accuracy?
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