Transforming
Projective Bilexical Dependency Grammars

into efficiently-parsable CFGs
with Unfold-Fold

Mark Johnson
Microsoft Research Brown University

ACL 2007

Motivation and summary

» What's the relationship between CKY parsing and the Eisner/Satta
O(n*) PBDG parsing algorithm? (c.f., McAllester 1999)
» split-head encoding, collecting left and right dependents
separately
» unfold-fold transform reorganizes grammar for efficient CKY
parsing
» Approach generalizes to 2nd-order dependencies
» predict argument given governor and sibling (McDonald 2006)
» predict argument given governor and governor's governor

» In principle can use any CFG parsing or estimation algorithm for
PBDGs
» transformed grammars typically too large to enumerate
» my CKY implementations transform grammar on the fly

Outline

Projective Bilexical Dependency Grammars

/22

Projective Bilexical Dependency Grammars

» Projective Bilexical Dependency Grammar (PBDG)

0" “gave Sandy” “gave
gave” “dog the” “dog
gave” “bone a“ “bone

» A dependency parse generated by the PBDG
0 Sandy gave the dog a bone

» Weights can be attached to dependencies (and preserved in CFG
transforms)

A naive encoding of PBDGs as CFGs

S — X, where 07" *u
Xu — u
X — X X where v u
X — X X where u v
u u v
S
I
X ave
xSaindy xgave
Sandy X ave bone
X X
glave /d_& Ia blone
gave Xthle XC}Og a bone
the dog

Spurious ambiguity in naive encoding

» Naive encoding allows dependencies on different sides of head to
be freely reordered

= Spurious ambiguity in CFG parses (not present in PBDG parses)

S
|
X S
ave |
Sa‘ndy gave X ave
Sandy X ave Xbonc X rave Xbouc
—
gave Xdog Xa bone X ave Xdog Xd bone
| — | | — | |
gave Xth‘C XG}Og a bone XSa‘ndy Xg‘zWC Xth‘C Xd‘og a bone
the dog Sandy gave the dog

Parsing naive CFG encoding takes O(n°) time

» A production schema such as
XU - XU XV

has 5 variables, and so can match input in O(n®) different ways

22

Outline

Simple split-head encoding

/22

Simple split-head encoding

» Replace input word v with a /eft variant u, and a right variant u,
(can be avoided in practice with fancy book-keeping)

Sandy gave the dog a bone

Y

Sandy, Sandy gave, gave the, the dog, dog a, a_ bone, bone

» PCFG separately collects left dependencies and right dependencies

S
I
X
ave
L
ave gave
XS nd L ave aveR Xbone
Sandy ‘ gEWIeR X!Og abone
gave, gave thedog

S
XU
LU
LU
R
'R

A

where 0™ u
where u € ¥

where v u

where u” v

Simple split-head CFG parse

S
|
X ave
/L% aveR
ﬁ"% Lg ve /MR\ AK
L R F R X L R
Sa‘ndy Sanc‘iy gav‘e)Qg\ /b% bone
Sandy, Sandy, gave, gave, /Ldk qoeR /Xa\ Lb?ne
Xth L L R bone, bone
e d‘og ‘a a‘ I4 r
Lt‘he th?R dOgI dOgr aé a,
the, the,

10/22

L and R heads are phrase-peripheral = O(n*)

> Heads of L and R are always at right (left) edge

X, S — Xu where 0" u
— X — R whereue X
L R u u u
T — L, — u
S X L, — X, L, where v u
Lu uR UR — Uy
X/Ll 'ﬁ 2R — R X, where u v
V2 Iu ul V4
Ue Ur
3 R
» X — L R take O(n®) u
u u u ——
» R — R X take O(n* WR X
u u v

Outline

O(n®) split-head CFGs via Unfold-Fold

12/22

The Unfold-Fold transform

» Unfold-fold originally proposed for transforming recursive programs;
used here to transform CFGs into new CFGs

» Unfolding a nonterminal replaces it with its expansion

A—abry

A— aBxy Aoy
B — [‘
= B—>61
i B

» Folding is the inverse of unfolding (replace RHS with nonterminal)

A—afly A—aBy
B—p = B-=7

» Transformed grammar generates same language (Sato 1992)

13 /22

Unfold-fold converts O(n*) to O(n*) grammar

> Unfold X responsible for O(n*) parse time

—
!
=

vLﬁ T " 5L RL

v v Vv

X r—r
Ll

— X =

» Introduce new non-terminals XMy (doesn't change language)

M — RL

Xy X y

» Fold two children of Lu into XMy

Lu — U Lu — U
Lu — L R Lu = Lu — LV l\/lu
M — RL M — RL

14 /22

Transformed grammar collects left and right
dependencies separately

Lu uR Lu uR
T A vy
S P e

L R L R L R L R L R L
o " Y A Vi o " Y A
U/ Ur U/ Ur

v v/ 7

R
(NG
> X constituents (which cause O(n*) parse time) no longer used
» Head annotations now all phrase peripheral = O(n?) parse time
» Dependencies can be recovered from parse tree
» Basically same as Eisner and Satta O(n®) algorithm
» explains why Inside-Outside sanity check fails for Eisner/Satta
» two copies of each terminal = each terminals’ Outside
probability is double the Inside sentence probability

15 /22

Parse using O(n?) transformed split-head grammar

S
L R
ave o mave
LSandy Sw%/e ’Aw'vlbone\ boneR
SanfiyR Lgave /&WJ?\ /Lb%
Sandyﬁ Sandyr gaveMdog do R La aM ne
/\
gav‘e R Ldog a‘R b‘one
—_—
gave, gave, Lthe %eI\/I% a, a, bone, bone,
theR Ldog

the the dog, dog,

0 Sandy gave the dog a bone

16 /22

Parsing time of CFG encodings of same PBDG

CFG schemata sentences parsed / second
Naive O(n°) CFG 45.4
O(n*) simple split-head CFG 406.2
O(n?) transformed split-head CFG 3580.0

v

Weighted PBDG; all pairs of heads have some dependency weight

v

Dependency weights precomputed before parsing begins

v

Timing results on a 3.6GHz Pentium 4 machine parsing section 24
of the PTB

CKY parsers with grammars hard-coded in C (no rule lookup)

v

v

Dependency accuracy of Viterbi parses = 0.8918 for all grammars

Feature extraction is much slower than even naive CFG

v

17 /22

Outline

Transformations capturing 2nd-order dependencies

18/22

Predict argument based on governor and sibling

LSandy sw%/e | gav Mio M
San(‘iyR gave, gave, /ng\ aoeR /hKL
Sandy, Sandy, Lihe the cLiog T L, aMpone
th‘eR dog, dog, a‘R bone, bone
the, the a, a,

» Very similar to second-order algorithm given by McDonald (2006)

19/22

Predict argument based on governor and
governor's governor

S
L R
_mave oo we
L M ‘ M R
Sa‘ndy SWe : gave _bone | bone
/\14
Sandy, Sandy, L ! M M |
2 r gave /\Jﬂa\ a ne |
_r/gm/eR\ L‘a bone
gaveMdog do R a, a, bonef boner
—
L
w% theMdog
gav‘eR Lt‘he d‘og

gave, gave the, the, dog, dog,

» Because left and right dependencies are assembled separately, only

captures 2nd-order dependencies where one dependency is leftward
and other is rightward

20 /22

Outline

Conclusion

21/22

Conclusion and future work

» Presented a reduction from PBDGs to O(n®) parsable CFGs

» split-head CFG representation of PBDGs

» Unfold-fold transform
» CKY algorithm on resulting CFG simulates Eisner/Satta algorithm

on original PBDG

» Makes CFG techniques applicable to PBDGs

» max marginal parsing (Goodman 1996)

and other CFG parsing and estimation algorithms

» Can capture different dependencies, yielding different PDG models

» 2nd-order “horizontal” dependencies (McDonald 2006)

» what other combinations of dependencies can we capture?
(if we permit O(n*) parse time?)

» do any of these improve parsing accuracy?

22/22

	Projective Bilexical Dependency Grammars
	Simple split-head encoding
	O(n3) split-head CFGs via Unfold-Fold
	Transformations capturing 2nd-order dependencies
	Conclusion

