
Transforming

Projective Bilexical Dependency Grammars

into efficiently-parsable CFGs

with Unfold-Fold

Mark Johnson
Microsoft Research Brown University

ACL 2007

1 / 22



Motivation and summary

◮ What’s the relationship between CKY parsing and the Eisner/Satta
O(n3) PBDG parsing algorithm? (c.f., McAllester 1999)

◮ split-head encoding, collecting left and right dependents
separately

◮ unfold-fold transform reorganizes grammar for efficient CKY
parsing

◮ Approach generalizes to 2nd-order dependencies

◮ predict argument given governor and sibling (McDonald 2006)
◮ predict argument given governor and governor’s governor

◮ In principle can use any CFG parsing or estimation algorithm for
PBDGs

◮ transformed grammars typically too large to enumerate
◮ my CKY implementations transform grammar on the fly

2 / 22



Outline

Projective Bilexical Dependency Grammars

Simple split-head encoding

O(n3) split-head CFGs via Unfold-Fold

Transformations capturing 2nd-order dependencies

Conclusion

3 / 22



Projective Bilexical Dependency Grammars

◮ Projective Bilexical Dependency Grammar (PBDG)

0 gave Sandy gave
gave dog the dog
gave bone a bone

◮ A dependency parse generated by the PBDG

0 Sandy gave the dog a bone

◮ Weights can be attached to dependencies (and preserved in CFG
transforms)

4 / 22



A naive encoding of PBDGs as CFGs

S → X
u

where 0 u

X
u

→ u

X
u

→ X
v
X

u
where v u

X
u

→ X
u
X

v
where u v

gave

the dog

X
the

X
dog

X
dog

X
gave

X
gave

X
bone

X
a

a

X
bone

bone

X
gave

X
Sandy

Sandy

X
gave

S

5 / 22



Spurious ambiguity in naive encoding

◮ Naive encoding allows dependencies on different sides of head to
be freely reordered

⇒ Spurious ambiguity in CFG parses (not present in PBDG parses)

gave

the dog

X
the

X
dog

X
dog

X
gave

X
gave

X
bone

X
a

a

X
bone

bone

X
gave

X
Sandy

Sandy

X
gave

S

Sandy the dog

X
the

X
dog

X
dog

X
bone

X
a

a

X
bone

bone

X
gave

X
gave

gave

X
Sandy

X
gave

X
gave

S

6 / 22



Parsing naive CFG encoding takes O(n5) time

◮ A production schema such as

X
u

→ X
u
X

v

has 5 variables, and so can match input in O(n5) different ways

k

Xu

u

Xu

Xv

vi j

7 / 22



Outline

Projective Bilexical Dependency Grammars

Simple split-head encoding

O(n3) split-head CFGs via Unfold-Fold

Transformations capturing 2nd-order dependencies

Conclusion

8 / 22



Simple split-head encoding

◮ Replace input word u with a left variant uℓ and a right variant ur

(can be avoided in practice with fancy book-keeping)

Sandy gave the dog a bone
⇓

Sandy
ℓ

Sandy
r

gave
ℓ

gave
r

the
ℓ

the
r

dog
ℓ

dog
r

a
ℓ

a
r

bone
ℓ

bone
r

◮ PCFG separately collects left dependencies and right dependencies

the doggave
ℓ

gave
r

gave
R X

dog

gave
R X

bone

a bone

gave
R

L
gave

X
Sandy

Sandy

L
gave

X
gave

S

S → X
u

where 0 u

X
u

→ L
u u

R where u ∈ Σ

L
u

→ ul

L
u

→ X
v

L
u

where v u

u
R → ur

u
R →

u
R X

v
where u v

9 / 22



Simple split-head CFG parse

dog
R

X
Sandy

L
Sandy

Sandy
ℓ

X
dog

gave
r

gave
ℓ

gave
R

gave
R

L
a

a
ℓ

a
R

a
r

X
a

L
bone

bone
ℓ

L
bone

bone
r

bone
R

X
bone

Sandy
R

Sandy
r

L
gave

L
gave

X
gave

S

gave
R

L
the

the
ℓ

the
R

the
r

X
the

L
dog

dog
ℓ

L
dog

dog
r

10 / 22



L
u

and
u
R heads are phrase-peripheral ⇒ O(n4)

◮ Heads of L
u

and
u
R are always at right (left) edge

u
R

u
r

u
R

u
ℓ

X
u

L
u

X
v1

L
u

L
u

X
v2

X
v3

X
v4

u
R

S → X
u

where 0 u

X
u

→ L
u u

R where u ∈ Σ

L
u

→ ul

L
u

→ X
v

L
u

where v u

u
R → ur

u
R →

u
R X

v
where u v

◮ X
u

→ L
u u

R take O(n3)

◮
u
R →

u
R X

v
take O(n4)

i = u

u
R

u
R

X
v

vj k

11 / 22



Outline

Projective Bilexical Dependency Grammars

Simple split-head encoding

O(n3) split-head CFGs via Unfold-Fold

Transformations capturing 2nd-order dependencies

Conclusion

12 / 22



The Unfold-Fold transform
◮ Unfold-fold originally proposed for transforming recursive programs;

used here to transform CFGs into new CFGs

◮ Unfolding a nonterminal replaces it with its expansion

A → α B γ

B → β1

B → β2

. . .

⇒

A → α β1 γ

A → α β2 γ

B → β1

B → β2

. . .

◮ Folding is the inverse of unfolding (replace RHS with nonterminal)

A → α β γ

B → β

. . .

⇒

A → α B γ

B → β

. . .

◮ Transformed grammar generates same language (Sato 1992)

13 / 22



Unfold-fold converts O(n4) to O(n3) grammar

◮ Unfold X
v

responsible for O(n4) parse time

L
u

→ ul

L
u

→ X
v

L
u

X
v

→ L
v v

R
⇒

L
u

→ ul

L
u

→ L
v v

R L
u

◮ Introduce new non-terminals
x
M

y
(doesn’t change language)

x
M

y
→

x
R L

y

◮ Fold two children of L
u

into
x
M

y

L
u

→ ul

L
u

→ L
v v

R L
u

x
M

y
→

x
R L

y

⇒

L
u

→ ul

L
u

→ L
v v

M
u

x
M

y
→

x
R L

y

14 / 22



Transformed grammar collects left and right

dependencies separately

u
R

u
r

u
ℓ

X
v

v
RL

v

L
u u

R

X
v′

L
v′ v′

RL
u

⇒
u
M

v′

u
r

u
ℓ

v
RL

v

L
u u

R

L
v′ v′

RL
u

v
M

u

u
R

◮ X
v

constituents (which cause O(n4) parse time) no longer used
◮ Head annotations now all phrase peripheral ⇒ O(n3) parse time
◮ Dependencies can be recovered from parse tree
◮ Basically same as Eisner and Satta O(n3) algorithm

◮ explains why Inside-Outside sanity check fails for Eisner/Satta
◮ two copies of each terminal ⇒ each terminals’ Outside

probability is double the Inside sentence probability
15 / 22



Parse using O(n3) transformed split-head grammar

S

dog
r

the
r

L
dogthe

R

the
M

dog

the
ℓ

L
the

L
dog

dog
ℓ

gave
r

gave
R

gave
M

dog

gave
ℓ

dog
R

gave
R

a
ℓ

a
r

a
R

bone
ℓ

L
bone

a
M

bone
L

a

L
bone

gave
M

bone bone
R

bone
r

gave
RL

gave

L
gaveSandy

R

Sandy
M

gave
L

Sandy

Sandy
ℓ

Sandy
r

0 Sandy gave the dog a bone

16 / 22



Parsing time of CFG encodings of same PBDG

CFG schemata sentences parsed / second
Naive O(n5) CFG 45.4

O(n4) simple split-head CFG 406.2
O(n3) transformed split-head CFG 3580.0

◮ Weighted PBDG; all pairs of heads have some dependency weight

◮ Dependency weights precomputed before parsing begins

◮ Timing results on a 3.6GHz Pentium 4 machine parsing section 24
of the PTB

◮ CKY parsers with grammars hard-coded in C (no rule lookup)

◮ Dependency accuracy of Viterbi parses = 0.8918 for all grammars

◮ Feature extraction is much slower than even naive CFG

17 / 22



Outline

Projective Bilexical Dependency Grammars

Simple split-head encoding

O(n3) split-head CFGs via Unfold-Fold

Transformations capturing 2nd-order dependencies

Conclusion

18 / 22



Predict argument based on governor and sibling

S

the
r

the
R

the
M

L

dog

the
ℓ

L
the

L
dog dog

R

dog
ℓ

dog
r

L
bone

L
a a

M
L

bone

a
R

a
r

a
ℓ

bone
ℓ

bone
r

gave
r

gave
M

R

dog dog
M

bone

gave
M

R

bone bone
R

gave
R

gave
ℓ

Sandy
r

Sandy
R

Sandy
ℓ

Sandy
M

L

gave
L

Sandy

L
gave

◮ Very similar to second-order algorithm given by McDonald (2006)

19 / 22



Predict argument based on governor and

governor’s governor

gave
M

R

bone

gave
r

gave
R L

the

the
ℓ

gave
M

the

the
r

dog
ℓ

L
dog

the
M

L

dog

dog
r

dog
R

gave
R L

a

a
ℓ

a
r

gave
M

a a
M

L

bone

L
bone

bone
ℓ

bone
r

bone
R

gave
R

L
gave

gave
ℓ

Sandy
r

Sandy
M

L

gave

Sandy
ℓ

L
Sandy

gave
M

R

dog

S

L
gave

◮ Because left and right dependencies are assembled separately, only
captures 2nd-order dependencies where one dependency is leftward
and other is rightward

20 / 22



Outline

Projective Bilexical Dependency Grammars

Simple split-head encoding

O(n3) split-head CFGs via Unfold-Fold

Transformations capturing 2nd-order dependencies

Conclusion

21 / 22



Conclusion and future work

◮ Presented a reduction from PBDGs to O(n3) parsable CFGs

◮ split-head CFG representation of PBDGs
◮ Unfold-fold transform

◮ CKY algorithm on resulting CFG simulates Eisner/Satta algorithm
on original PBDG

◮ Makes CFG techniques applicable to PBDGs

◮ max marginal parsing (Goodman 1996)
and other CFG parsing and estimation algorithms

◮ Can capture different dependencies, yielding different PDG models

◮ 2nd-order “horizontal” dependencies (McDonald 2006)
◮ what other combinations of dependencies can we capture?

(if we permit O(n4) parse time?)
◮ do any of these improve parsing accuracy?

22 / 22


	Projective Bilexical Dependency Grammars
	Simple split-head encoding
	O(n3) split-head CFGs via Unfold-Fold
	Transformations capturing 2nd-order dependencies
	Conclusion

