
Grammars, graphs and automata

Mark Johnson

Brown University

ALTA summer school

December 2003

slides available from http://www.cog.brown.edu/˜mj

1

Topics

• Graphical models and Bayes networks

• (Hidden) Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

2

Motivation

Computational linguistics studies the computational processes involved

in language learning, production and comprehension

• we hope that the essence of these processes (in humans and

machines) is the computational manipulation of information

Natural language processing is the use of computers for processing

natural language text and speech

• Machine translation

• Information extraction

• Question-answering

3

Why grammars?

• A grammar describes a language

– usually specifies its sentences and provides descriptions of them

(e.g., their meanings)

• Parsing is the process of identifying the sentence’s description

• Generation is the process of translating meanings into grammatical or

well-formed sentences

• Phrase-structure grammars describe how words group into phrases

– provides a tree or graph representation of each sentence’s structure

• Grammars provide a general-purpose computational framework

– More general than most finite state automata

– Complementary with graphical models (esp. plates)

4

A very brief history

(Antiquity) Birth of linguistics, logic, rhetoric

(1900s) Structuralist linguistics (phrase structure)

(1900s) Mathematical logic

(1900s) Probability and statistics

(1940s) Behaviorism (discovery procedures, corpus linguistics)

(1940s) Ciphers and codes

(1950s) Information theory

(1950s) Automata theory

(1960s) Context-free grammars

(1960s) Generative grammar dominates (US) linguistics (Chomsky)

(1980s) “Neural networks” (learning as parameter estimation)

(1980s) Graphical models (Bayes nets, Markov Random Fields)

(1980s) Statistical models dominate speech recognition

(1980s) Probabilistic grammars

(1990s) Statistical methods dominate computational linguistics

(1990s) Computational learning theory

5

Topics

• Graphical models and Bayes networks

• (Hidden) Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

6

Probability distributions

• A probability distribution over a countable set Ω is a function

P : Ω → [0, 1] which satisfies 1 =
∑

ω∈Ω P(ω).

• A random variable is a function X : Ω → X . P(X=x) =
∑

ω:X(ω)=x

P(ω)

• If there are several random variables X1, . . . , Xn, then:

– P(X1, . . . , Xn) is the joint distribution

– P(Xi) is the marginal distribution of Xi

• X1, . . . , Xn are independent iff P(X1, . . . , Xn) = P(X1) . . .P(Xn),

i.e., the joint is the product of the marginals

• The conditional distribution of X given Y is P(X|Y) = P(X,Y)/P(Y)

so P(X,Y) = P(Y)P(X|Y) = P(X)P(Y |X) (Bayes rule)

• X1, . . . , Xn are conditionally independent given Y iff

P(X1, . . . , Xn|Y) = P(X1|Y) . . .P(Xn|Y)

7

Bayes inversion and the noisy channel model

Given an acoustic signal a, find words ŵ(a) most likely to correspond to a

ŵ(a) = argmax
w

P(W = w|A = a)

P(A)P(W |A) = P(W,A) = P(W)P(A|W)

P(W |A) =
P(W)P(A|W)

P(A)

ŵ(a) = argmax
w

P(W = w)P(A = a|W = w)

P(A = a)

= argmax
w

P(W = w)P(A = a|W = w)

Language model

Acoustic model

Acoustic signal A

P(W)

P(A|W)

Advantages of noisy channel model:

• P(W |A) is hard to construct directly; P(A|W) is easier

• noisy channel also exploits language model P(W)

8

Bayes nets

A Bayes net is a directed acyclic graph that depicts a way of factorizing a

joint probability distribution into a product of conditional distributions.

Example: By Bayes rule:

P(X1, X2, X3, X4) = P(X1)P(X2|X1)P(X3|X1, X2)P(X4|X1, X2, X3)

But if P(Xi|X1, . . . , Xi−1) doesn’t depend on all of

X1, . . . , Xi, then we can simplify this to something like:

P(X1, X2, X3, X4) = P(X1)P(X2)P(X3|X1)P(X4|X2, X3)

Bayes nets depict such simplified products of conditionals.

• The Bayes net has a node for each variable.

• If the product contains a term P(Xi| . . . , Xj, . . .) then

the Bayes net has an arc from j to i.

X1

X3

X4

X2

9

Marginalizing over a variable

Marginalizing over a variable (i.e., summing over all of its possible values)

deletes the node and connects all of its ancestors with all of its descendants

Example:

P(X1, X2, X3, X4) = P(X1)P(X2)P(X3|X1)P(X4|X2, X3)

Marginalize over X3, i.e.,

P(X1, X2, X4) = P(X1)P(X2)
∑

X3

P(X3|X1)P(X4|X2, X3)

= P(X1)P(X2)P(X4|X1, X2)

X1

X3

X4

X2

X4

X2X1

10

Conditioning on a variable

Conditioning on a variable (i.e., fixing its value) deletes the node and all

links to it.

Example:

P(X1, X2, X3, X4) = P(X1)P(X2)P(X3|X1)P(X4|X2, X3)

Set X3 = c. Then

P(X1, X2, X4|X3 = c) ∝ P(X1)P(X2)P(c|X1)P(X4|X2, c)

X1

X3

X4

X2

X4

X2X1

11

Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

12

Markov chains

Let X = X1, . . . , Xn, . . ., where each Xi ∈ X .

By Bayes rule: P(X1, . . . , Xn) =
n∏

i=1

P(Xi|X1, . . . , Xi−1)

X is a Markov chain iff P(Xi|X1, . . . , Xi−1) = P(Xi|Xi−1), i.e.,

P(X1, . . . , Xn) = P (X1)

n∏

i=2

P(Xi|Xi−1)

Bayes net representation of a Markov chain:

X1 −→ X2 −→ . . . −→ Xi−1 −→ Xi −→ Xi+1 −→ . . .

A Markov chain is homogeneous or time-invariant iff

P(Xi|Xi−1) = P(Xj |Xj−1) for all i, j

A homogeneous Markov chain is completely specified by

• start probabilities ps(x) = P(X1 = x), and

• transition probabilities pm(x|x′) = P(Xi = x|Xi−1 = x′)

13

Bigram models

A bigram language model B defines a probability distribution over strings

of words w1 . . . wn based on the word pairs (wi, wi+1) the string contains.

A bigram model is a homogenous Markov chain:

PB(w1 . . . wn) = ps(w1)
n−1∏

i=1

pm(wi+1|wi)

W1 −→W2 −→ . . . −→Wi−1 −→Wi −→Wi+1 −→ . . .

We need to define a distribution over the lengths n of strings. One way to

do this is by appending an end-marker $ to each string, and set pm($|$) = 1

P(Howard hates brocolli $)

= ps(Howard)pm(hates|Howard)pm(brocolli|hates)pm($|brocolli)

14

n-gram models

An m-gram model Ln defines a probability distribution over strings based

on the m-tuples (wi, . . . , wi+m−1) the string contains.

An m-gram model is also a homogenous Markov chain, where the chain’s

random variables are m− 1 tuples of words Xi = (Wi, . . . ,Wi+m−2). Then:

PLn
(W1, . . . ,Wn+m−2) = PLn

(X1 . . .Xn) = ps(x1)
n−1∏

i=1

pm(xi+1|xi)

= ps(w1, . . . , wm−1)

n+m−2∏

j=m

pm(wj |wj−1, . . . , wj−m+1)

Wi Wi+1Wi−1

Xi−1 Xi. . .

. . .

. . .

PL3
(Howard likes brocolli $) = ps(Howard likes)pm(brocolli|Howard likes)pm($|likes brocolli)

15

Hidden Markov models

A hidden variable is one whose value cannot be directly observed.

In a hidden Markov model the state sequence S1 . . . Sn . . . is a hidden

Markov chain, but each state Si is associated with a visible output Vi.

P(S1, . . . , Sn;V1, . . . , Vn) = P(S1)P(V1|S1)
n−1∏

i=1

P(Si+1|Si)P(Vi+1|Si+1)

Si−1 Si Si+1 . . .

Vi−1 Vi Vi+1

. . .

16

Applications of homogeneous HMMs

Acoustic model in speech recognition: P(A|W)

States are phonemes, outputs are acoustic features

Si−1 Si Si+1 . . .

Vi−1 Vi Vi+1

. . .

Part of speech tagging:

States are parts of speech, outputs are words

NNP VB NNS $

Howard likes mangoes $

17

Properties of HMMs

.States S

Outputs V

Conditioning on outputs P(S|V) results in Markov state dependencies

.States S

Outputs V

Marginalizing over states P(V) =
∑
S P(S, V) completely connects outputs

.States S

Outputs V

18

Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

19

Languages and Grammars

If V is a set of symbols (the vocabulary, i.e., words, letters, phonemes, etc):

• V? is the set of all strings (or finite sequences) of members of V

(including the empty sequence ε)

• V+ is the set of all finite non-empty strings of members of V

A language is a subset of V? (i.e., a set of strings)

A probabilistic language is probability distribution P over V?, i.e.,

• ∀w ∈ V? 0 ≤ P(w) ≤ 1

•
∑

w∈V? P(w) = 1, i.e., P is normalized

A (probabilistic) grammar is a finite specification of a (probabilistic)

language

20

Trees depict constituency

Some grammars G define a language by defining a set of trees ΨG.

The strings G generates are the terminal yields of these trees.

VP

NP

N

the man

PP

NP

N

the

VP

DD

telescopewithsawI

Pro V

NP

S

P Preterminals

Nonterminals

Terminals or terminal yield

Trees represent how words combine to form phrases and ultimately

sentences.

21

Probabilistic grammars

Some probabilistic grammars G defines a probability distribution PG(ψ)

over the set of trees ΨG, and hence over strings w ∈ V?.

PG(w) =
∑

ψ∈ΨG(w)

PG(ψ)

where ΨG(w) are the trees with yield w generated by G

Standard (non-stochastic) grammars distinguish grammatical from

ungrammatical strings (only the grammatical strings receive parses).

Probabilistic grammars can assign non-zero probability to every string, and

rely on the probability distribution to distinguish likely from unlikely

strings.

22

Context free grammars

A context-free grammar G = (V,S, s,R) consists of:

• V, a finite set of terminals (V0 = {Sam, Sasha, thinks, snores})

• S, a finite set of non-terminals disjoint from V (S0 = {S,NP,VP,V})

• R, a finite set of productions of the form A→ X1 . . .Xn, where A ∈ S

and each Xi ∈ S ∪ V

• s ∈ S is called the start symbol (s0 = S)

G generates a tree ψ iff

• The label of ψ’s root node is s

• For all local trees with parent A

and children X1 . . .Xn in ψ

A→ X1 . . . Xn ∈ R

G generates a string w ∈ V? iff w is

the terminal yield of a tree generated

by G

NP VP

S

Sam V S

NP VP

Sasha V

snores

thinks

Productions

S → NP VP

NP → Sam

V → thinks

V → snores

VP → V S

VP → V

NP → Sasha

23

CFGs as “plugging” systems

Sam+ hates+ George+

V+ NP+

V− NP−

VP−NP−

NP+ VP+

Sam− hates− George−

S+

Sam hates George

V NP

VPNP

S

“Pluggings” Resulting tree

S → NP VP

VP → V NP

NP → Sam

NP → George

V → hates

V → likes

Productions

S−

• Goal: no unconnected “sockets” or “plugs”

• The productions specify available types of components

• In a probabilistic CFG each type of component has a “price”

24

Structural Ambiguity

R1 = {VP → V NP,VP → VP PP,NP → D N,N → N PP, . . .}

N

man

V

saw

NP

I

NP

I

V

saw

VP

NP

N

the man

PP

NP

N

the telescope

P

with

VP

S

D

N

NP

VP

S

the

D

PP

NP

N

the telescope

P

with D

D

• CFGs can capture structural ambiguity in language.

• Ambiguity generally grows exponentially in the length of the string.

– The number of ways of parenthesizing a string of length n is

Catalan(n)

• Broad-coverage statistical grammars are astronomically ambiguous.

25

Derivations

A CFG G = (V,S, s,R) induces a rewriting relation ⇒G, where

γAδ ⇒G γβδ iff A→ β ∈ R and γ, δ ∈ (S ∪ V)?.

A derivation of a string w ∈ V? is a finite sequence of rewritings

s⇒G . . .⇒G w. ⇒?
G is the reflexive and transitive closure of ⇒G.

The language generated by G is {w : s⇒? w,w ∈ V?}.

G0 = (V0,S0, S,R0), V0 = {Sam, Sasha, likes, hates}, S0 = {S,NP,VP,V},

R0 = {S → NP VP,VP → V NP,NP → Sam,NP → Sasha,V → likes,V → hates}

S

⇒ NP VP

⇒ NP V NP

⇒ Sam V NP

⇒ Sam V Sasha

⇒ Sam likes Sasha

Steps in a terminating

derivation are always cuts in

a parse tree

Left-most and right-most

derivations are unique

S

NP VP

V NPSam

likes Sasha

26

Enumerating trees and parsing strategies

A parsing strategy specifies the order in which nodes in trees are

enumerated

Parent

Child1 Childn. . .

Top-down
Pre-order

Parent
Child1

. . .
Childn

Child1

Parent
. . .

Childn

Bottom-up
Post-order

Child1

. . .
Childn
Parent

In-order
Left-corner

Enumeration

Parsing strategy

27

Top-down parses are left-most derivations (1)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

S S

Leftmost derivation

28

Top-down parses are left-most derivations (2)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

NP VP

S S
NP VP

Leftmost derivation

29

Top-down parses are left-most derivations (3)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

D N

NP VP

S S
NP VP
D N VP

Leftmost derivation

30

Top-down parses are left-most derivations (4)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no

D N

NP VP

S S
NP VP
D N VP
no N VP

Leftmost derivation

31

Top-down parses are left-most derivations (5)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican

D N

NP VP

S S
NP VP
D N VP
no N VP
no politican VP

Leftmost derivation

32

Top-down parses are left-most derivations (6)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican

D N V

NP VP

S S
NP VP
D N VP
no N VP
no politican VP
no politican V

Leftmost derivation

33

Top-down parses are left-most derivations (7)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies

D N V

NP VP

S S
NP VP
D N VP
no N VP
no politican VP
no politican V
no politican lies

Leftmost derivation

34

Bottom-up parses are reversed

rightmost-most derivations (1)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies
no politican lies

Rightmost derivation

35

Bottom-up parses are reversed

rightmost-most derivations (2)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies

D

D politican lies
no politican lies

Rightmost derivation

36

Bottom-up parses are reversed

rightmost-most derivations (3)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies

D N D N lies
D politican lies
no politican lies

Rightmost derivation

37

Bottom-up parses are reversed

rightmost-most derivations (4)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies

D N

NP

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies

38

Bottom-up parses are reversed

rightmost-most derivations (5)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies

D N V

NP NP V

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies

39

Bottom-up parses are reversed

rightmost-most derivations (6)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies

D N V

NP VP
NP VP
NP V

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies

40

Bottom-up parses are reversed

rightmost-most derivations (7)

Productions

S → NP VP

NP → D N

D → no

N → politican

VP → V

V → lies

no politican lies

D N V

NP VP

S S
NP VP
NP V

D N lies
D politican lies
no politican lies

Rightmost derivation

NP lies

41

Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar (PCFG) G consists of

• a CFG (V,S, S,R) with no useless productions, and

• production probabilities p(A → β) = P(β|A) for each A→ β ∈ R,

the conditional probability of an A expanding to β

A production A → β is useless iff it is not used in any terminating

derivation, i.e., there are no derivations of the form

S ⇒? γAδ ⇒ γβδ ⇒∗ w for any γ, δ ∈ (N ∪ T)? and w ∈ T ?.

If r1 . . . rn is a sequence of productions used to generate a tree ψ, then

PG(ψ) = p(r1) . . . p(rn)

=
∏

r∈R

p(r)fr(ψ)

where fr(ψ) is the number of times r is used in deriving ψ
∑

ψ PG(ψ) = 1 if p satisfies suitable constraints

42

Example PCFG

1.0 S → NP VP 1.0 VP → V

0.75 NP → George 0.25 NP → Al

0.6 V → barks 0.4 V → snores

P

S

NP VP

George V

barks

= 0.45 P

S

NP VP

Al V

snores

= 0.1

43

Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

44

Finite-state automata - Informal description

Finite-state automata are devices that generate arbitrarily long strings one

symbol at a time.

At each step the automaton is in one of a finite number of states.

Processing proceeds as follows:

1. Initialize the machine’s state s to the start state and w = ε (the empty

string)

2. Loop:

(a) Based on the current state s, decide whether to stop and return w

(b) Based on the current state s, append a certain symbol x to w and

update to s′

Mealy automata choose x based on s and s′

Moore automata (homogenous HMMs) choose x based on s′ alone

Note: I’m simplifying here: Mealy and Moore machines are transducers

In probabilistic automata, these actions are directed by probability distributions

45

Mealy finite-state automata

Mealy automata emit terminals from arcs.

A (Mealy) automaton M = (V,S, s0,F ,M) consists of:

• V, a set of terminals, (V3 = {a, b})

10

a

b

a

• S, a finite set of states, (S3 = {0, 1})

• s0 ∈ S, the start state, (s03
= 0)

• F ⊆ S, the set of final states (F3 = {1}) and

• M ⊆ S × V × S, the state transition relation.

(M3 = {(0, a, 0), (0, a, 1), (1, b, 0)})

A accepting derivation of a string v1 . . . vn ∈ V? is a sequence of states

s0 . . . sn ∈ S? where:

• s0 is the start state

• sn ∈ F , and

• for each i = 1 . . . n, (si−1, vi, si) ∈ M.

00101 is an accepting derivation of aaba.

46

Probabilistic Mealy automata

A probabilistic Mealy automaton M = (V,S, s0, pf , pm) consists of:

• terminals V, states S and start state s0 ∈ S as before,

• pf (s), the probability of halting at state s ∈ S, and

• pm(v, s′|s), the probability of moving from s ∈ S to s′ ∈ S and emitting a

v ∈ V.

where pf (s) +
∑

v∈V,s′∈S pm(v, s′|s) = 1 for all s ∈ S (halt or move on)

The probability of a derivation with states s0 . . . sn and outputs v1 . . . vn is:

PM (s0 . . . sn; v1 . . . vn) =

(
n∏

i=1

pm(vi, si|si−1)

)
pf (sn)

Example: pf (0) = 0, pf (1) = 0.1,

pm(a, 0|0) = 0.2, pm(a, 1|0) = 0.8, pm(b, 0|1) = 0.9

PM (00101, aaba) = 0.2 × 0.8 × 0.9 × 0.8 × 0.1
10

a

b

a

47

Bayes net representation of Mealy PFSA

In a Mealy automaton, the output is determined by the current and next

state.

Si−1 Si

Vi

Si+1

Vi+1

. . .

. . .

. . .

. . .

Example: state sequence 00101 for string aaba

10

a

b

a

Mealy FSA

0 0

a

1

a

0

b

1

a

Bayes net for aaba

48

The trellis for a Mealy PFSA

Example: state sequence 00101 for string aaba

10

a

b

a
0 0

a

1

a

0

b

1

a

Bayes net for aaba

1

0

1 1

00 0

1

0

1

a a b a

49

Probabilistic Mealy FSA as PCFGs

Given a Mealy PFSA M = (V,S, s0, pf , pm), let GM have the same

terminals, states and start state as M , and have productions

• s → ε with probability pf (s) for all s ∈ S

• s → v s′ with probability pm(v, s′|s) for all s, s′ ∈ S and v ∈ V

p(0 → a 0) = 0.2, p(0 → a 1) = 0.8, p(1 → ε) = 0.1, p(1 → b 0) = 0.9

10

a

b

a

Mealy FSA

0

a 1

b 0

a 1

a

0

PCFG parse of aaba

The FSA graph depicts the machine (i.e., all strings it generates), while the

CFG tree depicts the analysis of a single string.

50

Moore finite state automata

Moore machines emit terminals from states.

A Moore finite state automaton M = (V,S, s0,F ,M,L) is composed of:

• V, S, s0 and F are terminals, states, start state and final states as before

• M ⊆ S × S, the state transition relation

• L ⊆ S × V, the state labelling function

(V4 = {a, b},S4 = {0, 1}, s04
= 0,F4 = {1},M4 = {(0, 0), (0, 1), (1, 0)},

L4 = {(0, a), (0, b), (1, b)})

A derivation of v1 . . . vn ∈ V? is a sequence of states s0 . . . sn ∈ S? where:

• s0 is the start state, sn ∈ F ,

{b}{a, b}

• (si−1, si) ∈ M, for i = 1 . . . n

• (si, vi) ∈ L for i = 1 . . . n

0101 is an accepting derivation of bab

51

Probabilistic Moore automata

A probabilistic Moore automaton M = (V,S, s0, pf , pm, p`) consists of:

• terminals V, states S and start state s0 ∈ S as before,

• pf (s), the probability of halting at state s ∈ S,

• pm(s′|s), the probability of moving from s ∈ S to s′ ∈ S, and

• p`(v|s), the probability of emitting v ∈ V from state s ∈ S.

where pf (s) +
∑

s′∈S pm(s′|s) = 1 and
∑

v∈V p`(v|s) = 1 for all s ∈ S.

The probability of a derivation with states s0 . . . sn and output v1 . . . vn is

PM (s0 . . . sn; v1 . . . vn) =

(
n∏

i=1

pm(si|si−1)p`(vi|si)

)
pf (sn)

Example: pf (0) = 0, pf (1) = 0.1,

p`(a|0) = 0.4, p`(b|0) = 0.6, p`(b|1) = 1,

pm(0|0) = 0.2, pm(1|0) = 0.8, pm(0|1) = 0.9

PM (0101, bab) = (0.8×1)×(0.9×0.4)×(0.8×1)×0.1

{b}{a, b}

52

Bayes net representation of Moore PFSA

In a Moore automaton, the output is determined by the current state, just

as in an HMM (in fact, Moore automata are HMMs)

Si−1 Si Si+1

Vi+1ViVi−1

Example: state sequence 0101 for string bab

{b}{a, b}

Moore FSA

0 1 0 1

ab b

Bayes net for bab

53

Trellis representation of Moore PFSA

Example: state sequence 0101 for string bab

{b}{a, b}

Moore FSA

0 1 0 1

ab b

Bayes net for bab

0 00

1

0

1

b a b

1

54

Probabilistic Moore FSA as PCFGs

Given a Moore PFSA M = (V,S, s1, pf , pm, p`), let GM have the same

terminals and start state as M , two nonterminals s and s̃ for each state

s ∈ S, and productions

• s → s̃′ s′ with probability pm(s′|s)

• s → ε with probability pf (s)

• s̃ → v with probability p`(v|s)

p(0 → 0̃ 0) = 0.2, p(0 → 1̃ 1) = 0.8,

p(1 → ε) = 0.1, p(1 → 0̃ 0) = 0.9,

p(0̃ → a) = 0.4, p(0̃ → b) = 0.6, p(1̃ → b) = 1

{b}{a, b}

Moore FSA

0

1̃

b

1

0̃

a

0

1̃ 1

b

PCFG parse of bab

55

Bi-tag POS tagging

HMM or Moore PFSA whose states are POS tags

NNP VB NNS

Howard likes mangoes

Start $

$

Howard likes mangoes

NNS′ NNS

VBVB′

NNPNNP′

Start

56

Mealy vs Moore automata

• Mealy automata emit terminals from arcs

– a probabilistic Mealy automaton has |V||S|2 + |S| parameters

• Moore automata emit terminals from states

– a probabilistic Moore automaton has (|V| + 1)|S| parameters

In a POS-tagging application, |S| ≈ 50 and |V| ≈ 2 × 104

• A Mealy automaton has ≈ 5 × 107 parameters

• A Moore automaton has ≈ 106 parameters

A Moore automaton seems more reasonable for POS-tagging

The number of parameters grows rapidly as the number of states grows

⇒ Smoothing is a practical necessity

57

Tri-tag POS tagging

NNP VB NNS

Howard likes mangoes

Start $

$

Howard likes mangoes

NNS′ VB NNS

NNP VBVB′

Start NNPNNP′

Start Start

Given a set of POS tags T , the tri-tag PCFG has productions

t0t1 → t′2 t1t2 t′ → v

for all t0, t1, t2 ∈ T and v ∈ V

58

Advantages of using grammars

PCFGs provide a more flexible structural framework than HMMs and FSA

Sesotho is a Bantu language with rich agglutinative morphology

A two-level HMM seems appropriate:

• upper level generates a sequence of words, and

• lower level generates a sequence of morphemes in a word

o tla pheha di jo

NSNS’

PRE’ PRE

VS’ VS

TNSTNS’

SMSM’

START

VERB’ VERB

NOUN’ NOUN

(s)he will cook food

59

Finite state languages and linear grammars

• The classes of all languages generated by Mealy and Moore FSA is the

same. These languages are called finite state languages.

• The finite state languages are also generated by left-linear and by

right-linear CFGs.

– A CFG is right linear iff every production is of the form A → β or

A → β B for B ∈ S and β ∈ V?

(nonterminals only appear at the end of productions)

– A CFG is left linear iff every production is of the form A → β or

A → B β for B ∈ S and β ∈ V?

(nonterminals only appear at the beginning of productions)

• The language wwR, where w ∈ {a, b}? and wR is the reverse of w, is

not a finite state language, but it is generated by a CFG

⇒ some context-free languages are not finite state languages

60

Things you should know about FSA

• FSA are good ways of representing dictionaries and morphology

• Finite state transducers can encode phonological rules

• The finite state languages are closed under intersection, union and

complement

• FSA can be determinized and minimized

• There are practical algorithms for computing these operations on large

automata

• All of this extends to probabilistic finite-state automata

• Much of this extends to PCFGs and tree automata

61

Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

62

Binarization

Almost all efficient CFG parsing algorithms require productions have at

most two children.

Binarization can be done as a preprocessing step, or implicitly during

parsing.

A

B1 B2 B3 B4

B1 B2

B1B2 B3

B1B2B3 B4

A

Left-factored

H B3

HB3 B4

HB3B4B1

A

Head-factored

(assuming H = B2)

B4B3

B3B4B2

B2B3B4B1

A

Right-factored

63

♦♦More on binarization

• Binarization usually produces large numbers of new nonterminals

• These all appear in a certain position (e.g., end of production)

• Design your parser loops and indexing so this is maximally efficient

• Top-down and left-corner parsing benefit from specially designed

binarization that delays choice points as long as possible

A

B1 B2 B3 B4

Unbinarized

B4B3

B3B4B2

B2B3B4B1

A

Right-factored

A−B1B2B2

A−B1B1

A

B3 A−B1B2B3

B4

Right-factored

(top-down version)

64

♦♦Markov grammars

• Sometimes it can be desirable to smooth or generalize rules beyond

what was actually observed in the treebank

• Markov grammars systematically “forget” part of the context

AP V NP PP PP

VP

Unbinarized

V NP

V NP PP

V NP PP PP

AP

VP

V NP PP PP

Head-factored

(assuming H = B2)

V NP

V NP PP

V...PP

V...PP

PP

V...AP

AP V...

VP

Markov grammar

65

String positions

String positions are a systematic way of representing substrings in a string.

A string position of a string w = x1 . . . xn is an integer 0 ≤ i ≤ n.

A substring of w is represented by a pair (i, j) of string positions, where

0 ≤ i ≤ j ≤ n.

wi,j represents the substring wi+1 . . . wj

Howard likes mangoes

0 1 2 3

Example: w0,1 = Howard, w1,3 = likes mangoes, w1,1 = ε

• Nothing depends on string positions being numbers, so

• this all generalizes to speech recognizer lattices, which are graphs where

vertices correspond to word boundaries

the how us

house

a rose

arose

66

Dynamic programming computation

Assume G = (V,S, s,R, p) is in Chomsky Normal Form, i.e., all

productions are of the form A → B C or A → x, where A,B,C ∈ S, x ∈ V.

Goal: To compute P(w) =
∑

ψ∈ΨG(w)

P(ψ) = P(s⇒? w)

Data structure: A table P(A⇒? wi,j) for A ∈ S and 0 ≤ i < j ≤ n

Base case: P(A⇒? wi−1,i) = p(A → wi−1,i) for i = 1, . . . , n

Recursion: P(A⇒? wi,k)

=
k−1∑

j=i+1

∑

A → BC∈R(A)

p(A → BC)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

Return: P(s⇒? w0,n)

67

Dynamic programming recursion

PG(A⇒∗ wi,k)

=
k−1∑

j=i+1

∑

A → BC∈R(A)

p(A → BC)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

PG(A⇒∗ wi,k) is called an “inside probability”.

68

Example PCFG parse

1.0 S → NP VP 0.1 NP → NP NP

0.2 NP → brothers 0.3 NP → box

0.4 NP → lies 1.0 V → box

0.8 VP → V NP 0.2 VP → lies

brothers box lies

NP 0.2 NP 0.3 NP 0.4

NP 0.006

V 1.0 VP 0.2

VP 0.32

S 0.0652

1 2 30

0 NP 0.2

2

1

S 0.0652NP 0.006

NP 0.3

V 1.0
VP 0.32

NP 0.4

VP 0.2

1 2 3

69

CFG Parsing takes n3|R| time

PG(A⇒∗ wi,k)

=
k−1∑

j=i+1

∑

A → BC∈R(A)

p(A → BC)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

The algorithm iterates over all

rules R and all triples of string

positions 0 ≤ i < j < k ≤ n

(there are n(n − 1)(n − 2)/6 =

O(n3) such triples) B C

A

wi,j wj,k

S

70

PFSA parsing takes n|R| time

Because FSA trees are uniformly right branching,

• All non-trivial constituents end at the right edge of the sentence

⇒ The inside algorithm takes n|R| time

PG(A⇒∗ wi,n)

=
∑

A → BC∈R(A)

p(A → BC)PG(B ⇒∗ wi,i+1)PG(C ⇒∗ wi+1,n)

• The standard FSM algorithms are just CFG algorithms, restricted to

right-branching structures

0

a 1

b 0

a 1

a

0

71

♦♦Unary productions and unary closure

Dealing with “one level” unary productions A → B is easy, but how do we

deal with “loopy” unary productions A⇒+ B ⇒+ A?

The unary closure matrix is Cij = P(Ai ⇒
? Aj) for all Ai, Aj ∈ S

Define Uij = p(Ai → Aj) for all Ai, Aj ∈ S

If x is a (column) vector of inside weights, Ux is a vector of the inside

weights of parses with one unary branch above x

The unary closure is the sum of the inside weights with any

number of unary branches:

x+ Ux+ U2x+ . . . = (1 + U + U2 + . . .)x

= (1 − U)−1x

The unary closure matrix C = (1−U)−1 can be pre-computed,

so unary closure is just a matrix multiplication.

Because “new” nonterminals introduced by binarization never

occur in unary chains, unary closure is cheap.

x

Ux

U2x

. . .

72

Finding the most likely parse of a string

Given a string w ∈ V?, find the most likely tree ψ̂ = argmaxψ∈ΨG(w) PG(ψ)

(The most likely parse is also known as the Viterbi parse).

Claim: If we substitute “max” for “+” in the algorithm for PG(w), it

returns PG(ψ̂).

PG(ψ̂A,i,k) = max
j=i+1,...,k−1

max
A → BC∈R(A)

p(A → BC)PG(ψ̂B,i,j)PG(ψ̂C,j,k)

To return ψ̂, add “back-pointers” to keep track of best parse ψ̂A,i,j for each

A⇒? wi,j

Implementation note: There’s no need to actually build these trees ψ̂A,i,k;

rather, the back-pointers in each table entry point to the table entries for

the best parse’s children

73

♦♦Semi-ring of rule weights

Our algorithms don’t actually require that the values associated with

productions are probabilities . . .

Our algorithms only require that productions have values in some semi-ring

with operations “⊕” and “⊗” with the usual associative and distributive

laws

⊕ ⊗

+ × sum of probabilities or weights

max × Viterbi parse

max + Viterbi parse with log probabilities

∧ ∨ Categorical CFG parsing

74

Topics

• Graphical models and Bayes networks

• Markov chains and hidden Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

75

Maximum likelihood estimation

An estimator p̂ for parameters p ∈ P of a model Pp(X) is a function from

data D to p̂(D) ∈ P.

The likelihood LD(p) and log likelihood `D(p) of data D = (x1 . . . xn) with

respect to model parameters p is:

LD(p) = Pp(x1) . . .Pp(xn)

`D(p) =
n∑

i=1

log Pp(xi)

The maximum likelihood estimate (MLE) p̂MLE of p from D is:

p̂MLE = argmax
p

LD(p) = argmax
p

`D(p)

76

♦♦Optimization and Lagrange multipliers

∂f(x)/∂x = 0 at the unconstrained optimum of f(x)

But maximum likelihood estimation often requires optimizing f(x) subject

to constraints gk(x) = 0 for k = 1, . . . ,m.

Introduce Lagrange multipliers λ = (λ1, . . . , λm), and define:

F (x, λ) = f(x) − λ · g(x) = f(x) −

m∑

k=1

λkgk(x)

Then at the constrained optimum, all of the following hold:

0 = ∂F (x, λ)/∂x = ∂f(x)/∂x−

m∑

k=1

λk∂gk(x)/∂x

0 = ∂F (x, λ)/∂λ = g(x)

77

Biased coin example

Model has parameters p = (ph, pt) that satisfy constraint ph + pt = 1.

Log likelihood of data D = (x1, . . . , xn), xi ∈ {h, t}, is

`D(p) = log(px1
. . . pxn

) = nh log ph + nt log pt

where nh is the number of h in D, and nt is the number of t in D.

F (p, λ) = nh log ph + nt log pt − λ(ph + pt − 1)

0 = ∂F/∂ph = nh/ph − λ

0 = ∂F/∂pt = nt/pt − λ

From the constraint ph + pt = 1 and the last two equations:

λ = nh + nt

ph = nh/λ = nh/(nh + nt)

pt = nt/λ = nt/(nh + nt)

So the MLE is the relative frequency

78

♦♦PCFG MLE from visible data

Data: A treebank of parse trees D = ψ1, . . . , ψn.

`D(p) =

n∑

i=1

log PG(ψi) =
∑

A→α∈R

nA→α(D) log p(A→ α)

Introduce |S| Lagrange multipliers λB , B ∈ S for the constraints∑
B→β∈R(B) p(B → β) = 1. Then:

∂

`(p) −

∑

B∈S

λB

 ∑

B→β∈R(B)

p(B → β) − 1

∂p(A→ α)
=

nA→α(D)

p(A→ α)
− λA

Setting this to 0, p(A→ α) =
nA→α(D)∑

A→α′∈R(A) nA→α′(D)

So the MLE for PCFGs is the relative frequency estimator

79

Example: Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P

S

NP VP

rice grows

 = 2/3

P

S

NP VP

corn grows

 = 1/3

80

Properties of MLE

• Consistency: As the sample size grows, the estimates of the parameters

converge on the true parameters

• Asymptotic optimality: For large samples, there is no other consistent

estimator whose estimates have lower variance

• The MLEs for statistical grammars work well in practice.

– The Penn Treebank has ≈ 1.2 million words of Wall Street Journal

text annotated with syntactic trees

– The PCFG estimated from the Penn Treebank has ≈ 15,000 rules

81

♦♦PCFG estimation from hidden data

Data: A corpus of sentences D′ = w1, . . . , wn.

`D′(p) =
n∑

i=1

log PG(wi). PG(w) =
∑

ψ∈ΨG(w)

PG(ψ).

∂`D′(p)

∂p(A→ α)
=

∑n
i=1 EG[nA→α|wi]

p(A→ α)

where the expected number of times A → α is used in the parses of w is:

EG[nA→α|w] =
∑

ψ∈ΨG(w)

nA→α(ψ)PG(ψ|w).

Setting ∂`D′/∂p(A→ α) to the Lagrange multiplier λA and imposing the

constraint
∑

B→β∈R(B) p(B → β) = 1 yields:

p(A→ α) =

∑n
i=1 EG[nA→α|wi]∑

A→α′∈R(A)

∑n
i=1 EG[nA→α′ |wi]

This is an iteration of the expectation maximization algorithm!

82

Expectation maximization

EM is a general technique for approximating the MLE when estimating

parameters p from the visible data x is difficult, but estimating p from

augmented data z = (x, y) is easier (y is the hidden data).

The EM algorithm given visible data x:

1. guess initial value p0 of parameters

2. repeat for i = 0, 1, . . . until convergence:

Expectation step: For all y1, . . . , yn ∈ Y, generate pseudo-data

(x, y1), . . . , (x, yn), where (x, yj) has frequency Ppi
(yj |x)

Maximization step: Set pi+1 to the MLE from the pseudo-data

The EM algorithm finds the MLE p̂(x) = Lx(p) of the visible data x.

Sometimes it is not necessary to explicitly generate the pseudo-data (x, y);

often it is possible to perform the maximization step directly from

sufficient statistics (for PCFGs, the expected production frequencies)

83

Dynamic programming for EG[nA→BC |w]

EG[nA→BC |w] =
∑

0≤i<j<k≤n

EG[Ai,k → Bi,jCj,k|w]

The expected fraction of parses of w in which Ai,k rewrites as Bi,jCj,k is:

EG[Ai,k → Bi,jCj,k|w]

=
P(S ⇒∗ w1,iAwk,n)p(A→ BC)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n

84

Calculating PG(S ⇒∗ w0,i Awk,n)

Known as “outside probabilities” (but if G contains unary productions,

they can be greater than 1).

Recursion from larger to smaller substrings in w.

Base case: P(S ⇒∗ w0,0 S wn,n) = 1

Recursion: P(S ⇒∗ w0,j C wk,n) =
j−1∑

i=0

∑

A,B∈S

A→BC∈R

P(S ⇒∗ w0,iAwk,n)p(A→ BC)P(B ⇒∗ wi,j)

+
n∑

l=k+1

∑

A,D∈S

A→CD∈R

P(S ⇒∗ w0,j Awl,n)p(A→ C D)P(D ⇒∗ wk,l)

85

Recursion in PG(S ⇒∗ w0,i Awk,n)

P(S ⇒∗ w0,j C wk,n) =
j−1∑

i=0

∑

A,B∈S

A→BC∈R

P(S ⇒∗ w0,iAwk,n)p(A→ BC)P(B ⇒∗ wi,j)

+
n∑

l=k+1

∑

A,D∈S

A→CD∈R

P(S ⇒∗ w0,j Awl,n)p(A→ C D)P(D ⇒∗ wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n

86

The EM algorithm for PCFGs

Infer hidden structure by maximizing likelihood of visible data:

1. guess initial rule probabilities

2. repeat until convergence

(a) parse a sample of sentences

(b) weight each parse by its conditional probability

(c) count rules used in each weighted parse, and estimate rule

frequencies from these counts as before

EM optimizes the marginal likelihood of the strings D = (w1, . . . , wn)

Each iteration is guaranteed not to decrease the likelihood of D, but EM

can get trapped in local minima.

The Inside-Outside algorithm can produce the expected counts without

enumerating all parses of D.

When used with PFSA, the Inside-Outside algorithm is called the

Forward-Backward algorithm (Inside=Backward, Outside=Forward)

87

Example: The EM algorithm with a toy PCFG

Initial rule probs
rule prob

· · · · · ·

VP → V 0.2

VP → V NP 0.2

VP → NP V 0.2

VP → V NP NP 0.2

VP → NP NP V 0.2

· · · · · ·

Det → the 0.1

N → the 0.1

V → the 0.1

“English” input

the dog bites

the dog bites a man

a man gives the dog a bone

· · ·

“pseudo-Japanese” input

the dog bites

the dog a man bites

a man the dog a bone gives

· · ·

88

Probability of “English”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

89

Rule probabilities from “English”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

90

Probability of “Japanese”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

91

Rule probabilities from “Japanese”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

92

Learning in statistical paradigm

• The likelihood is a differentiable function of rule probabilities

⇒ learning can involve small, incremental updates

• Learning new structure (rules) is hard, but . . .

• Parameter estimation can approximate rule learning

– start with “superset” grammar

– estimate rule probabilities

– discard low probability rules

93

Applying EM to real data

• ATIS treebank consists of 1,300 hand-constructed parse trees

• ignore the words (in this experiment)

• about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.

94

Experiments with EM

1. Extract productions from trees and estimate probabilities probabilities

from trees to produce PCFG.

2. Initialize EM with the treebank grammar and MLE probabilities

3. Apply EM (to strings alone) to re-estimate production probabilities.

4. At each iteration:

• Measure the likelihood of the training data and the quality of the

parses produced by each grammar.

• Test on training data (so poor performance is not due to

overlearning).

95

Likelihood of training strings

Iteration

− log PG(~w)

20151050

16000

15500

15000

14500

14000

96

Quality of ML parses

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7

97

Why does EM do so poorly?

• EM assigns trees to strings to maximize the marginal probability of the

strings, but the trees weren’t designed with that in mind

• We have an “intended interpretation” of categories like NP, VP, etc.,

which EM has no way of knowing

• Our grammar models are defective; real languages aren’t context-free

• How can information about P(w) provide information about P(ψ|w)?

• . . . but no one really knows.

98

Topics

• Graphical models and Bayes networks

• (Hidden) Markov models

• (Probabilistic) context-free grammars

• (Probabilistic) finite-state machines

• Computation with PCFGs

• Estimation of PCFGs

• Lexicalized and bi-lexicalized PCFGs

• Non-local dependencies and log-linear models

• Stochastic unification-based grammars

99

Subcategorization

Grammars that merely relate categories miss a lot of important linguistic

relationships.

R3 = {VP → V,VP → V NP,V → sleeps,V → likes, . . .}

S

NP VP

Al V

sleeps
*likes

S

NP VP

Al V NP

N

mangoes

likes
*sleeps

Verbs and other heads of phrases subcategorize for the number and kind of

complement phrases they can appear with.

100

CFG account of subcategorization

General idea: Split the preterminal states to encode subcategorization.

[]

S

NP

Al

VP

V

sleeps

likes

[NP]

NP

Al V

pizzas

N

NP

VP

S

R4 = {VP → V
[] ,VP → V

[NP] NP, V
[] → sleeps, V

[NP] → likes, . . .}

The “split preterminal states” restrict which contexts verbs can appear in.

101

Selectional preferences

Head-to-head dependencies are an approximation to real-world knowledge.

S

NP VP

Al V NP

N

pizzas

eats

#books

S

NP VP

Al V NP

N

#pizzas
books

reads

But note that selectional preferences involve more than head-to-head

dependencies

Al drives a (#toy model) car

102

Head to head dependencies

Sam read bookaSasha

DT NN

NPNPVB

VPNP

S

Head=a Head=book

Head=bookHead=Sasha

Head=readHead=Sam

Head=read

Head=read

VP
Head=read

−→ VB
Head=read

NP
Head=Sasha

NP
Head=book

103

Binarization helps sparse data

Sam read bookaSasha

DT NN

NP

NP

NPVB

VB NP

VP

S

Head=read

Head=read Head=Sasha Head=a Head=book

Head=book

Head=read

Head=read

Head=Sam

VP
Head=read

−→ VB NP
Head=read

NP
Head=book

VB NP
Head=read

−→ VB
Head=read

NP
Head=Sasha

104

Bi-lexical CFG parsing takes n5 time

.

i j k` m

B
Head=w`

C
Head=wm

A
Head=w`

There are three string positions at the edges of constituents, plus two for

the locations of the heads

• in the worst case, bilexical parsing takes |n|5 time

• the worst case arises when exhaustive parsing

Eisner and Satta’s idea: change the grammar so that the heads are at the

constituent edges

105

♦♦Eisner and Satta’s bilexical parsing model

APBP Y P ZP

B A X Y Z

XP

Split each node (including each word) into a left and a right half

Xr

BP` AP`BPr

B` A`Br Ar

APr

X`

XP`XPr

Y`

Y P` ZP`Y Pr

Yr Z` Zr

ZPr

Right factor the left halves and left factor the right halves

Synchronize the left and right halves by splitting the nonterminal states

106

Nonlocal “movement” dependencies

S

NP VP

Aux VP

V NP

Al

eat

will

pizza

D N

the

C’/NP

Aux S/NP

NP VP/NP

Aux VP/NP

V NP/NP

will

Al

eat

NP

pizza

D N

which

CP

Subcategorization and selectional preferences are preserved under

movement.

Movement can be encoded using recursive nonterminals (unification

grammars).

107

Structured nonterminals

Structured nonterminals provide communication channels that pass

information around the tree.

will

eat

Al
which pizza

Selectional dependency

Verb movement dependency

WH movement dependency

Modern statistical parsers pass around 7 different features through the tree,

and condition productions on them

108

