
Non-Parametric Bayesian Models

for Natural Language

Sharon Goldwater, Tom Griffiths and Mark Johnson

Brown University

March 2006

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

Research goals

I A Bayesian model of language acquisition

Input: Child-directed speech and its non-linguistic context
Output: A grammar and linguistic analyses

I What information is available in different components of the input?

I Non-linguistic context
I Prosody
I Transitional probabilities between phonemes or syllables

I How useful is prior knowledge, i.e. linguistic universals?

I Are there synergies in language acquisition?
I learn syntax better if semantics learnt at same time?
I learn lexicon better if phonology/morphology learnt at same time?

Research strategy

I Start with phonology, morphology and lexicon;
leave syntax and semantics until later

I children learn (some) words and inflections before they learn what
they mean

I child-directed speech corpora are readily available;
contextual information is not

I Goal of this research (as yet unachieved):

Input: “d o g s c h a s e d c a t s”
(we actually use broad phonemic transcription)

Output:

Sentence

Noun

NounStem

d o g

NounSuffix

s

VerbPhrase

Verb

VerbStem

c h a s e

VerbSuffix

d

Noun

NounStem

c a t

NounSuffix

s

Talk summary

I Overdispersion ⇒ PCFGs are poor models of linguistic structure

I Estimating from types instead of tokens reduces overdispersion
. . . but is only possible in simple cases

I Pitman-Yor processes provide systematic way of downsampling
tokens to types (or something in between)

I Define probability distribution over CFG trees by associating each
nonterminal with its own Pitman-Yor process

I CFG defines possible structures
I Pitman-Yor process defines probability of each (sub)structure

I MCMC algorithms sample posterior tree distribution given strings

I Grammars based on PY processes recover linguistic structure where
ML estimation of PCFGs fail

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

Context-free grammar

A context-free grammar G = (T , N, S , R) consists of:

I a finite set of terminal symbols T ,

I a finite set of nonterminal symbols N disjoint from T ,

I a start symbol S ∈ N, and

I a finite set R of productions A → β where A ∈ N and
β ∈ (N ∪ T)+

G generates a finite, labeled, ordered tree t iff:

I the root node of t is labeled S ,

I the label of every leaf node of t is a member of T

I if a non-leaf node in t is labeled A and the sequence of its
children’s labels is β, then A → β ∈ R

G generates a string w ∈ T + iff G generates a tree whose yield is w

Context-free grammar example

Let G0 = (T0, N0, Word, R0) where:

I T0 = {a, . . . , z, #},

I N0 = {Stem, Suffix, Word},

I R0 =

{
Word → Stem Suffix, Stem → # t a l k,
Stem → # j u m p, Suffix → #, Suffix → i n g #

}

Then G0 generates the following trees:

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

and thus generates the strings # w a l k i n g# and # j u m p #

Probabilistic context-free grammar

A probabilistic context-free grammar is a pair (G , θ) where:

I G = (T , N, S , R) is a CFG, and

I θ = {θr : r ∈ R} is a set of production probabilities indexed by R,
where ∀r ∈ R θr ≥ 0 and for all A ∈ N,

∑

A→β∈RA
θA→β = 1,

where RA is subset of R with lhs A.

If t is a tree generated by G ,

P(t|θ) =
∏

A→β∈R

θA→β
fA→β(t)

where fA→β(t) is the number of times a node labeled A appears with
children labeled β in t.

Probabilistic context-free grammar example

Let G0 be as before, and let θ be defined as:

Production r θr

Word → Stem Suffix 1.0
Stem → # t a l k 0.6
Stem → # j u m p 0.4
Suffix → # 0.7
Suffix → i n g # 0.3

Then:

P

Word

Stem

t a l k

Suffix

i n g #

|θ

= 1.0 × 0.6 × 0.7

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

Learning English verbal morphology

Training data is a sequence of verbs, e.g.
D = (# t a l k i n g #, # j u m p #, . . .)
Our goal is to infer trees such as:

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

Word → Stem Suffix
Stem → w w ∈ T
Suffix → w w ∈ F

where T is the set of all prefixes of words in D and F is the set of all
suffixes of words in D

Maximum likelihood estimate for θ is trivial

I Maximum likelihood selects θ that minimizes KL-divergence
between model and data distributions

I Saturated model with θSuffix→# = 1 generates training data
distribution D exactly

I Saturated model is maximum likelihood estimate

I Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

Bayesian estimation

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

I Priors can be sensitive to linguistic structure (e.g., a word should
contain a vowel)

I Priors can encode linguistic universals and markedness preferences
(e.g., complex clusters appear at word onsets)

I Priors can prefer sparse solutions

I The choice of the prior is as much a linguistic issue as the design
of the grammar!

Dirichlet priors and sparse solutions

I The probabilities θA→β of choosing productions A → β to expand
nonterminal A define multinomial distributions

I Dirichlet distributions are the conjugate priors to multinomials

P(θA→β1
, . . . , θA→βn

) ∝

n∏

i=1

θA→βi

α−1 α > 0

α = 2.0
α = 1.0
α = 0.5
α = 0.1

Binomial probability θ

Pα(θ)

10.80.60.40.20

3

2

1

0

I We have developed MCMC algorithms for sampling from the
posterior distribution of trees given strings D

Morphological segmentation experiment

I Trained on orthographic verbs from U Penn. Wall Street Journal
treebank

I Dirichlet prior prefers sparse solutions (sparser solutions as α → 0)

I MCMC Sampler used to sample from posterior distribution of
parses

I reanalyses each word based on a grammar estimated from the
parses of the other words

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report
reports report s report s report s

reported reported reported reported
reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed
transporting transport ing transport ing transport ing

downsize downsiz e downsiz e downsiz e
downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted

Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

logPα

11e-101e-20

-800000

-1e+06

-1.2e+06

I Correct solution is nowhere near as likely as posterior

⇒ model is wrong!

Independence assumption in PCFG model

P

Word

Stem

t a l k

Suffix

i n g #

|θ

= θWord→Stem Suffix θStem→#t a l k θSuffix→i n g #

I Model assumes relative frequency of each suffix to be the same for

all stems

I This turns out to be incorrect

Relative frequencies of inflected verb forms

Types and tokens

I A word type is a distinct word shape

I A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

I Estimating θ from word types rather than word tokens eliminates
(most) frequency variation

I 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

I Several psycholinguists believe that humans learn morphology from
word types

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

Log posterior of models on type data

Optimal suffixes
True suffixes
Null suffixes

Dirichlet prior parameter α

logPα

11e-101e-20

0

-200000

-400000

I Correct solution is close to optimal at α = 10−3

Morpheme frequencies provide useful information

Yarowsky and Wicentowski (2000) “Minimally supervised Morphological

Analysis by Multimodal Alignment”

Types can be hard to find

I Over-dispersion in morphological structure

⇒ PCFG estimation finds linguistic structure when training from
types rather than tokens

I but speech is not segmented into words (“s e e t h e d o g g i e”),
so we don’t know what the types are.

⇒ integrate word segmentation with (type-based) morphology
induction

I Over-dispersion occurs at virtualy all levels of linguistic structure
I “Stocks rose” is most frequent sentence in WSJ
I “do you”, “what’s that” are surprisingly frequent in child-directed

speech

⇒ type-based inference at multiple levels simultaneously

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in Chomsky-normal

form (i.e., all productions are of the form A → B C or A → w , where
A, B, C ∈ N and w ∈ T) is GS where:

GA =
∑

A→B C∈RA

θA→B CGB • GC +
∑

A→w∈RA

θA→wδw

(P • Q)(z) =
∑

xy=z

P(x)Q(y)

δw (x) = 1 if w = x and 0 otherwise

In fact, GA(x) = P(A ⇒? x |θ), the sum of the probability of all trees
with root node A and yield x

Grammars based on Pitman-Yor processes

A Pitman-Yor grammar (G , θ, a, b) is a PCFG (G , θ) together with
parameter vectors a, b where for each A ∈ N, aA, bA are the two
parameters of a PY.

GA ∼ PY(aA, bA, HA)

HA =
∑

A→B C∈RA

θA→B CGB • GC +
∑

A→w∈RA

θA→wδw

The probabilistic language defined by the grammar is GS .
There is one Pitman-Yor process PY(αA, HA) for each nonterminal A.
Its base distribution HA is a mixture of the Pitman-Yor processes for
other nonterminals.

I Q: For what (G , θ, a, b) do these distributions exist?

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

Restaurant metaphor (0)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Stem restaurant

Stem → #
Stem → # Chars

Suffix restaurant

Suffix → #
Suffix → Chars #

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

Restaurant metaphor (1a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → # Chars

Suffix restaurant

Suffix → #
Suffix → Chars #

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

Restaurant metaphor (1b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → # Chars •

Suffix restaurant

Suffix → #
Suffix → Chars # •
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

Restaurant metaphor (1c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

Restaurant metaphor (1d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

Restaurant metaphor (2a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

Restaurant metaphor (2b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

Restaurant metaphor (2c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

Restaurant metaphor (2d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

Restaurant metaphor (3)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

Restaurant metaphor (4a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

Restaurant metaphor (4b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

Restaurant metaphor (4c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#
Suffix

#

•

•

•

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

Restaurant metaphor (4d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#
Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

Restaurants and Pitman-Yor processes

I Each restaurant is a Pitman-Yor process GA (one per nonterminal
A ∈ N)

I The customers’ dinner are samples yA,i ∼ GA

I The tables correspond to indices kA,i , where kA,i is the table that
customer i sits at

I The dinner on table k is zA,k ∼ HA, where HA is the label process
for A

I mA,i is the number of tables occupied when restaurant A has i

customers

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

Pitman-Yor processes

Each nonterminal A ∈ N has a Pitman Yor process generating a
sequence yA,i ∼ GA, i = 1, 2, . . . of labels (trees with root labeled A).
It does this by generating:

I a sequence zA,k ∼ HA, k = 1, 2, . . . of labels drawn from base
distribution HA, where

HA(zA,k) =
∑

zA,k=uv

∑

A→B C∈RA

θA→B CGB(u)GC (v)

+
∑

A→w∈RA

θA→wδw(zA,k)

I a sequence of indices kA,i into zA,k (positive integers)

I and setting yA,i = zA,kA,i

Generating the indices ki

I PY process generates samples yi = zki
from base distribution

samples zk and indices ki

I Suppose we have already generated k1, . . . , kn. Let:

mn = |{ki : i = 1, . . . , n}| (number of tables)

nk = |{i : ki = k, i = 1, . . . , n}| (number of times ki = k)

Then:

P(kn+1 = k) =
nk − a

n + b
for k ≤ mn(kn+1 is old table)

P(kn+1 = mn + 1) =
mna + b

n + b
(kn+1 is new table)

P(kn+1|k1, . . . , kn, z1, . . . , zmn, yn+1)

I For MCMC, we incrementally generate tables ki conditioned on
observations yi

I Given history k1, . . . , kn, z1, . . . , zmn
and new label yn+1, the

probability of generating yn+1 via old table kn+1 ≤ mn or new table
kn+1 = mn + 1 is:

P(kn+1 = k|k1, . . . , kn, z1, . . . , zmn
, yn+1)

=
nk − a

n + b
δzk

(yn+1) (old tables)

+
mna + b

n + b
δmn+1(k) H(yn+1) (new table)

HA(y) =
∑

y=uv

∑

A→B C∈RA

θA→B CGB(u)GC (v)

+
∑

A→w∈RA

θA→wδw (y)

GA(yn+1|k1, . . . , kn, z1, . . . , zmn)

I MCMC sampling algorithms incrementally generate k1, k2, . . . and
y1 = zk1

, y2 = zk2

GA(yn+1|k1,n, z1,mn
) =

mn∑

k=1

nk − aA

n + bA

δzk
(yn+1) (old tables)

+
mnaA + bA

n + bA

HA(yn+1) (new table)

HA(y) =
∑

y=uv

∑

A→B C∈RA

θA→B CGB(u)GC (v)

+
∑

A→w∈RA

θA→wδw (y)

Computation with grammars based on PY

processes

I Given a history kA,1, . . . , kA,nA
, zA,1, . . . , zA,mA,n

, define a PCFG
approximation (G ′, θ′A) to GA

θ′A→zk
=

nA,k − aA

nA + bA

θ′A→B C =
mnA

aA + bA

nA + bA

θA→B C

θ′A→w =
mnA

aA + bA

nA + bA

θA→w

I number of productions in G ′ ∝ number of tables mA,nA

I history can change within a single tree, so in general (G ′, θ′) is
only an approximation

I sample a tree from PCFG (G ′, θ′)
I Use Hastings acceptance/rejection to correct this to GS

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

Verbal morphology

Verb → Stem
Verb → Stem Suffix
Stem → Chars
Suffix → Chars
Chars → Char
Chars → Char Chars
Char → a . . . z

Verb

Stem

t a k e

Verb

Stem

i m p r o v

Suffix

e

Verb

Stem

c o n

Suffix

f o r m i n g

Verb

Stem

h a

Suffix

v e

I Input are orthographic verb tokens from WSJ

I Only cache (run restaurants for) Verb, Stem and Suffix; nodes with
other labels not printed

Unigram model of word segmentation

Words → Word
Words → Word Words
Word → Chars
Chars → Char
Chars → Char Chars
Char → a . . . z

Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

Words

Word

h & v

Word

6

Word

d

Word

r I N k

I Input is unsegmented broad phonemic transcription (Brent corpus)

I Only cache Word; nodes with other labels not printed

Morphology and word segmentation combined

Words → Word
Words → Word Words
Word → Stem Suffix
Word → Stem
Stem → Chars
Suffix → Chars
Chars → Char
Chars → Char Chars
Char → a . . . z

I Input is unsegmented broad phonemic transcription (Brent corpus)

I Only cache Word, Stem and Suffix; nodes with other labels not
printed

Outline

Introduction

Probabilistic context-free grammars

Learning morphology from types instead of tokens

Grammars based on Pitman-Yor processes

Recursive restaurants example

Pitman-Yor processes

Examples

Conclusion

Conclusion

I Overdispersion ⇒ PCFGs are poor models of linguistic structure

I Estimating from types instead of tokens reduces overdispersion
. . . but is only possible in simple cases

I Pitman-Yor processes provide systematic way of downsampling
tokens to types (or something in between)

I Define probability distribution over CFG trees by associating each
nonterminal with its own Pitman-Yor process

I CFG defines possible structures
I Pitman-Yor process defines probability of each (sub)structure

I MCMC algorithms sample posterior tree distribution given strings

I Grammars based on PY processes recover linguistic structure where
ML estimation of PCFGs fail

	Introduction
	Probabilistic context-free grammars
	Learning morphology from types instead of tokens
	Grammars based on Pitman-Yor processes
	Recursive restaurants example
	Pitman-Yor processes
	Examples
	Conclusion

