
Learning and parsing stochastic
unification-based grammars

Mark Johnson

Brown University

(BLLIP)

COLT’03 talk

Joint work with Stuart Geman and Stefan Riezler

Supported by NSF grants LIS 9720368 and IIS0095940

1

Talk outline

• Lexical Functional Grammars

• Stochastic Lexical Functional Grammars

• Supervised training from parsed corpora

• Semi-supervised training from partially labelled data

• Dynamic programming using MRF graphical models

2

“Big picture” issues

• Human language can be understood in terms of knowledge that
can be used in many ways

• What kinds of knowledge are involved in the use of human language?

– Linguistic knowledge about the surface form ↔ “meaning”
relationship

– This relationship involves complex hidden syntactic structure
(described by a grammar)

– World knowledge and pragmatic knowledge are also involved

3

“Big picture” issues (cont.)

• Which components of this knowledge are innate, and which are learnt?

– The phonological components (sounds) of words are
arbitrary ⇒ relationship between phonological
representations and lexical meanings must be learnt (how?)

– The (abstract) syntactic structure of most languages seems
very similar, and no one knows how it might be learnt
⇒ perhaps syntax is innate?

• How exactly is the knowledge learnt? (Can we learn it
explicitly?)

• How is all this knowledge used in production and
comprehension?

4

Stochastic Lexical-Functional Grammar

• A Lexical-Functional Grammar (LFG) models the relationship
between phonological, syntactic and semantic structures that
together form the parse of a sentence

• An LFG defines the set Y of parses possible in a language

• Most sentences are ambiguous (1 to 10,000 parses)

• A Stochastic LFG defines a (conditional) probability distribution
over Y

• Organization of an SLFG:

– manually specify possible parses using an LFG

– manually specify conditioning features

– learn feature weights from training data

Q: What is the most effective way to describe a human language?
(grammar, corpus)

5

Representations of Lexical-Functional Grammar

PRED book
SPEC which

read(Sandy,book)
FORM question

SUBJ PRED Sandy

PRED

FOCUS

OBJ

SBAR

NP

Det N

book

Aux

did

S

NP

Sandy

VP

V

read

which

f(unctional) structurec(onstituent) structure

• Not depicted here: morphological structure, semantic structure
• This work focuses on disambiguating c-structure and f-structure

– Almost all c and f-structure ambiguity is reflected in
semantic structure ambiguity

– Other semantic structure ambiguity (e.g., quantifier scope)
is very hard for humans to disambiguate

6

How an LFG describes parses

PRED Sam

PRED Sandy

S

NP

Sam

VP

V

likes

NP

Sandy

like(Sam,Sandy)PRED

SUBJ

OBJ

• Syntactic rules

S → NP
↑ SUBJ=↓

VP
↑=↓

VP → V
↑=↓

NP
↑OBJ=↓

• Lexical entries

Sandy : NP
↑PRED=Sandy

likes : V
↑PRED=like(↑SUBJPRED,↑OBJPRED)

7

Representations of Lexical-Functional Grammar

TURN

SEGMENT

ROOT

Sadj

S

VPv

V

let

NP

PRON

us

VPv

V

take

NP

DATEP

N

Tuesday

COMMA

,

DATEnum

D

the

NUMBER

fifteenth

PERIOD

.

SENTENCE ID BAC002 E

OBJ

9

ANIM +
CASE ACC
NUM PL
PERS 1
PRED PRO
PRON-FORM WE
PRON-TYPE PERS

PASSIVE −
PRED LET〈2,10〉9

STMT-TYPE IMPERATIVE

SUBJ
2

PERS 2
PRED PRO
PRON-TYPE NULL

TNS-ASP MOOD IMPERATIVE

XCOMP

10

OBJ

13

ANIM −

APP

NTYPE NUMBER ORD
TIME DATE

NUM SG
PRED fifteen

SPEC SPEC-FORM THE
SPEC-TYPE DEF

CASE ACC
GEND NEUT

NTYPE
GRAIN COUNT
PROPER DATE
TIME DAY

NUM SG
PERS 3
PRED TUESDAY

PASSIVE −
PRED TAKE〈9,13〉
SUBJ 9

8

Machine translation using LFG

English sentence

French sentence

French LFG parser

French f-structure

French-English transfer

English f-structure

English LFG generator

• Translation of f-structures seems easier than translation of words
• Ambiguity: each step of the procedure is multi-valued
⇒ If each component is probabilistic, we can identify the most

likely translation
9

Stochastic Lexical-Functional Grammars

• An LFG defines a set of possible parses Y(x) for each sentence x.

• Features f1, . . . , fm are real-valued functions on parses
– Attachment location (high, low, argument, adjunct, etc.)
– Head-to-head dependencies

• Probability distribution defined by log-linear model

W (y) = exp(
m∑

j=1

λjfj(y)) =
m∏

j=1

θ
fj(y)
j

Pr(y|w) = W (y)/Z(w)

where θj = expλj > 0 are feature weights and
Z(w) =

∑
y∈Y(w) W (y) is the partition function.

Johnson et al (1999) “Parsing and estimation for SUBGs”, Proc ACL

10

Features used in our SLFGs

Rule features: For every non-terminal X , fX(y) is the number of
times X occurs in c-structure of y

Attribute value features: For every attribute a and every atomic
value v, fa=v(y) is the number of times the pair a = v appears in
y

Argument and adjunct features: For every grammatical function g,
fg(ω) is the number of times that g appears in y

Other features: Dates, times, locations; right branching; attachment
location; parallelism in coordination; . . .

Features are not independent, but dependency structure is
unknown.

11

ML estimation of feature weights

yi

Y

Training data D = (y1, . . . , yn)

λ̂ = argmax
λ

LD(λ)

LD(λ) =
n∏

i=1

Prλ(yi)

Prλ(y) =
Wλ(y)

Zλ

Wλ(y) = exp
∑

j

λjfj(y) Zλ =
∑

y′∈Y

Wλ(y′)

• ML estimation maximizes score W (yi) of correct parse yi

relative to sum Z of scores of all parses Y

• in general Zλ and ∂LD/∂λ are intractable analytically and
numerically (no effective means to sum over all Y)

• Abney (1997) suggests a Monte-Carlo calculation method

12

Conditional ML estimation of feature weights

D = ((x1, y1), . . . , (xn, yn)), where xi is a string and yi its parse

Maximize conditional likelihood of parses yi given their strings xi,
i.e., maximize score W (yi) of correct parse yi relative to sum Z(xi) of
scores of all parses Y(xi) of string xi

Y

Y(xi) = {y : X(y) = X(yi)}

yi λ̂ = argmax
λ

LD(λ)

LD(λ) =
n∏

i=1

Prλ(yi|xi)

Prλ(y|x) = Wλ(y)/Zλ(x)

Wλ(y) = exp
∑

j

λjfj(y) Zλ(x) =
∑

y′∈Y(x)

Wλ(y′)

13

Conditional ML versus ML

• The conditional partition function Zλ(x) is much easier to compute
than the partition function Zλ

– Zλ requires a sum over all parses Y

– Zλ(x) requires a sum over Y(x) (parses of string x)

• Maximum likelihood estimates full joint distribution

– learns distribution of both strings and parses given strings

• Maximum conditional likelihood estimates a conditional
distribution

– learns distribution of parses given yields, but not yields

– conditional distribution is all you need for parsing

• Conditional estimator is consistent for the conditional distribution
only

14

Conditional likelihood estimation

Correct
parse’s
features

Features of other parses of same string

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

.

• Training data is fully observed (i.e., parsed data)

• Choose λ to maximize (log) likelihood of correct parses relative
to all parses of same string

• Distribution of strings is ignored

15

Pseudo-constant features are uninformative

Correct
parse’s
features

Features of other parses of same string

sentence 1 [1, 3, 2] [2, 2, 2] [3, 1, 2] [2, 6, 2]

sentence 2 [7, 2, 5] [2, 5, 5]

sentence 3 [2, 4, 4] [1, 1, 4] [7, 2, 4]

.

• Pseudo-constant features are identical within every set of parses

• They contribute the same constant factor to each parses’
likelihood

• They do not distinguish parses of any sentence ⇒irrelevant

16

Pseudo-maximal features ⇒unbounded λ̂j

Correct
parse’s
features

Features of other parses of same string

sentence 1 [1, 3 , 2] [2, 3 , 4] [3, 1 , 1] [2, 1 , 1]

sentence 2 [2, 7 , 4] [3, 7 , 2]

sentence 3 [2, 4 , 4] [1, 1 , 1] [1, 2 , 4]

• A pseudo-maximal feature always reaches its maximum value
within a parse on the correct parse

• If fj is pseudo-maximal, λ̂j → ∞ (hard constraint)

• If fj is pseudo-minimal, λ̂j → −∞ (hard constraint)

17

Regularization helps avoid overlearning

• fj is pseudo-maximal over training data
6⇒ fj is pseudo-maximal over all strings

• overlearning because of sparse data

• Regularization: Multiply the conditional likelihood by a
zero-mean Gaussian with diagonal covariance

λ̂ = argmax
λ

log LD(λ) −
m∑

j=1

λ2
j

2σ2
j

• Optimize σj on heldout data

18

Optimization of conditional likelihood

• Several algorithms for maximum conditional likelihood estimation

– Various iterative scaling algorithms

– Conjugate gradient, L-BFGS and other numerical
optimization algorithms

• These numerical algorithms require partial derivates of the
conditional likelihood

∂ log LD(λ)

∂λj
=

∑

i

fj(yi) − Eλ[fj |xi]

Eλ[fj |x] =
∑

y∈Y(x)

fj(y) Prλ(y|x)

19

Stochastic LFG experiment

• Two parsed LFG corpora provided by Xerox PARC

• Grammars unavailable, but corpus contains all parses and
hand-identified correct parse

• Features chosen by inspecting Verbmobil corpus only
Verbmobil corpus Homecentre corpus

of sentences 540 980

of ambiguous sentences 324 424

Av. length of ambig. sentences 13.8 13.1

of parses 3245 2865

of features 191 227

of rule features 59 57

20

Pseudo-likelihood estimator evaluation

Verbmobil corpus Homecentre corpus

324 sentences 424 sentences

C − log LD(λ) C − log LD(λ)

Baseline estimator 88.8 533.2 136.9 590.7

Conditional ML estimator 180.0 401.3 283.25 580.6

• Test corpus only contains sentences with more than one parse

• C is the number of sentences of the ambiguous held-out test
sentences that the model selected correct parses for

• 10-fold cross-validation evaluation

• Combined system performance: 75% of MAP parses are correct

21

Scaling up: training from partially labeled data

• Coverage of hand-written grammars is poor

– Move constraints from base LFG to stochastic component

⇒ parses 95% of heldout Penn treebank test corpus

⇒ massive increase in ambiguity

• Lack of labeled training data

– Can we use the Penn WSJ treebank? (40,000 sentences with
hand-constructed parse trees)

– LFG parses contain much more information than Penn
treebank trees
∗ The Penn treebank only contains c-structure information,

but no f-structure information
⇒ No purely mechanical way of obtaining LFG training trees
∗ Train from partially labelled data

22

Partially labelled data

• Fully labelled training data identifies the correct parse yi for each
sentence xi

• Partially labelled training data identifies a (small!) set of LFG
parses Y(wi) which contain yi

• Obtained mechanically from the WSJ treebank wi

• Y(w) the set of LFG parses that:

– have matching terminal and POS labels

– have no crossing brackets with the Penn treebank tree wi

– agree in the locations of maximal NP, VP and S constituents

Riezler et al (2002) “Parsing the Wall Street Journal using a LFG and Discriminative

Estimation Techniques”, Proc ACL

23

Estimation from partially labelled data

D = ((x1, w1), . . . , (xn, wn)), where xi is a string and wi a Penn tree.

Y(wi) is the set of LFG parses compatible with wi; yi ∈ Y(wi).

Y

Y(xi) Y(wi)

LD(λ) =
n∏

i=1

Prλ(wi|xi)

Prλ(w|x) = Zλ(w)/Zλ(x)

Zλ(x) =
∑

y∈Y(x)

Wλ(y)

Wλ(y) = exp
∑

j

λjfj(y)

∂LD(λ)

∂λj
=

n∑

i=1

Eλ(fj |wi) − Eλ(fj |xi)

24

Estimation from partially labelled data (cont.)

• Parse each sentence xi in the training data to obtain set Y(xi) of
possible parses

• Discard all parses inconsitent with the Penn WSJ treebank parse
wi, producing Y(wi)

• Numerically optimize a regularized log likelihood based on
Pr(w|x)

– Very similiar to likelihood maximized by EM algorithms

25

Experiment using Penn WSJ Treebank

• Discarded unambiguous sentences and sentences longer than 25 words

• 50% of sentences received a full parse ⇒ 20,000 training
sentences

• 500,000 parses from strings alone

• 150,000 parses after treebank filtering

– Penn WSJ treebank does not add that much information
over base LFG grammar

– Perhaps there are better ways of extracting information
from treebank?

26

Evaluation using Penn WSJ Treebank

• 500 randomly-chosen sentences from section 23 of length ≤ 25
words

• PRED values were extracted by hand from parses produced by
the grammar

• Evaluated on PRED head-argument matches

• Parser produced 411 full parses and 89 partial parses

Precision Recall

Lower bound 75% 79%

Our model 78% 81%

Upper bound 80% 85%

27

Dynamic programming for parsing and estimation

• As grammar coverage increases, so does ambiguity

⇒ How can we improve computational efficiency?

• Maxwell and Kaplan packed parse representations

• Feature locality (e.g., a f-structure constant)

• Parsing/estimation statistics are sum/max of products

• Graphical representation of product expressions

• Sum/max computations over graphs

Geman and Johnson (2002) “Dynamic programming for parsing and estimation of

stochastic unification-based grammars”, Proc ACL

28

Reparameterization of log linear models

θj = expλj

Wθ(y) = exp
m∑

j=1

λjfj(y) =
m∏

j=1

θ
fj(y)
j

Prθ(y|x) =
Wθ(y)

Zθ(x)

Zθ(x) =
∑

y′∈Y(x)

Wθ(y
′)

• Change of variables permits zero probability events

• Zθ(x) involves summing over all possible parses

• Same kind of technique finds most likely parse and calculates
Eθ[fj |x]

29

Maxwell and Kaplan packed parses

• A parse y consists of set of fragments ξ ∈ y (MK algorithm)

• A fragment is in a parse when its context function is true

• Context functions are functions of context variables V1, V2, . . .

• The variable assignment must satisfy “no-good” functions

• Each parse is identified by a unique context variable assignment

ξ = “the cat on the mat”

ξ1 = “with a hat”

V1 → “attach D to B”

¬V1 → “attach D to A” with a hat

the cat on

the mat
¬V1

V1

A

B

D

30

Feature locality

• Features must be local to fragments: fj(y) =
∑

ξ∈y fj(ξ)

• May require changes to UBG to make all features local

ξ = “the cat on the mat”

ξ1 = “with a hat”

V1 → “attach D to B” ∧ (ξ1 ATTACH) = LOW

¬V1 → “attach D to A” ∧ (ξ1 ATTACH) = HIGH

with a hat

the cat on

the mat
¬V1

V1

A

B

D

31

Feature locality decomposes W (y)

• Feature locality: the weight of a parse is the product of weights
of its fragments

W (y) =
∏

ξ∈y

W (ξ), where

W (ξ) =
m∏

j=1

θ
fj(ξ)
j

W (ξ = “the cat on the mat”)

W (ξ1 = “with a hat”)

V1 → W (“attach D to B” ∧ (ξ1 ATTACH) = LOW)

¬V1 → W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH)

32

No-goods and impossible variable assignments

• Not all variable assignments correspond to parses

• A no-good is a function η(v) that is false when v doesn’t correspond to
a parse

• η(v) = 0 → v has zero probability

ξ = “I read a book”

ξ1 = “on the table”

V1 ∧ V2 → “attach D to B”

V1 ∧ ¬V2 → “attach D to A”

¬V1 → “attach D to C”

V1 ∨ V2

on the table

a book V1 ∧ ¬V2

V1 ∧ V2

¬V1

I read

D

A
B

C

33

Identify parses with variable assignments

• For a given sentence x, a variable assignment v to V uniquely
identifies a parse y

• Let W (v) = W (y) where y is the parse identified by v

⇒ Argmax/sum/expectations over parses can be computed over
context variables V instead of over complete parses

Most likely parse: x̂ = argmax
v∈V(x)

W (v)

Partition function: Z(x) =
∑

v∈V(x)

W (v)

Expectation:? E[fj |x] =
∑

v∈V(x)

fj(v)W (v)/Z(x)

34

W (v) is a product of functions of v

• W (v) =
∏

A∈A A(v), where:

– Each line α(v) → ξ introduces a term W (ξ)α(v)

– Each “no-good” η(v) introduces a term η(v) (which is zero
on variable assignments that do not correspond to parses)

...

α(v) → ξ

...

η(v)

...

...

× W (ξ)α(v)

×
...

× η(v)

×
...

⇒ W is a Markov Random Field over the context variables V

35

W is a product of functions of V

W ′(V1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW)V1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH)¬V1

with a hat

the cat on

the mat
¬V1

V1

A

B

D

36

Product expressions and graphical models

• MRFs are products of terms, each of which is a function of (a
few) variables

• Graphical models provide dynamic programming algorithms for
Markov Random Fields (MRF) (Pearl 1988)

• These algorithms implicitly factorize the product

• They generalize the Viterbi and Forward-Backward algorithms
to arbitrary graphs (Smyth 1997)

⇒ Graphical models provide dynamic programming techniques
for parsing and training Stochastic UBGs

37

Factorization example

W
′(V1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW)V1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH)¬V1

max
V1

W
′(V1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× max
V1

(
W (“attach D to B” ∧ (ξ1 ATTACH) = LOW)V1 ,

W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH)¬V1

)

38

Dependency structure graph GA

Z(x) =
∑

v

W (v) =
∑

v

∏

A∈A

A(v)

• GA is the dependency graph for A

– context variables X are vertices of GA

– GA has an edge (vi, vj) if both are arguments of some A ∈ A

A(V) = a(V1, V3)b(V2, V4)c(V3, V4, V5)d(V4, V5)e(V6, V7)

V1 V3 V5 V6

V2 V4 V7

39

Graphical model computations

Z =
∑

v
a(v1, v3)b(v2, v4)c(v3, v4, v5)d(v4, v5)e(v6, v7)

Z1(v3) =
∑

v1
a(v1, v3)

Z2(v4) =
∑

v2
b(v2, v4)

Z3(v4, v5) =
∑

v3
c(v3, v4, v5)Z1(v3)

Z4(v5) =
∑

v4
d(v4, v5)Z2(v4)Z3(v4, v5)

Z5 =
∑

v5
Z4(v5)

Z6(v7) =
∑

v6
e(v6, v7)

Z7 =
∑

v7
Z6(v7)

Z = Z5Z7

=
(∑

v5
Z4(v5)

) (∑
v7

Z6(v7)
)

See: Pearl (1988) Probabilistic Reasoning in Intelligent Systems

V1 V3 V5 V6

V2 V4 V7

40

Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner plastic

window and rollers.

41

Computational complexity

• Polynomial in m = the maximum number of variables in the
dynamic programming functions ≥ the number of variables in any
function A

• m depends on the ordering of variables (and G)

• Finding the variable ordering that minimizes m is NP-complete,
but there are good heuristics

⇒ Worst case exponential (no better than enumerating the parses),
but average case might be much better

– Much like UBG parsing complexity

42

Summary

• Parse selection can be formulated as a classification problem

⇒ Virtually any classification algorithm can be used

• The training data often only partially identifies the correct parse

⇒ Classification algorithms that can train from partially labeled
data

• Combinatorial explosion in number of parses

⇒ Reformulate parsing and estimation problems as MRF
graphical model problems

43

Future directions

• Reformulate “hard” grammatical constraints as “soft” stochastic
features

– Underlying grammar permits all possible structural
combinations

– Grammatical constraints reformulated as stochastic features

⇒ computationally efficiency will be even more important

• Better methods for learning from partially labeled data (e.g.,
co-training)

• Feature selection, automatic feature induction

• Applications such as machine translation and automatic
summarization

44

