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Talk outline

• Lexical Functional Grammars

• Stochastic Lexical Functional Grammars

• Supervised training from parsed corpora

• Semi-supervised training from partially labelled data

• Dynamic programming using MRF graphical models
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“Big picture” issues

• Human language can be understood in terms of knowledge that
can be used in many ways

• What kinds of knowledge are involved in the use of human language?

– Linguistic knowledge about the surface form ↔ “meaning”
relationship

– This relationship involves complex hidden syntactic structure
(described by a grammar)

– World knowledge and pragmatic knowledge are also involved
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“Big picture” issues (cont.)

• Which components of this knowledge are innate, and which are learnt?

– The phonological components (sounds) of words are
arbitrary ⇒ relationship between phonological
representations and lexical meanings must be learnt (how?)

– The (abstract) syntactic structure of most languages seems
very similar, and no one knows how it might be learnt
⇒ perhaps syntax is innate?

• How exactly is the knowledge learnt? (Can we learn it
explicitly?)

• How is all this knowledge used in production and
comprehension?
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Stochastic Lexical-Functional Grammar

• A Lexical-Functional Grammar (LFG) models the relationship
between phonological, syntactic and semantic structures that
together form the parse of a sentence

• An LFG defines the set Y of parses possible in a language

• Most sentences are ambiguous (1 to 10,000 parses)

• A Stochastic LFG defines a (conditional) probability distribution
over Y

• Organization of an SLFG:

– manually specify possible parses using an LFG

– manually specify conditioning features

– learn feature weights from training data

Q: What is the most effective way to describe a human language?
(grammar, corpus)
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Representations of Lexical-Functional Grammar

PRED book
SPEC which

read(Sandy,book)
FORM question

SUBJ PRED Sandy

PRED

FOCUS

OBJ

SBAR

NP

Det N

book

Aux

did

S

NP

Sandy

VP

V

read

which

f(unctional) structurec(onstituent) structure

• Not depicted here: morphological structure, semantic structure
• This work focuses on disambiguating c-structure and f-structure

– Almost all c and f-structure ambiguity is reflected in
semantic structure ambiguity

– Other semantic structure ambiguity (e.g., quantifier scope)
is very hard for humans to disambiguate
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How an LFG describes parses

PRED Sam

PRED Sandy

S

NP

Sam

VP

V

likes

NP

Sandy

like(Sam,Sandy)PRED

SUBJ

OBJ

• Syntactic rules

S → NP
↑ SUBJ=↓

VP
↑=↓

VP → V
↑=↓

NP
↑OBJ=↓

• Lexical entries

Sandy : NP
↑PRED=Sandy

likes : V
↑PRED=like(↑SUBJPRED,↑OBJPRED)
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Representations of Lexical-Functional Grammar
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OBJ

13

ANIM −

APP

NTYPE NUMBER ORD
TIME DATE
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SPEC SPEC-FORM THE
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GEND NEUT

NTYPE
GRAIN COUNT
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TIME DAY
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SUBJ 9
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Machine translation using LFG

English sentence

French sentence

French LFG parser

French f-structure

French-English transfer

English f-structure

English LFG generator

• Translation of f-structures seems easier than translation of words
• Ambiguity: each step of the procedure is multi-valued
⇒ If each component is probabilistic, we can identify the most

likely translation
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Stochastic Lexical-Functional Grammars

• An LFG defines a set of possible parses Y(x) for each sentence x.

• Features f1, . . . , fm are real-valued functions on parses
– Attachment location (high, low, argument, adjunct, etc.)
– Head-to-head dependencies

• Probability distribution defined by log-linear model

W (y) = exp(
m∑

j=1

λjfj(y)) =
m∏

j=1

θ
fj(y)
j

Pr(y|w) = W (y)/Z(w)

where θj = expλj > 0 are feature weights and
Z(w) =

∑
y∈Y(w) W (y) is the partition function.

Johnson et al (1999) “Parsing and estimation for SUBGs”, Proc ACL
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Features used in our SLFGs

Rule features: For every non-terminal X , fX(y) is the number of
times X occurs in c-structure of y

Attribute value features: For every attribute a and every atomic
value v, fa=v(y) is the number of times the pair a = v appears in
y

Argument and adjunct features: For every grammatical function g,
fg(ω) is the number of times that g appears in y

Other features: Dates, times, locations; right branching; attachment
location; parallelism in coordination; . . .

Features are not independent, but dependency structure is
unknown.
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ML estimation of feature weights

yi

Y

Training data D = (y1, . . . , yn)

λ̂ = argmax
λ

LD(λ)

LD(λ) =
n∏

i=1

Prλ(yi)

Prλ(y) =
Wλ(y)

Zλ

Wλ(y) = exp
∑

j

λjfj(y) Zλ =
∑

y′∈Y

Wλ(y′)

• ML estimation maximizes score W (yi) of correct parse yi

relative to sum Z of scores of all parses Y

• in general Zλ and ∂LD/∂λ are intractable analytically and
numerically (no effective means to sum over all Y)

• Abney (1997) suggests a Monte-Carlo calculation method
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Conditional ML estimation of feature weights

D = ((x1, y1), . . . , (xn, yn)), where xi is a string and yi its parse

Maximize conditional likelihood of parses yi given their strings xi,
i.e., maximize score W (yi) of correct parse yi relative to sum Z(xi) of
scores of all parses Y(xi) of string xi

Y

Y(xi) = {y : X(y) = X(yi)}

yi λ̂ = argmax
λ

LD(λ)

LD(λ) =
n∏

i=1

Prλ(yi|xi)

Prλ(y|x) = Wλ(y)/Zλ(x)

Wλ(y) = exp
∑

j

λjfj(y) Zλ(x) =
∑

y′∈Y(x)

Wλ(y′)
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Conditional ML versus ML

• The conditional partition function Zλ(x) is much easier to compute
than the partition function Zλ

– Zλ requires a sum over all parses Y

– Zλ(x) requires a sum over Y(x) (parses of string x)

• Maximum likelihood estimates full joint distribution

– learns distribution of both strings and parses given strings

• Maximum conditional likelihood estimates a conditional
distribution

– learns distribution of parses given yields, but not yields

– conditional distribution is all you need for parsing

• Conditional estimator is consistent for the conditional distribution
only
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Conditional likelihood estimation

Correct
parse’s
features

Features of other parses of same string

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

. . . . . . . . .

• Training data is fully observed (i.e., parsed data)

• Choose λ to maximize (log) likelihood of correct parses relative
to all parses of same string

• Distribution of strings is ignored
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Pseudo-constant features are uninformative

Correct
parse’s
features

Features of other parses of same string

sentence 1 [1, 3, 2 ] [2, 2, 2 ] [3, 1, 2 ] [2, 6, 2 ]

sentence 2 [7, 2, 5 ] [2, 5, 5 ]

sentence 3 [2, 4, 4 ] [1, 1, 4 ] [7, 2, 4 ]

. . . . . . . . .

• Pseudo-constant features are identical within every set of parses

• They contribute the same constant factor to each parses’
likelihood

• They do not distinguish parses of any sentence ⇒irrelevant

16



Pseudo-maximal features ⇒unbounded λ̂j

Correct
parse’s
features

Features of other parses of same string

sentence 1 [1, 3 , 2] [2, 3 , 4] [3, 1 , 1] [2, 1 , 1]

sentence 2 [2, 7 , 4] [3, 7 , 2]

sentence 3 [2, 4 , 4] [1, 1 , 1] [1, 2 , 4]

• A pseudo-maximal feature always reaches its maximum value
within a parse on the correct parse

• If fj is pseudo-maximal, λ̂j → ∞ (hard constraint)

• If fj is pseudo-minimal, λ̂j → −∞ (hard constraint)
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Regularization helps avoid overlearning

• fj is pseudo-maximal over training data
6⇒ fj is pseudo-maximal over all strings

• overlearning because of sparse data

• Regularization: Multiply the conditional likelihood by a
zero-mean Gaussian with diagonal covariance

λ̂ = argmax
λ

log LD(λ) −
m∑

j=1

λ2
j

2σ2
j

• Optimize σj on heldout data
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Optimization of conditional likelihood

• Several algorithms for maximum conditional likelihood estimation

– Various iterative scaling algorithms

– Conjugate gradient, L-BFGS and other numerical
optimization algorithms

• These numerical algorithms require partial derivates of the
conditional likelihood

∂ log LD(λ)

∂λj
=

∑

i

fj(yi) − Eλ[fj |xi]

Eλ[fj |x] =
∑

y∈Y(x)

fj(y) Prλ(y|x)
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Stochastic LFG experiment

• Two parsed LFG corpora provided by Xerox PARC

• Grammars unavailable, but corpus contains all parses and
hand-identified correct parse

• Features chosen by inspecting Verbmobil corpus only
Verbmobil corpus Homecentre corpus

# of sentences 540 980

# of ambiguous sentences 324 424

Av. length of ambig. sentences 13.8 13.1

# of parses 3245 2865

# of features 191 227

# of rule features 59 57
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Pseudo-likelihood estimator evaluation

Verbmobil corpus Homecentre corpus

324 sentences 424 sentences

C − log LD(λ) C − log LD(λ)

Baseline estimator 88.8 533.2 136.9 590.7

Conditional ML estimator 180.0 401.3 283.25 580.6

• Test corpus only contains sentences with more than one parse

• C is the number of sentences of the ambiguous held-out test
sentences that the model selected correct parses for

• 10-fold cross-validation evaluation

• Combined system performance: 75% of MAP parses are correct
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Scaling up: training from partially labeled data

• Coverage of hand-written grammars is poor

– Move constraints from base LFG to stochastic component

⇒ parses 95% of heldout Penn treebank test corpus

⇒ massive increase in ambiguity

• Lack of labeled training data

– Can we use the Penn WSJ treebank? (40,000 sentences with
hand-constructed parse trees)

– LFG parses contain much more information than Penn
treebank trees
∗ The Penn treebank only contains c-structure information,

but no f-structure information
⇒ No purely mechanical way of obtaining LFG training trees
∗ Train from partially labelled data
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Partially labelled data

• Fully labelled training data identifies the correct parse yi for each
sentence xi

• Partially labelled training data identifies a (small!) set of LFG
parses Y(wi) which contain yi

• Obtained mechanically from the WSJ treebank wi

• Y(w) the set of LFG parses that:

– have matching terminal and POS labels

– have no crossing brackets with the Penn treebank tree wi

– agree in the locations of maximal NP, VP and S constituents

Riezler et al (2002) “Parsing the Wall Street Journal using a LFG and Discriminative

Estimation Techniques”, Proc ACL
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Estimation from partially labelled data

D = ((x1, w1), . . . , (xn, wn)), where xi is a string and wi a Penn tree.

Y(wi) is the set of LFG parses compatible with wi; yi ∈ Y(wi).

Y

Y(xi) Y(wi)

LD(λ) =
n∏

i=1

Prλ(wi|xi)

Prλ(w|x) = Zλ(w)/Zλ(x)

Zλ(x) =
∑

y∈Y(x)

Wλ(y)

Wλ(y) = exp
∑

j

λjfj(y)

∂LD(λ)

∂λj
=

n∑

i=1

Eλ(fj |wi) − Eλ(fj |xi)
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Estimation from partially labelled data (cont.)

• Parse each sentence xi in the training data to obtain set Y(xi) of
possible parses

• Discard all parses inconsitent with the Penn WSJ treebank parse
wi, producing Y(wi)

• Numerically optimize a regularized log likelihood based on
Pr(w|x)

– Very similiar to likelihood maximized by EM algorithms
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Experiment using Penn WSJ Treebank

• Discarded unambiguous sentences and sentences longer than 25 words

• 50% of sentences received a full parse ⇒ 20,000 training
sentences

• 500,000 parses from strings alone

• 150,000 parses after treebank filtering

– Penn WSJ treebank does not add that much information
over base LFG grammar

– Perhaps there are better ways of extracting information
from treebank?
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Evaluation using Penn WSJ Treebank

• 500 randomly-chosen sentences from section 23 of length ≤ 25
words

• PRED values were extracted by hand from parses produced by
the grammar

• Evaluated on PRED head-argument matches

• Parser produced 411 full parses and 89 partial parses

Precision Recall

Lower bound 75% 79%

Our model 78% 81%

Upper bound 80% 85%
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Dynamic programming for parsing and estimation

• As grammar coverage increases, so does ambiguity

⇒ How can we improve computational efficiency?

• Maxwell and Kaplan packed parse representations

• Feature locality (e.g., a f-structure constant)

• Parsing/estimation statistics are sum/max of products

• Graphical representation of product expressions

• Sum/max computations over graphs

Geman and Johnson (2002) “Dynamic programming for parsing and estimation of

stochastic unification-based grammars”, Proc ACL
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Reparameterization of log linear models

θj = expλj

Wθ(y) = exp
m∑

j=1

λjfj(y) =
m∏

j=1

θ
fj(y)
j

Prθ(y|x) =
Wθ(y)

Zθ(x)

Zθ(x) =
∑

y′∈Y(x)

Wθ(y
′)

• Change of variables permits zero probability events

• Zθ(x) involves summing over all possible parses

• Same kind of technique finds most likely parse and calculates
Eθ[fj |x]
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Maxwell and Kaplan packed parses

• A parse y consists of set of fragments ξ ∈ y (MK algorithm)

• A fragment is in a parse when its context function is true

• Context functions are functions of context variables V1, V2, . . .

• The variable assignment must satisfy “no-good” functions

• Each parse is identified by a unique context variable assignment

ξ = “the cat on the mat”

ξ1 = “with a hat”

V1 → “attach D to B”

¬V1 → “attach D to A” with a hat

the cat on

the mat
¬V1

V1

A

B

D
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Feature locality

• Features must be local to fragments: fj(y) =
∑

ξ∈y fj(ξ)

• May require changes to UBG to make all features local

ξ = “the cat on the mat”

ξ1 = “with a hat”

V1 → “attach D to B” ∧ (ξ1 ATTACH) = LOW

¬V1 → “attach D to A” ∧ (ξ1 ATTACH) = HIGH

with a hat

the cat on

the mat
¬V1

V1

A

B

D

31



Feature locality decomposes W (y)

• Feature locality: the weight of a parse is the product of weights
of its fragments

W (y) =
∏

ξ∈y

W (ξ), where

W (ξ) =
m∏

j=1

θ
fj(ξ)
j

W (ξ = “the cat on the mat”)

W (ξ1 = “with a hat”)

V1 → W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )

¬V1 → W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )
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No-goods and impossible variable assignments

• Not all variable assignments correspond to parses

• A no-good is a function η(v) that is false when v doesn’t correspond to
a parse

• η(v) = 0 → v has zero probability

ξ = “I read a book”

ξ1 = “on the table”

V1 ∧ V2 → “attach D to B”

V1 ∧ ¬V2 → “attach D to A”

¬V1 → “attach D to C”

V1 ∨ V2

on the table

a book V1 ∧ ¬V2

V1 ∧ V2

¬V1

I read

D

A
B

C
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Identify parses with variable assignments

• For a given sentence x, a variable assignment v to V uniquely
identifies a parse y

• Let W (v) = W (y) where y is the parse identified by v

⇒ Argmax/sum/expectations over parses can be computed over
context variables V instead of over complete parses

Most likely parse: x̂ = argmax
v∈V(x)

W (v)

Partition function: Z(x) =
∑

v∈V(x)

W (v)

Expectation:? E[fj |x] =
∑

v∈V(x)

fj(v)W (v)/Z(x)
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W (v) is a product of functions of v

• W (v) =
∏

A∈A A(v), where:

– Each line α(v) → ξ introduces a term W (ξ)α(v)

– Each “no-good” η(v) introduces a term η(v) (which is zero
on variable assignments that do not correspond to parses)

...

α(v) → ξ

...

η(v)

...

...

× W (ξ)α(v)

×
...

× η(v)

×
...

⇒ W is a Markov Random Field over the context variables V
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W is a product of functions of V

W ′(V1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )V1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )¬V1

with a hat

the cat on

the mat
¬V1

V1

A

B

D

36



Product expressions and graphical models

• MRFs are products of terms, each of which is a function of (a
few) variables

• Graphical models provide dynamic programming algorithms for
Markov Random Fields (MRF) (Pearl 1988)

• These algorithms implicitly factorize the product

• They generalize the Viterbi and Forward-Backward algorithms
to arbitrary graphs (Smyth 1997)

⇒ Graphical models provide dynamic programming techniques
for parsing and training Stochastic UBGs
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Factorization example

W
′(V1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )V1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )¬V1

max
V1

W
′(V1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× max
V1

(
W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )V1 ,

W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )¬V1

)
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Dependency structure graph GA

Z(x) =
∑

v

W (v) =
∑

v

∏

A∈A

A(v)

• GA is the dependency graph for A

– context variables X are vertices of GA

– GA has an edge (vi, vj) if both are arguments of some A ∈ A

A(V ) = a(V1, V3)b(V2, V4)c(V3, V4, V5)d(V4, V5)e(V6, V7)

V1 V3 V5 V6

V2 V4 V7
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Graphical model computations

Z =
∑

v
a(v1, v3)b(v2, v4)c(v3, v4, v5)d(v4, v5)e(v6, v7)

Z1(v3) =
∑

v1
a(v1, v3)

Z2(v4) =
∑

v2
b(v2, v4)

Z3(v4, v5) =
∑

v3
c(v3, v4, v5)Z1(v3)

Z4(v5) =
∑

v4
d(v4, v5)Z2(v4)Z3(v4, v5)

Z5 =
∑

v5
Z4(v5)

Z6(v7) =
∑

v6
e(v6, v7)

Z7 =
∑

v7
Z6(v7)

Z = Z5Z7

=
(∑

v5
Z4(v5)

) (∑
v7

Z6(v7)
)

See: Pearl (1988) Probabilistic Reasoning in Intelligent Systems

V1 V3 V5 V6

V2 V4 V7
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Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner plastic

window and rollers.
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Computational complexity

• Polynomial in m = the maximum number of variables in the
dynamic programming functions ≥ the number of variables in any
function A

• m depends on the ordering of variables (and G)

• Finding the variable ordering that minimizes m is NP-complete,
but there are good heuristics

⇒ Worst case exponential (no better than enumerating the parses),
but average case might be much better

– Much like UBG parsing complexity
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Summary

• Parse selection can be formulated as a classification problem

⇒ Virtually any classification algorithm can be used

• The training data often only partially identifies the correct parse

⇒ Classification algorithms that can train from partially labeled
data

• Combinatorial explosion in number of parses

⇒ Reformulate parsing and estimation problems as MRF
graphical model problems
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Future directions

• Reformulate “hard” grammatical constraints as “soft” stochastic
features

– Underlying grammar permits all possible structural
combinations

– Grammatical constraints reformulated as stochastic features

⇒ computationally efficiency will be even more important

• Better methods for learning from partially labeled data (e.g.,
co-training)

• Feature selection, automatic feature induction

• Applications such as machine translation and automatic
summarization
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