
Learning and parsing stochastic

unification-based grammars

Mark Johnson

Cognitive and Linguistic Sciences and Computer Science
Brown University

Providence RI 02912, USA
Mark Johnson@Brown.edu

Abstract. Stochastic Unification-Based Grammars combine knowledge-
rich and data-rich approaches to natural language processing. This pro-
vides a rich structure to the learning and parsing (decoding) tasks that
can be described with undirected graphical models. While most work to
date has treated parsing as a straight-forward multi-class classification
problem, we are beginning to see how this structure can be exploited in
learning and parsing. Exploiting this structure is likely to become more
important as the research focus moves from parsing to more realistic
tasks such as machine translation and summarization.

1 Introduction

This paper summarizes recent research into Stochastic Unification-Based Gram-
mars (SUBGs), which attempt to combine linguistic insights expressed by gram-
mars with modern machine-learning techniques. So far most work has focused
on parsing, i.e., identifying the syntactic and semantic structure of sentences,
and this paper focuses on this application. But the community is beginning to
investigate applications of these techniques such as automatic summarization
[1] and machine translation, which are more challenging and present interesting
opportunities for machine learning.

A parse consists of a string of words, called its yield, together with its syn-
tactic structure and/or semantics. A syntactic structure describes how words
are organized into phrases and clauses, while the semantics is the meaning of a
sentence. While trees are most commonly used to represent syntactic structure,
the linguistic theories discussed in this paper use both trees and attribute-value
structures to represent the syntactic and semantic properties of a sentence. Even
though modern linguistics has been investigating syntax and semantics since the
mid-1950s and before, there are still large gaps in our knowledge of English and
other languages, and considerable dispute over exactly what the structure of
particular sentences actually is.

The parsing problem is to identify the parse of a sentence intended by its
speaker or author. Undoubtedly this depends on a wide variety of factors, in-
cluding the discourse context and world knowledge, but most work on statistical

2 Mark Johnson

parsing ignore these. Not surprisingly, ambiguity is a pervasive problem in pars-
ing: many different parses have the same yield (e.g., consider sentences such as
“I saw the man with the T.V.”). Currently statistical and machine-learning ap-
proaches provide the most systematic way to identify the most likely intended
parse.

The basic assumption behind the work described here is that linguists have
identified reasonably well the general principles that determine the possible
structures of a language, but they have not identified a satisfactory method for
disambiguating sentences, so this must be inferred from training data. By con-
trast, most work on statistical parsing seems to assume that linguists can only
accurately determine the structures of particular sentences (specifically, those
in the treebank training data), and only incorporates much weaker linguistic
assumptions [2, 3].

SUBGs define probability distributions over the parses defined by Unification-
Based Grammars (UBGs). These grammars can incorporate virtually all kinds of
linguistically important constraints. There are several different kinds of UBGs,
including Head-Driven Phrase-Structure Grammar (HPSG) [4, 5] and Lexical-
Functional Grammar (LFG) [6, 7]. This paper uses LFG, but the approach is
general and can be used with virtually any UBG. Section 2 describes LFG rep-
resentations in some more detail, and section 4 explains how probability distri-
butions are defined over these structures.

We chose LFG because two decades of work have produced in broad-coverage
grammars [8] and well-developed non-statistical parsing technology [9, 10]. In
particular, there are parsing algorithms that produce “packed” representations of
a set of parses which can often find an exponential number of different parses for
a sentence in polynomial time and represent them in polynomial space. Section 5
outlines dynamic programming algorithms for estimating statistical models and
identifying the most probable parse from the set of parses encoded by a packed
representation.

The notation used in this paper is as follows. Variables are written in upper
case italic, e.g., X, Y , etc., the sets they range over are written in script, e.g.,
X ,Y , etc., while specific values are written in lower case italic, e.g., x, y, etc. In
the case of vector-valued entities, subscripts indicate particular components.

2 Lexical-Functional Grammar

An LFG parse describes the different aspects of a sentence’s syntactic structure
and semantics using several different structures; for simplicity we only discuss
two of these here. The constituent or c-structure of a parse is a tree that describes
how words and phrases combine to form larger syntactic units. The functional
or f-structure is a particular kind of directed graph known as an attribute-value
structure that identifies the function-argument dependencies of the parse.

Figure 1 depicts the c-structure and f-structure for the sentence “Alex promised
Sasha to leave”. The fact that the single phrase “Alex” fills two functional roles
in this sentence (it is the subject of “promise” as well as the subject of “leave”) is

Stochastic unification-based grammars 3

S

NP

Alex

VP

V

promised

NP

Sasha

VP

Aux

to

VP

V

leave



































predicate promise

tense past

subject





predicate Alex

person 3rd

1 number singular





object

[

predicate Sasha

person 3rd

number singular

]

complement

[

predicate leave

subject 1

]



































Fig. 1. The c-structure and f-structure for “Alex promised Sasha to leave”.

not represented in the c-structure tree, but it is represented by the re-entrancy in
the f-structure (which is depicted by co-indexation in the figure). LFG parses use
similar f-structure re-entrancies to encode long-distance dependencies in phrases
such as “Sam bought the program that Alex wants to use”, where “the program”
is both the object of “bought” and of “use”.

The precise way in which grammars specify how strings are associated with
parses differs in different kinds of UBGs, and is not important for what follows.
Let Ω be the set of parses for the sentences of a language, and for each parse
ω ∈ Ω let Y (ω) be its yield. If y is a string then Ω(y) = {ω ∈ Ω|Y (ω) = y} is
the set of parses with yield y. We require that Ω(y) be a finite for all y; this is
almost always true of (bug-free) UBGs. For our LFGs |Ω(y)| ranges from one to
the hundreds of thousands.

It important for the dynamic programming algorithms described below that
each parse ω consist of a finite set of parse fragments.1 Precisely what a fragment
is is unimportant, but typically fragments are units directly or indirectly defined
by the grammar (e.g., chart edges, local trees, attribute-value pairs, etc.) out
of which parses are constructed. For example, in Figure 1 one fragment might
consists of all of the information associated with the word “Alex”, i.e., the np

c-structure node and the f-structure node with the index “1”. This fragment
would also appear in other parses containing the word “Alex”. This sharing of
fragments is key to the dynamic programming algorithms described below. If y

is a string let F(y) =
⋃

ω∈Ω(y){f ∈ ω} be the set of fragments appearing in any

parse of y. F(y) is finite since Ω(y) and each ω ∈ Ω(y) are finite.

3 Maxwell-Kaplan packed parse representations

As mentioned earlier, ambiguity is a pervasive problem in parsing, and much of
the work on parsing over the past several decades has focused on methods for effi-

1 Fragments were called “features” in [11], but we use the word “fragment” here to
avoid confusion with the machine learning use of the word “feature”.

4 Mark Johnson

ciently finding and compactly representing the parses of a sentence. Maxwell and
Kaplan [9, 10] developed a dynamic programming framework for UBG parsing
that seems to be more general than other approaches. The dynamic programming
algorithms described below take the packed representations produced by their
parsing algorithm as input, so we describe them here. The intuition motivating
the Maxwell-Kaplan packed representations is that for most strings y, many of
the fragments in F(y) occur in many of the parses Ω(y). This is often the case
in natural language, since the same substructure can appear as a component of
many different parses.

Maxwell-Kaplan packed representations are defined in terms of conditions
on the values assigned to a vector of auxiliary variables X . These variables have
no direct linguistic interpretation; rather, each different assignment of values to
these variables identifies a set of fragments which constitutes one of the parses
represented by the packed representation. A condition on X is a function from X
(the range of X) to {0, 1}. While for uniformity we write conditions as functions
on the entire vector X , in practice the Maxwell-Kaplan parsing algorithm usually
produces conditions whose value depends only on a few of the variables in X ,
and the efficiency of the algorithms described here depends on this.

A packed representation of a finite set of parses is a quadruple R = (F ′, X, N, α),
where:

– F ′ ⊇ F(y) is a finite set of fragments,

– X is a finite vector of variables, where each variable X` ranges over the finite
set X`,

– N is a finite set of conditions on X called the no-goods,2 and

– α is a function that maps each fragment f ∈ F ′ to a condition αf on X .

A vector of values x satisfies the no-goods N iff N(x) = 1, where N(x) =
∏

η∈N η(x). Each x that satisfies the no-goods identifies a parse ω(x) = {f ∈
F ′|αf (x) = 1}, i.e., ω is the set of features whose conditions are satisfied by
x. We require that each parse be identified by a unique value satisfying the
no-goods. That is, we require that:

∀x, x′ ∈ X if N(x) = N(x′) = 1 and ω(x) = ω(x′) then x = x′ (1)

A packed representation R represents the set of parses Ω(R) that are identified
by values that satisfy the no-goods, i.e., Ω(R) = {ω(x)|x ∈ X , N(x) = 1}.

Maxwell and Kaplan describe a parsing algorithm for unification-based gram-
mars that takes as input a string y and returns a packed representation R such
that Ω(R) = Ω(y), i.e., R represents the set of parses of the string y. The SUBG
parsing and estimation algorithms described here use the Maxwell-Kaplan pars-
ing algorithm as a subroutine.

2 The name “no-good” comes from the TMS literature, and was used by Maxwell and
Kaplan. However, here the no-goods actually identify the good variable assignments.

Stochastic unification-based grammars 5

Sam saw

a man

X1

with a T.V. driving a car

X2¬X2¬X1

C D

A

B

Fig. 2. A depiction of a packed parse forest encoding possible parses of “Sam saw a
man with a T.V. driving a car”.

Example. Figure 2 depicts in extremely schematic form a packed parse repre-
sentation for the sentence “Sam saw a man with a T.V. driving a car”. This ad-
mittedly rather contrived sentence contains two interacting ambiguities.3 First,
“with a T.V.” can either modify “saw” or “a man” (i.e., either Sam used the
T.V., or the man had the T.V.). The boolean variable X1 encodes which phrase
“with a T.V.” modifies.

Second, “driving a car” can also either modify “saw” or “a man” (either the
seeing was done while driving, or else the man was driving a car; the semantically
implausible reading where the T.V. was driving a car is not represented). The
boolean variable X2 encodes which phrase “driving a car” modifies.

Many linguists would claim that not all combinations of these ambiguities
are possible. Specifically, if “with a T.V.” modifies “saw” then “driving a car”
cannot modify “a man”, since that would result in a crossing dependency of a
kind not found in English. This constraint is encoded by the no-good ¬X1 ∨X2.

Suppose that ξA is the parse fragment for the phrase “Sam saw”, ξB is the
fragment for “a man”, ξC for “with a T.V.” and ξD for “driving a car”. Let ξCA be
the parse fragment representing the attachment of ξC to ξA (i.e., the c-structure
and f-structure elements representing the attachment of “with a T.V.” to “Sam
saw”), and let ξCB , ξDA, ξDB be the other corresponding attachment fragments.
Then the following schematic packed representation encodes the possible parses:

F ′ = {ξA, ξB , ξC , ξD , ξCA, ξCB , ξDA, ξDB}

X = (X1, X2)

N = {¬X1 ∨ X2}

α(ξCA) = X1, α(ξCB) = ¬X1, α(ξDA) = X2, α(ξDB) = ¬X2,

α(ξA) = α(ξB) = α(ξC) = α(ξD) = 1.

In LFGs and similiar grammars the fragments containing lexical items (i.e.,
words) are usually very large, since these grammars typically contain a lot of

3 Interestingly, most of the ambiguities that cause so much trouble in parsing are
extremely difficult for humans to detect.

6 Mark Johnson

lexical information. Notice that the fragments ξA, . . . , ξD corresponding to the
phrases in the sentence occur only once in the packed representation, rather than
appearing three times, as they would if the parses were enumerated. In the packed
representation these fragments are associated with the constant condition 1,
which indicates that they all appear in every parse. Only the fragments required
to connect up these phrasal fragments have non-constant conditions, indicating
that they are the only fragments that vary across the parses of this sentence.
Such structure sharing, especially of lexical information, is a goal of the Maxwell-
Kaplan approach.

4 Stochastic Unification-Based Grammars

SUBGs use exponential models (also known as log-linear or MaxEnt models
or Markov Random Fields) extend UBGs by defining probability distributions
over the parses of a UBG. Abney [12] proposed the use of exponential mod-
els for defining probability distributions over the parses of a UBG. Johnson et
al. [13] noted that calculating the partition function and the various expectations
required for estimation (see below) is computationally very expensive because
they require integrating over all parses of all sentences. However, Johnson et al.
pointed out that parsing and related tasks only require the conditional distri-
bution of parses given their yields, and that these conditional distributions are
much less computationally demanding to estimate.

A SUBG is a triple (U, g, θ), where U is a unification grammar that defines
a set Ω of parses as described above, g = (g1, . . . , gm) is a vector of features,
and θ = (θ1, . . . , θm) is a vector of non-negative real-valued parameters called
feature weights. A feature is a real-valued function of parses Ω.4

If we are prepared to enumerate all of the parses of the sentences in our
training and test data then features can be any real-valued function of parses
whatsoever. However, the dynamic programming algorithms described below
require the information encoded in features to be local with respect to the frag-
ments F of packed parse representations. Specifically, they require that features
be linear in terms of the fragments of parses, i.e., each fragment f ∈ F is as-
sociated with a finite vector of real values (g1(f), . . . , gm(f)) which define the
feature functions for parses as follows:

gk(ω) =
∑

f∈ω

gk(f), for k = 1 . . .m. (2)

This requires features be very local with respect to fragments, which gives up
the ability to define features arbitrarily. Note that we can encode essentially
arbitrary non-local information in the attributes of the underlying unification
grammar and then define features locally in terms of those attributes.

4 Features were called “properties” in [11, 13] in order to avoid confusion with the
linguistic use of the word “feature”.

Stochastic unification-based grammars 7

We now describe how SUBGs define conditional probability distributions over
parses given yields. The conditional probability Pθ(ω|y) of a parse ω ∈ Ω(y)
given a yield y is:

Pθ(ω|y) =
Wθ(ω)

Zθ(y)
, where Wθ(ω) =

m
∏

j=1

θ
gj (ω)
j , and Zθ(y) =

∑

ω′∈Ω(y)

Wθ(ω
′).

Intuitively, if gj(ω) is the number of times that feature j occurs in ω then θj is
the weight or cost of each occurrence of feature j, and Zθ(y) is a normalising
constant that ensures that the probability of all parses of y sum to 1.

Such a distribution can be used for a variety of tasks. The most straight-
forward application is parsing: the most likely parse of a string of words y is:

ω̂(y) = argmax
ω∈Ω(y)

P(ω|y) = argmax
ω∈Ω(y)

Wθ(ω).

ω̂(y) can be found by exhaustively enumerating Ω(y). But even though Ω(y) is
finite, with large grammars and long sentences finding the most likely parse by
direct enumeration can be extremely time-consuming. The dynamic program-
ming algorithm described below exploits the structure of packed representations
to avoid this exhaustive search.

Now we turn to estimation. Suppose we have a training corpus D of sentences
yi and their correct parses ωi, i.e., D = ((y1, ω1), . . . , (yn, ωn)), from which we

wish to estimate the feature weights θ.5 The θ̂ that maximizes the conditional

likelihood LD(θ) is a consistent estimator of the conditional distribution.6

θ̂ = argmax
θ

LD(θ) =
n
∏

i=1

Pθ(ωi|yi)

Practial methods for optimizing LD, such as the Conjugate Gradient and L-
BFGS algorithms as well as the various iterative scaling algorithms, require the
partial derivatives of LD as well as LD itself.

∂LD

∂θk

=
LD(θ)

θk

n
∑

i=1

(gk(ωi) − Eθ[gk|yi]) , where:

Eθ[g|y] =
∑

ω∈Ω(y)

g(ω)Pθ(ω|y) =
∑

ω∈Ω(y)

g(ω)Wθ(ω)

Zθ(y)

Here Eθ[g|y] is the conditional expectation of g with respect to distribution Pθ

over parses Ω(y) of the sentence y. As with parsing, computing this conditional
expectation by explicit summation over Ω(y) can be computationally expensive.

5 We call D fully labelled because it identifies the correct parse ωi for each sentence
yi = Y (ωi) in D; see [14] for conditional estimation from partially labelled data.

6 In fact [13] and later work estimate θ by maximizing a regularized conditional like-
lihood obtained by multiplying LD by a zero-mean diagonal-variance Gaussian.

8 Mark Johnson

5 Packed representations and graphical models

The previous section treated parses in SUBGs as atomic (i.e., the features are
functions of the entire parse), whereas they actually have a rich internal struc-
ture. As explained earlier the Maxwell-Kaplan parsing algorithm exploits the
sharing of fragments in parses to produce a “packed representation” of a set of
parses. This section describes explains how dynamic programming algorithms for
graphical models can be used to compute the most likely parse and the expected
value of features directly from these packed representations [11].

These methods are analogues of the well-known dynamic programming al-
gorithms for Probabilistic Context-Free Grammars (PCFGs); specifically the
Viterbi algorithm for finding the most probable parse of a string and the Inside-
Outside algorithm for estimating a PCFG from unparsed training data (which
we use to calculate the expected number of times each feature occurs). In fact,
because the Maxwell-Kaplan packed representations are just Truth Maintenance
System (TMS) representations [15], the statistical techniques described here
should extend to non-linguistic applications of TMSs as well.

Dynamic programming techniques have been applied to log-linear models in
other setting. Lafferty et al. show how dynamic programming can be used to
compute the statistics required for conditional estimation of log-linear models
of labeled sequences where the properties can include arbitrary functions of the
input string [16]. The closest work we know of to the approach described here
is that of Miyao, Tsujii and colleagues [17, 18]. They also describe a technique
for calculating the statistics required to estimate a log-linear model from packed
parse forests.

The previous section introduced several important quantities for parsing and
maximum likelihood estimation of SUBGs. In each case we show that the quan-
tity can be expressed as the value that maximises a product of functions or else
as the sum of a product of functions, each of which depends on a small subset of
the variables X of a packed parse representation. These are the kinds of quanti-
ties for which dynamic programming algorithms for graphical models have been
developed.

As explained in section 4, the most probable parse is ω̂(y) = argmaxω∈Ω(y) Wθ(ω).
Given a packed representation (F ′, X, N, α) for the parses Ω(y), let x̂(y) be the
x that identifies ω̂(y), i.e., ω̂(y) = {f ∈ F ′|αf (x̂(y)) = 1}. Since Wθ(ω̂(y)) > 0,
it can be shown that:

x̂(y) = argmax
x∈X

N(x)

m
∏

j=1

θ
gj (ω(x))
j

= argmax
x∈X

N(x)
m
∏

j=1

θ

∑

f∈ω(x)
gj (f)

j

= argmax
x∈X

N(x)
m
∏

j=1

θ

∑

f∈F′
αf (x)gj(f)

j

Stochastic unification-based grammars 9

= argmax
x∈X

N(x)
m
∏

j=1

∏

f∈F ′

θ
αf (x)gj(f)
j

= argmax
x∈X

N(x)
∏

f∈F ′





m
∏

j=1

θ
gj (f)
j





αf (x)

= argmax
x∈X

∏

η∈N

η(x)
∏

f∈F ′

hθ,f (x) (3)

where hθ,f (x) =
∏m

j=1 θ
gj (f)
j if αf (x) = 1 and hθ,f (x) = 1 if αf (x) = 0. That

is, hθ,f (x) is the weight of the fragment f in the parse ω(x). Note that hθ,f (x)
depends on exactly the same subset of variables in X as αf does. As (3) makes
clear, finding x̂(y) involves maximising a product of functions where each func-
tion depends on a subset of the variables X . As explained below, this is exactly
the kind of maximisation that can be solved using graphical model techniques.

We now turn to the partition function. As mentioned earlier, calculating the
partition function Zθ(y) =

∑

ω∈Ω(y) Wθ(ω) by explicitly summing over all parses

Ω(y) can be computationally expensive. However, there is an alternative method
for calculating Zθ(yi) that does not involve this enumeration. As noted above, for
each yield yi, i = 1, . . . , n, the Maxwell-Kaplan algorithm returns a packed parse
Ri that represents the parses of yi, i.e., Ω(yi) = Ω(Ri). A derivation parallel to
the one for (3) shows that for R = (F ′, X, N, α):

Zθ(Ω(R)) =
∑

x∈X

∏

η∈N

η(x)
∏

f∈F ′

hθ,f (x) (4)

This derivation relies on the isomorphism between parses and variable assign-
ments in (1). It turns out that sums of products of this kind can also be calculated
using graphical model techniques.

Similar remarks apply to the computation of the conditional expectations
Eθ[gk|yi]. Again, let R = (F ′, X, N, α) be a packed representation such that
Ω(R) = Ω(yi). First, note that (2) implies that:

Eθ[gk|yi] =
∑

f∈F ′

gk(f) P({ω : f ∈ ω}|yi).

Note that P({ω : f ∈ ω}|yi) involves the sum of weights over all x ∈ X subject
to the conditions that N(x) = 1 and αf (x) = 1. Thus P({ω : f ∈ ω}|yi) can also
be expressed in a form that is easy to evaluate using graphical techniques.

Zθ(Ω(R))Pθ({ω : f ∈ ω}|yi) =
∑

x∈X

αf (x)
∏

η∈N

η(x)
∏

f ′∈F ′

hθ,f ′(x) (5)

5.1 Graphical model calculations

In this subsection we briefly review graphical model algorithms for maximizing
and summing products of functions of the kind presented above. The quantities

10 Mark Johnson

(3), (4) and (5) involve maximisation or summation over a product of functions,
each of which depends only on the values of a subset of the variables X . There
are dynamic programming algorithms for calculating all of these quantities, but
for reasons of space we only describe an algorithm that finds the most probable
parse ω̂(y) of a string y. As explained above, this is equivalent to finding the
x ∈ X that maximizes (3).

It turns out that the algorithm for maximisation is a generalisation of the
Viterbi algorithm for HMMs, and the algorithm for computing the summation in
(5) is a generalisation of the forward-backward algorithm for HMMs [19]. Viewed
abstractly, these algorithms simplify these expressions by moving common fac-
tors over the max or sum operators respectively. These techniques are now rel-
atively standard; the most well-known approach involves junction trees [20, 21].
We adopt the approach approach described by [22], which is a straightforward
generalization of HMM dynamic programming with minimal assumptions and
programming overhead.

To explain the algorithm we use the following notation. If x and x′ are both
vectors of length m then x =j x′ iff x and x′ disagree on at most their jth
components, i.e., xk = x′

k for k = 1, . . . , j−1, j+1, . . .m. If f is a function whose
domain is X , we say that f depends on the set of variables d(f) = {Xj |∃x, x′ ∈
X , x =j x′, f(x) 6= f(x′)}. That is, Xj ∈ d(f) iff changing the value of Xj can
change the value of f .

The algorithm relies on the fact that the variables in X = (X1, . . . , Xn)
are ordered (e.g., X1 precedes X2, etc.), and while the algorithm is correct for
any variable ordering, its efficiency may vary dramatically depending on which
ordering is chosen. Let H be any set of functions whose domains are X . We
partition H into disjoint subsets H1, . . . ,Hn+1, where Hj is the subset of H
that depend on Xj but do not depend on any variables ordered before Xj , and
Hn+1 is the subset of H that do not depend on any variables at all (i.e., they
are constants).7 That is, Hj = {H ∈ H|Xj ∈ d(H), ∀i < j Xi 6∈ d(H)} and
Hn+1 = {H ∈ H|d(H) = ∅}.

In order to find the most probable parse we must find the x that maximizes
the product of functions (3). Here we describe a general algorithm for finding
Mmax and x̂ that satisfy (6-7).

Mmax = max
x∈X

∏

A∈A

A(x) (6)

x̂ = argmax
x∈X

∏

A∈A

A(x). (7)

The procedure depends on two sequences of functions Mi, i = 1, . . . , n+1 and
Vi, i = 1, . . . , n. Informally, Mi is the maximum value attained by the subset of
the functions A that depend on one of the variables X1, . . . , Xi, and Vi identifies
the x at which this maximum is attained.

7 Strictly speaking this does not necessarily define a partition, as some of the subsets
Hj may be empty.

Stochastic unification-based grammars 11

To simplify notation we write these functions as functions of the entire set of
variables X , but the efficiency of the algorithm requires that they depend on a
much smaller set of variables. The Mi are real valued, while each Vi ranges over
Xi. Let M = {M1, . . . , Mn}. A and M are both partitioned into disjoint subsets
A1, . . . ,An+1 and M1, . . . ,Mn+1 respectively as described above on the basis
of the variables each Ai and Mi depend on.

Mi(x) = max
x′

∈X

s.t. x′=ix

∏

A∈Ai

A(x′)
∏

M∈Mi

M(x′) (8)

Vi(x) = argmax
x′

∈X

s.t. x′=ix

∏

A∈Ai

A(x′)
∏

M∈Mi

M(x′)

Mn+1 receives a special definition, since there is no variable Xn+1.

Mn+1 =





∏

A∈An+1

A









∏

M∈Mn+1

M



 (9)

The Mi(x) and Vi(x) correspond to the intermediate quantities computed in the
well-known Viterbi algorithm for HMMs. Mi(x) is the maximum value of the
product of terms A ∈ A that depend directly or indirectly (through some M)
on the variable Xi, and the ith component of Vi(x) gives the value of xi at this
maximum. That is, each Mi can be recursively expanded into the maximum of
a product of functions A ∈ A. If any of these functions also depend on variables
ordered after Xi, Mi and Vi must also.

The definition of Mi in (8) may look circular (since M appears in the right-
hand side), but in fact it is not. First, note that Mi depends only on variables
ordered after Xi, so if Mj ∈ Mi then j < i. More specifically,

d(Mi) =

(

⋃

A∈Ai

d(A) ∪
⋃

M∈Mi

d(M)

)

\ {Xi}.

Thus we can compute the Mi in the order M1, . . . , Mn+1, inserting Mi into the
appropriate set Mk, where k > i is the next variable Mi depends on, when Mi

is computed. By recursively expanding each Mi, a simple induction shows that
Mmax = Mn+1 and that Vi(x̂) = x̂i (the value x̂ assigns to Xi). Because Vi

only depends on variables ordered after xi, we can evaluate the Vi in the order
Vn, . . . , V1 to find the maximising assignment x̂.

We now briefly consider the computational complexity of this process. Clearly,
the number of steps required to compute each Mi is a polynomial of order
|d(Mi)| + 1, since we need to enumerate all possible values for the argument
variables d(Mi) and for each of these, maximise over the set Xi.

Since computational effort is bounded above by a polynomial of order |d(Mi)|+
1, we seek a variable ordering that bounds the maximum value of |d(Mi)|. Un-
fortunately, finding the ordering that minimises the maximum value of |d(Mi)| is

12 Mark Johnson

an NP-complete problem. However, there are several efficient heuristics that are
reputed in graphical models community to produce good visitation schedules. It
may be that they will perform well in the SUBG parsing applications as well.

6 Conclusion

This paper described recent research in SUBGs, concentrating on dynamic pro-
gramming algorithms for estimating and parsing using exponential models that
do not require explicit enumeration of all parses. These algorithms are likely to
play an increasingly important role as SUBGs are applied to complex natural
language processing tasks such as machine translation.

The key observation is that the set of parses of a sentence possesses a non-
trivial structure that can be represented using an undirected graphical model.
The Maxwell-Kaplan parsing algorithm takes advantage of this structure to pro-
duce a packed representation of a set of parses, and the dynamic programming
algorithms described above exploit the same structure to compute the statistics
needed for parsing and estimation without enumerating all possible parses.

While almost all of the work on SUBGs has been based on exponential mod-
els, the astute reader will have noticed identifying the correct parse of a sentence
is essentially just a discriminative learning task, and virtually any discriminative
learning algorithm could be used. It would be interesting to see if standard dis-
criminative learning algorithms, such as Support Vector Machines, yield better
parsing performance. It would also be interesting to see if these algorithms can
be trained from partially labelled data [14] and possess dynamic programming
parsing and estimation algorithms.

References

1. Stefan Riezler, Tracy H. King, R.C., Zaenen, A.: Statistical sentence condensa-
tion using ambiguity packing and stochastic disambiguation methods for lexical-
functional grammar. In: Proceedings of the Human Language Technology Confer-
ence of the North American Chapter of the Association for Computational Lin-
guistics, The Association for Computational Linguistics (2003) 197–204

2. Charniak, E.: A maximum-entropy-inspired parser. In: The Proceedings of the
North American Chapter of the Association for Computational Linguistics. (2000)
132–139

3. Collins, M.: Three generative, lexicalised models for statistical parsing. In: The
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, San Francisco, Morgan Kaufmann (1997)

4. Pollard, C., Sag, I.A.: Information-based Syntax and Semantics. Number 13 in
CSLI Lecture Notes Series. Chicago University Press, Chicago (1987)

5. Pollard, C., Sag, I.: Head-driven Phrase Structure Grammar. The University of
Chicago Press, Chicago (1994)

6. Bresnan, J.: Control and complementation. In Bresnan, J., ed.: The Mental Rep-
resentation of Grammatical Relations. The MIT Press, Cambridge, Massachusetts
(1982) 282–390

Stochastic unification-based grammars 13

7. Bresnan, J.: Lexical-Functional Syntax. Blackwell, Malden, MA (2001)
8. Butt, M., King, T.H., no, M.E.N., Segon, F.: A Grammar Writer’s Cookbook.

CSLI Publications, Stanford, CA (1999)
9. Maxwell III, J.T., Kaplan, R.M.: The interface between phrasal and functional

constraints. In Dalrymple, M., Kaplan, R.M., Maxwell III, J.T., Zaenen, A., eds.:
Formal Issues in Lexical-Functional Grammar. Number 47 in CSLI Lecture Notes
Series. CSLI Publications (1995) 403–430

10. Maxwell III, J.T., Kaplan, R.M.: A method for disjunctive constraint satisfaction.
In Dalrymple, M., Kaplan, R.M., Maxwell III, J.T., Zaenen, A., eds.: Formal Issues
in Lexical-Functional Grammar. Number 47 in CSLI Lecture Notes Series. CSLI
Publications (1995) 381–401

11. Geman, S., Johnson, M.: Dynamic programming for parsing and estimation of
stochastic unification-based grammars. In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, Morgan Kaufmann (2002) 279–
286

12. Abney, S.: Stochastic Attribute-Value Grammars. Computational Linguistics 23

(1997) 597–617
13. Johnson, M., Geman, S., Canon, S., Chi, Z., Riezler, S.: Estimators for stochas-

tic “unification-based” grammars. In: The Proceedings of the 37th Annual Con-
ference of the Association for Computational Linguistics, San Francisco, Morgan
Kaufmann (1999) 535–541

14. Riezler, S., King, T.H., Kaplan, R.M., Crouch, R., Maxwell, J.T.I., Johnson, M.:
Parsing the wall street journal using a lexical-functional grammar and discrimi-
native estimation techniques. In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, Morgan Kaufmann (2002) 271–278

15. Forbus, K.D., de Kleer, J.: Building problem solvers. The MIT Press, Cambridge,
Massachusetts (1993)

16. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic
models for segmenting and labeling sequence data. In: Machine Learning: Proceed-
ings of the Eighteenth International Conference (ICML 2001), Stanford, California
(2001)

17. Miyao, Y., Tsujii, J.: Maximum entropy estimation for feature forests. In: Pro-
ceedings of Human Language Technology Conference 2002. (2002)

18. Miyao, Y., Tsujii, J.: A model of syntactic disambiguation based on lexicalized
grammars. In: Proceedings of the Seventh Conference on Natural Language Learn-
ing. (2003) 1–8

19. Smyth, P., Heckerman, D., Jordan, M.: Probabilistic Independence Networks for
Hidden Markov Models. Neural Computation 9 (1997) 227–269

20. Pearl, J.: Probabalistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, California (1988)

21. Cowell, R.: Introduction to inference for Bayesian networks. In Jordan, M., ed.:
Learning in Graphical Models. The MIT Press, Cambridge, Massachusetts (1999)
9–26

22. Geman, S., Kochanek, K.: Dynamic programming and the representation of soft-
decodable codes. Technical report, Division of Applied Mathematics, Brown Uni-
versity (2000)

1

