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Outline

• Goal: find features for identifying good parses

• Why is this difficult with generative statistical models?

• Reranking framework

• Conditional versus joint estimation

• Features for parse ranking

• Estimation procedures

• Experimental set-up

• Feature selection and evaluation
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Features for accurate parsing

• Accurate parsing requires good features

⇒ need a flexible method for evaluating a wide range of features

• parse ranking framework is current best method for doing this

+ works with virtually any kind of representation

+ features can encode virtually any kind of information

(syntactic, lexical semantics, prosody, etc.)

+ can exploit the currently best-available parsers

− efficient algorithms are hard(-er) to design and implement

− fishing expedition
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Why not a generative statistical parser?

• Statistical parsers (Charniak, Collins) generate parses node by node

• Each step is conditioned on the structure already generated
S

NP

PRP

He

VP

VBD

raised

NP

the price

.

.

NNDT

• Encoding dependencies is as difficult as designing a feature-passing

grammar (GPSG)

• Smoothing interacts in mysterious ways with these encodings

• Conditional estimation should produce better parsers with our current

lousy models
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Linear ranking framework

• Generate n candidate parses

Tc(s) for each sentence s

• Map each parse t ∈ Tc(s) to a

real-valued feature vector

f(t) = (f1(t), . . . , fm(t))

• Each feature fj is associated

with a weight wj

• The highest scoring parse

t̂ = argmax
t∈Tc(s)

w · f(t)

is predicted correct

sentence s

tn. . .

. . .f(t1) f(tn)

w · f(t1) w · f(tn). . .

n-best parser

parses Tc(s)t1

feature vectors

parse scores

apply feature fns

linear combination

argmax

“best” parse for s
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Linear ranking example

w = (−1, 2, 1)

Candidate parse tree t features f(t) parse score w · f(t)

t1 (1, 3, 2) 7

t2 (2, 2, 1) 3

. . . . . . . . .

• Parser designer specifies feature functions f = (f1, . . . , fm)

• Feature weights w = (w1, . . . , wm) specify each feature’s “importance”

• n-best parser produces trees Tc(s) for each sentence s

• Feature functions f apply to each tree t ∈ Tc(s), producing feature values

f(t) = (f1(t), . . . , fm(t))

• Return highest scoring tree

t̂(s) = argmax
t

w · f(t) = argmax
t

m∑

j=1

wjfj(t)
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Linear ranking, statistics and machine learning

• Many models define the best candidate t̂ in terms of a linear

combination of feature values w · f(t)

– Exponential, Log-linear, Gibbs models, MaxEnt

P(t) =
1

Z
expw · f(t)

Z =
∑

t∈T

expw · f(t) (partition function)

log P(t) = w · f(t) − log Z

– Perceptron algorithm (including averaged version)

– Support Vector Machines

– Boosted decision stubs

9



PCFGs are exponential models

fj(t) = number of times the jth rule is used in t

wj = log pj, where pj is probability of jth rule

f




S

NP VP

rice grows




= [ 1︸︷︷︸
S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

PPCFG(t) =
∏

j

p
fj(t)

j =
∏

j

exp(wj)
fj(t) =

∏

j

expwjfj(t)

= exp
∑

j

wjfj(t) = expw · f(t)

So a PCFG is just a special kind of exponential model with Z = 1.
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Features in linear ranking models

• Features can be any real-valued function of parse t and sentence s

– counts of number of times a particular structure appears in t

– log probabilities from other models

∗ log Pc(t) is our most useful feature!

∗ generalizes reference distributions of MaxEnt models

• Subtracting a constant c(s) from a feature’s value doesn’t affect

difference between parse scores in a linear model

w · (f(t1) − c(s)) − w · (f(t2) − c(s)) = w · f(t1) − w · f(t2)

– features that don’t vary on Tc(s) are useless

– subtract most frequently occuring value cj(s) for each feature fj in

sentence s ⇒ sparser feature vectors
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Getting the feature weights

s f(t?(s)) {f(t) : t ∈ Tc(s), t 6= t?(s)}

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)

sentence 2 (7, 2, 1) (2, 5, 5)

sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

. . . . . . . . .

• n-best parser produces trees Tc(s) for each sentence s

• Treebank gives correct tree t?(s) ∈ Tc(s) for sentence s

• Feature functions f apply to each tree t ∈ Tc(s), producing feature

values f(t) = (f1(t), . . . , fm(t))

• Machine learning algorithm selects feature weights w to prefer t?(s)

(e.g., so w · f(t?(s)) is greater than w · f(t ′) for other t ′ ∈ Tc(s))
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Conditional ML estimation of w

• Conditional ML estimation selects w to make t?(s) as likely as possible

compared to the trees in Tc(s)

• Same as conditional MaxEnt estimation

Pw(t|s) =
1

Zw(s)
expw · f(t) exponential model

Zw(s) =
∑

t ′∈Tc(s)

expw · f(t ′)

D = ((s1, t
?

1), . . . , (sn, t?

n)) treebank training data

LD(w) =

n∏

i=1

Pw(t?

i |si) conditional likelihood of D

ŵ = argmax
w

LD(w)
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(Joint) MLE for exponential models is hard

t?

i
T

D = (t?

1, . . . , t
?

n)

LD(w) =

n∏

i=1

Pw(t?

i )

ŵ = argmax
w

LD(w)

Pw(t) =
1

Zw

expw · f(t), Zw =
∑

t ′∈T

expw · f(t ′)

• Joint MLE selects w to make t?

i as likely as possible

• T is set of all possible parses for all possible strings

• T is infinite ⇒ cannot be enumerated ⇒ Zw cannot be calculated

• For a PCFG, Zw and hence ŵ are easy to calculate, but . . .

• in general ∂LD/∂wj and Zw are intractable analytically and numerically

• Abney (1997) suggests a Monte-Carlo calculation method
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Conditional MLE is easier

• The conditional likelihood of w is the conditional probability of the

hidden part of the data (syntactic structure) t? given its visible part

(yield or terminal string) s

• The conditional likelihood can be numerically optimized because Tc(s)

can be enumerated (by a parser)

T (si) t?

i

T

D = ((t?

1, s1) . . . , (t?

n, sn))

LD(w) =

n∏

i=1

Pw(t?

i |si)

ŵ = argmax
w

LD(w)

P(t|s) =
1

Zw(s)
expw · f(t), Zw(s) =

∑

t ′∈Tc(s)

expw · f(t ′)
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Conditional vs joint estimation

• Joint MLE maximizes probability of training trees and strings

– Generative statistical parsers usually use joint MLE

– Joint MLE is simple to compute (relative frequency)

• Conditional MLE maximizes probability of trees given strings

– Conditional estimation uses less information from the data

– learns nothing from distribution of strings

– ignores unambiguous sentences (!)

P(t, s) = P(t|s)P(s)

• Joint MLE should be better (lower variance) if your model correctly

predicts the distribution of parses and strings

– Any good probabilistic models of semantics and discourse?
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Conditional vs joint MLE for PCFGs

100×

VP

V

run 2×

V

see

NP

N

people

P

with

NP

N

telescopes

VP PP

VP

1×

VP

V

see

N

people

P

with

NP

N

telescopes

NP PP

NP

. . . × 2/105 × . . . . . . × 1/7 × . . .

. . . × 2/7 × . . . . . . × 1/7 × . . .

Rule count rel freq better vals

VP → V 100 100/105 4/7

VP → V NP 3 3/105 1/7

VP → VP PP 2 2/105 2/7

NP → N 6 6/7 6/7

NP → NP PP 1 1/7 1/7
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Regularization

• Overlearning ⇒ add regularization R that penalizes “complex” models

• Useful with a wide range of objective functions

ŵ = argmin
w

Q(w)+R(w)

Q(w) = − log LD(w) (objective function)

R(w) = c
∑

j

|wj|
p (regularizer)

LD(w) =
∏

i

Pw(t?

i |si)

• p = 2 known as the Gaussian prior

• p = 1 known as the Laplacian or exponential prior

– sparse solutions

– requires special care in optimization (Kazama and Tsujii, 2003)
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If candidate parses don’t include correct parse

• If Tc(s) doesn’t include t?(s), choose parse t+(s) in Tc(s) closest to t?(s)

• Maximize conditional likelihood of (t+
1 , . . . , t+

n)

• Closest parse t+
i = argmaxt∈T (si)

Ft?

i
(t)

– Ft?(t) is f-score of t relative to t?

• w chosen to maximize the regularized

log conditional likelihood of t+
i

LD(w) =
∏

i

Pw(t+
i |si)

t?

i

T

t+
i

Tc(si)
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Multiple closest parses

t?

i

Tc(si)

T +
c (t?

i )

T

• There can be more than one candidate parses T +
c (t?

i ) equally close to the

correct parse t?

i : which one(s) should we declare to be the best parse?

• Picking a parse at random does not work as well as . . .

• picking the parse with the highest Charniak parse probability, but . . .

• maximizing probability of all close parses (EM-like scheme in Riezler ’02)

works best of all

LD(w) =
∏

i

P(Tc(t
?

i )|Tc(si))
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Likelihood of multiple best parses

• Treebank D = ((t?

1, s1), . . . , (t
?

n, sn))

• n-best candidates Tc(si) of sentence si

• T +
c (t?

i ) = trees in Tc(si) with max f-score

• w chosen to maximize the regularized

log conditional likelihood of T +
c (t?

i )

t?

i

Tc(si)

T +
c (t?

i )

T

LD(w) =
∏

i

Pw(T+
c (t?

i )|Tc(si))

=
∏

i

∑
t∈T +

c (t?) expw · f(t)
∑

t∈Tc(si)
expw · f(t)

• ∂ log L/∂wj is a difference in expectations over T +
c (t?) and Tc(si)
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Features for ranking parses

• Features can be any real-valued function of parse trees

• In these experiments the features come in two kinds:

– The logarithm of the tree’s probability estimated by the Charniak

parser

– The number of times a particular configuration appears in the parse

Which ones improve parsing accuracy the most?
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Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Ancestor annotation provides a little “vertical context”

• Context annotation indicates constructions that only occur in main clause

(c.f., Emonds)
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Functional and lexical heads

• There are at least two sensible notions of head (c.f., Grimshaw)

– Functional heads: determiners of NPs, auxilary verbs of VPs, etc.

– Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.

• In a Maxent model, it is easy to use both!

S

DT

A

NN

record

NN

date

VP

VBZ

has

RB

n’t

VP

VBN

been

VP

VBN

set

.

.

NP

functional

functional

lexical
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Functional-lexical head dependencies

• The SynSemHeads features collect pairs of functional and lexical heads

of phrases

• This captures number agreement in NPs and aspects of other

head-to-head dependencies

• Parameterized by lexicalization

ROOT

S

NP

DT

The

NNS

rules

VP

VBP

force

S

NP

NNS

executives

VP

TO

to

VP

VB

report

NP

NNS

purchases

.

.
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n-gram rule features generalize rules

• Collects adjacent constituents in a local tree

• Also includes relationship to head (e.g., adjacent? left or right?)

• Parameterized by ancestor-annotation, lexicalization and head-type

ROOT

S

NP

DT

The

NN

clash
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AUX
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NP
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.

.
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Head to head dependencies

• Head-to-head dependencies track the function-argument dependencies

in a tree

• Co-ordination leads to phrases with multiple heads or functors

• Parameterized by head type, number of governors and lexicalization
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Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and

(optionally) all of the siblings of these nodes

• correspond roughly to TAG elementary trees

• parameterized by head type, number of sister nodes and lexicalization

ROOT

S
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PRP

They

VP
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.
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Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the right-most

branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English

• Only 2 different features, but very useful in final model!
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size and

(binned) closeness to the end of the sentence
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Coordination parallelism (1)

• A CoPar feature indicates the depth to which adjacent conjuncts are

parallel
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Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in adjacent

conjuncts and whether this pair contains the last conjunct.
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Word

• A Word feature is a word plus n of its parents (c.f., Klein and

Manning’s non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal projection) parents,

up to its governor’s maximal projection
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Neighbours

• A Neighbours feature indicates the node’s category, its binned length

and j left and k right POS tags for j, k ≤ 1
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Tree n-gram

• A tree n-gram feature is a tree fragment that connect sequences of

adjacent n words, for n = 2, 3, 4 (c.f. Bod’s DOP models)

• lexicalized and non-lexicalized variants
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Experimental setup

• Feature tuning experiments done using Collins’ split:

sections 2-19 as train, 20-21 as dev and 24 as test

• Tc(s) computed using Charniak 50-best parser

• Features which vary on less than 5 sentences pruned

• Optimization performed using LMVM optimizer from Petsc/TAO

optimization package

• Regularizer constant c adjusted to maximize f-score on dev
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f-score vs. n-best beam size

Beam size

O
ra

cl
e

f-
sc

or
e

50403020100

0.98

0.96

0.94

0.92

0.9

• F-score of Charniak’s most probable parse = 0.896

• Oracle f-score of Charniak’s 50-best parses = 0.965 (66% redn)

• oracle f-score continues to rise at wide beam widths

• no guarantee that reranker performance improves with beam width!

37



Rank of best parse

Rank of best parse in n-best list

F
ra

ct
io

n
of

se
n
te

n
ce

s

50403020100

0.5

0.4

0.3

0.2

0.1

0

• Charniak parser’s most likely parse is the best parse 41% of the time

• Reranker picks Charniak parser’s most likely parse 58% of the time
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Evaluating features

• The feature weights are not that indicative of how important a feature is

• The MaxEnt ranker with regularizer tuning takes approx 1 day to train

• The averaged perceptron algorithm takes approximately 2 minutes

– used in experiments comparing different sets of features

– all closest parses T +
c (t?) count as “correct”

– Used to compare models with the following features:

NLogP Rule NGram Word WProj RightBranch Heavy

NGramTree HeadTree Heads Neighbours CoPar CoLenPar
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Adding one feature class

• Averaged perceptron baseline with only base parser log prob feature

– section 20–21 f-score = 0.894913

– section 24 f-score = 0.889901
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Subtracting one feature class

• Averaged perceptron baseline with all features

– section 20–21 f-score = 0.906806

– section 24 f-score = 0.902782
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Feature selection is hard

Averaged perceptron feature selection

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.9110.910.9090.9080.9070.9060.9050.9040.9030.9020.901

0.908

0.906

0.904

0.902

0.9

0.898

0.896

0.894

0.892

• Greedy feature selection using averaged perceptron optimizing f-score on

sec 20–21

• All models also evaluated on section 24
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Comparing estimators

• Training on sections 2–19, regularizer tuned on 20–21, evaluate on 24

Estimator # features sec 20-21 sec 24

exponential model, p = 2 670,688 0.9085 0.9037

exponential model, p = 1 14,549 0.9078 0.9024 (p = 0.137)

averaged perceptron 523,374 0.9068 0.9028 (p = 0.528)

expected f-score 670,688 0.9084 0.9029 (p = 0.313)

• Because the exponential model with p = 2 is usually the first model I

test a new feature on, the features may be biased to work well with it.
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Averaged perceptron vs Exponentional model

Exponentional model, tuning regularizer constant c
Averaged perceptron w/ randomized data

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.910.90950.9090.90850.9080.90750.9070.90650.9060.90550.9050.9045

0.907

0.906

0.905

0.904

0.903

0.902

0.901

0.9

0.899

• Multiple runs of averaged perceptron on data in random order

• Exponentional model p = 2 adjusting regularizer weight c
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Class scaling with averaged perceptron

Averaged perceptron with scaled feature values

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.9120.910.9080.9060.9040.9020.90.8980.8960.8940.892

0.915

0.91

0.905

0.9

0.895

0.89

0.885

0.88

• Every feature class is associated with its own scaling factor

• Scaling factors adjusted to maximize av perceptron f-score on sec 20-21

• (Different features to other experiments)
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Expected f-score

• The expected f-score is computed by calculating the expected number of

nodes and the expected number of correct nodes of the parse trees in the

corpus under the exponential model

• This should take the size of the sentence into account during training

• The expected f-score can be calculated and differentiatiated wrt to w

section 24
sections 20-21

regularizer constant c

f-
sc

or
e

1.4e-061.2e-061e-068e-076e-074e-072e-070

0.912

0.91

0.908

0.906

0.904

0.902

0.9
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Results on all training data

• Features must vary on parses of at least 5 sentences in training data

• In this experiment, 730,134 features

• Exponential model trained on sections 2-21

• Gaussian regularization p = 2, constant selected to optimize f-score on

section 24

• On section 23: recall = 90.78, precision = 91.51, f-score = 91.15

• Will be available on the web this week
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Conclusion and future work

• Good features and a good machine learning algorithm can produce a

state-of-the-art parser

• Good candidate trees are a big help!

• The parse ranking framework lets us explore lots of different kinds of

features

– what a pity it’s not clear which ones are important

• Future work

– different kinds of information (prosody, morphology, word classes)

– richer representations (empty nodes, predicate-argument structures)

– build discriminatively-estimated features back into Charniak parser
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Sample parser errors
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Significance testing (av. perceptron)

comparing exponential model p = 2 with averaged perceptron

nsentences = 1345 in test corpus.

model 1 nfeatures = 670688, corpus f-score = 0.9037

model 2 nfeatures = 670688, corpus f-score = 0.902782

permutation test significance of corpus f-score difference = 0.58234

model 1 better on 214 = 15.9108% sentences

model 2 better on 170 = 12.6394% sentences

models 1 and 2 tied on 961 = 71% sentences

binomial 2-sided significance of sentence-by-sentence comparison = 0.0280806

bootstrap 95% confidence interval for model 1 f-scores = (0.897672 0.9096)

bootstrap 95% confidence interval for model 2 f-scores = (0.896832 0.908697)
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Significance testing (p=1)

comparing exponential models p = 2 with p = 1

nsentences = 1345 in test corpus.

model 1 nfeatures = 670688, corpus f-score = 0.9037

model 2 nfeatures = 670688, corpus f-score = 0.902357

permutation test significance of corpus f-score difference = 0.22695

model 1 better on 121 = 8.99628% sentences

model 2 better on 98 = 7.28625% sentences

models 1 and 2 tied on 1126 = 83% sentences

binomial 2-sided significance of sentence-by-sentence comparison = 0.136934

bootstrap 95% confidence interval for model 1 f-scores = (0.897672 0.9096)

bootstrap 95% confidence interval for model 2 f-scores = (0.896315 0.908321)
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Significance testing (expected f-score)

comparing exponential model p = 2 with expected f-score

nsentences = 1345 in test corpus.

model 1 nfeatures = 670688, corpus f-score = 0.9037

model 2 nfeatures = 670688, corpus f-score = 0.902865

permutation test significance of corpus f-score difference = 0.59533

model 1 better on 169 = 12.5651% sentences

model 2 better on 150 = 11.1524% sentences

models 1 and 2 tied on 1026 = 76% sentences

binomial 2-sided significance of sentence-by-sentence comparison = 0.313546

bootstrap 95% confidence interval for model 1 f-scores = (0.897672 0.9096)

bootstrap 95% confidence interval for model 2 f-scores = (0.89686 0.908797)

58



Features from correct/incorrect parses only

• Features that varied on less than 5 sentences were pruned

• Exponential model, p = 2

Source # features 20-21 f-score 24 f-score

All parses 670,688 0.9085 0.9037

Correct parses 173,409 0.9087 0.9043

Incorrect parses 670,544 0.9085 0.9036
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