
Features of Statistical Parsers

Mark Johnson

Brown Laboratory for Linguistic Information Processing

CoNLL 2005

1

Features of Statistical Parsers

Confessions of a bottom-feeder:

Dredging in the Statistical Muck

Mark Johnson

Brown Laboratory for Linguistic Information Processing

CoNLL 2005

2

Features of Statistical Parsers

Confessions of a bottom-feeder:

Dredging in the Statistical Muck

Mark Johnson

Brown Laboratory for Linguistic Information Processing

CoNLL 2005

With much help from Eugene Charniak, Michael Collins and Matt Lease

3

Outline

• Goal: find features for identifying good parses

• Why is this difficult with generative statistical models?

• Reranking framework

• Conditional versus joint estimation

• Features for parse ranking

• Estimation procedures

• Experimental set-up

• Feature selection and evaluation

4

Features for accurate parsing

• Accurate parsing requires good features

⇒ need a flexible method for evaluating a wide range of features

• parse ranking framework is current best method for doing this

+ works with virtually any kind of representation

+ features can encode virtually any kind of information

(syntactic, lexical semantics, prosody, etc.)

+ can exploit the currently best-available parsers

− efficient algorithms are hard(-er) to design and implement

− fishing expedition

5

Why not a generative statistical parser?

• Statistical parsers (Charniak, Collins) generate parses node by node

• Each step is conditioned on the structure already generated
S

NP

PRP

He

VP

VBD

raised

NP

the price

.

.

NNDT

• Encoding dependencies is as difficult as designing a feature-passing

grammar (GPSG)

• Smoothing interacts in mysterious ways with these encodings

• Conditional estimation should produce better parsers with our current

lousy models

6

Linear ranking framework

• Generate n candidate parses

Tc(s) for each sentence s

• Map each parse t ∈ Tc(s) to a

real-valued feature vector

f(t) = (f1(t), . . . , fm(t))

• Each feature fj is associated

with a weight wj

• The highest scoring parse

t̂ = argmax
t∈Tc(s)

w · f(t)

is predicted correct

sentence s

tn. . .

. . .f(t1) f(tn)

w · f(t1) w · f(tn). . .

n-best parser

parses Tc(s)t1

feature vectors

parse scores

apply feature fns

linear combination

argmax

“best” parse for s

7

Linear ranking example

w = (−1, 2, 1)

Candidate parse tree t features f(t) parse score w · f(t)

t1 (1, 3, 2) 7

t2 (2, 2, 1) 3

.

• Parser designer specifies feature functions f = (f1, . . . , fm)

• Feature weights w = (w1, . . . , wm) specify each feature’s “importance”

• n-best parser produces trees Tc(s) for each sentence s

• Feature functions f apply to each tree t ∈ Tc(s), producing feature values

f(t) = (f1(t), . . . , fm(t))

• Return highest scoring tree

t̂(s) = argmax
t

w · f(t) = argmax
t

m∑

j=1

wjfj(t)

8

Linear ranking, statistics and machine learning

• Many models define the best candidate t̂ in terms of a linear

combination of feature values w · f(t)

– Exponential, Log-linear, Gibbs models, MaxEnt

P(t) =
1

Z
expw · f(t)

Z =
∑

t∈T

expw · f(t) (partition function)

log P(t) = w · f(t) − log Z

– Perceptron algorithm (including averaged version)

– Support Vector Machines

– Boosted decision stubs

9

PCFGs are exponential models

fj(t) = number of times the jth rule is used in t

wj = log pj, where pj is probability of jth rule

f

S

NP VP

rice grows

= [1︸︷︷︸
S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

PPCFG(t) =
∏

j

p
fj(t)

j =
∏

j

exp(wj)
fj(t) =

∏

j

expwjfj(t)

= exp
∑

j

wjfj(t) = expw · f(t)

So a PCFG is just a special kind of exponential model with Z = 1.
10

Features in linear ranking models

• Features can be any real-valued function of parse t and sentence s

– counts of number of times a particular structure appears in t

– log probabilities from other models

∗ log Pc(t) is our most useful feature!

∗ generalizes reference distributions of MaxEnt models

• Subtracting a constant c(s) from a feature’s value doesn’t affect

difference between parse scores in a linear model

w · (f(t1) − c(s)) − w · (f(t2) − c(s)) = w · f(t1) − w · f(t2)

– features that don’t vary on Tc(s) are useless

– subtract most frequently occuring value cj(s) for each feature fj in

sentence s ⇒ sparser feature vectors

11

Getting the feature weights

s f(t?(s)) {f(t) : t ∈ Tc(s), t 6= t?(s)}

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)

sentence 2 (7, 2, 1) (2, 5, 5)

sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

.

• n-best parser produces trees Tc(s) for each sentence s

• Treebank gives correct tree t?(s) ∈ Tc(s) for sentence s

• Feature functions f apply to each tree t ∈ Tc(s), producing feature

values f(t) = (f1(t), . . . , fm(t))

• Machine learning algorithm selects feature weights w to prefer t?(s)

(e.g., so w · f(t?(s)) is greater than w · f(t ′) for other t ′ ∈ Tc(s))

12

Conditional ML estimation of w

• Conditional ML estimation selects w to make t?(s) as likely as possible

compared to the trees in Tc(s)

• Same as conditional MaxEnt estimation

Pw(t|s) =
1

Zw(s)
expw · f(t) exponential model

Zw(s) =
∑

t ′∈Tc(s)

expw · f(t ′)

D = ((s1, t
?

1), . . . , (sn, t?

n)) treebank training data

LD(w) =

n∏

i=1

Pw(t?

i |si) conditional likelihood of D

ŵ = argmax
w

LD(w)

13

(Joint) MLE for exponential models is hard

t?

i
T

D = (t?

1, . . . , t
?

n)

LD(w) =

n∏

i=1

Pw(t?

i)

ŵ = argmax
w

LD(w)

Pw(t) =
1

Zw

expw · f(t), Zw =
∑

t ′∈T

expw · f(t ′)

• Joint MLE selects w to make t?

i as likely as possible

• T is set of all possible parses for all possible strings

• T is infinite ⇒ cannot be enumerated ⇒ Zw cannot be calculated

• For a PCFG, Zw and hence ŵ are easy to calculate, but . . .

• in general ∂LD/∂wj and Zw are intractable analytically and numerically

• Abney (1997) suggests a Monte-Carlo calculation method

14

Conditional MLE is easier

• The conditional likelihood of w is the conditional probability of the

hidden part of the data (syntactic structure) t? given its visible part

(yield or terminal string) s

• The conditional likelihood can be numerically optimized because Tc(s)

can be enumerated (by a parser)

T (si) t?

i

T

D = ((t?

1, s1) . . . , (t?

n, sn))

LD(w) =

n∏

i=1

Pw(t?

i |si)

ŵ = argmax
w

LD(w)

P(t|s) =
1

Zw(s)
expw · f(t), Zw(s) =

∑

t ′∈Tc(s)

expw · f(t ′)

15

Conditional vs joint estimation

• Joint MLE maximizes probability of training trees and strings

– Generative statistical parsers usually use joint MLE

– Joint MLE is simple to compute (relative frequency)

• Conditional MLE maximizes probability of trees given strings

– Conditional estimation uses less information from the data

– learns nothing from distribution of strings

– ignores unambiguous sentences (!)

P(t, s) = P(t|s)P(s)

• Joint MLE should be better (lower variance) if your model correctly

predicts the distribution of parses and strings

– Any good probabilistic models of semantics and discourse?

16

Conditional vs joint MLE for PCFGs

100×

VP

V

run 2×

V

see

NP

N

people

P

with

NP

N

telescopes

VP PP

VP

1×

VP

V

see

N

people

P

with

NP

N

telescopes

NP PP

NP

. . . × 2/105 × × 1/7 × . . .

. . . × 2/7 × × 1/7 × . . .

Rule count rel freq better vals

VP → V 100 100/105 4/7

VP → V NP 3 3/105 1/7

VP → VP PP 2 2/105 2/7

NP → N 6 6/7 6/7

NP → NP PP 1 1/7 1/7

17

Regularization

• Overlearning ⇒ add regularization R that penalizes “complex” models

• Useful with a wide range of objective functions

ŵ = argmin
w

Q(w)+R(w)

Q(w) = − log LD(w) (objective function)

R(w) = c
∑

j

|wj|
p (regularizer)

LD(w) =
∏

i

Pw(t?

i |si)

• p = 2 known as the Gaussian prior

• p = 1 known as the Laplacian or exponential prior

– sparse solutions

– requires special care in optimization (Kazama and Tsujii, 2003)

18

If candidate parses don’t include correct parse

• If Tc(s) doesn’t include t?(s), choose parse t+(s) in Tc(s) closest to t?(s)

• Maximize conditional likelihood of (t+
1 , . . . , t+

n)

• Closest parse t+
i = argmaxt∈T (si)

Ft?

i
(t)

– Ft?(t) is f-score of t relative to t?

• w chosen to maximize the regularized

log conditional likelihood of t+
i

LD(w) =
∏

i

Pw(t+
i |si)

t?

i

T

t+
i

Tc(si)

19

Multiple closest parses

t?

i

Tc(si)

T +
c (t?

i)

T

• There can be more than one candidate parses T +
c (t?

i) equally close to the

correct parse t?

i : which one(s) should we declare to be the best parse?

• Picking a parse at random does not work as well as . . .

• picking the parse with the highest Charniak parse probability, but . . .

• maximizing probability of all close parses (EM-like scheme in Riezler ’02)

works best of all

LD(w) =
∏

i

P(Tc(t
?

i)|Tc(si))

20

Likelihood of multiple best parses

• Treebank D = ((t?

1, s1), . . . , (t
?

n, sn))

• n-best candidates Tc(si) of sentence si

• T +
c (t?

i) = trees in Tc(si) with max f-score

• w chosen to maximize the regularized

log conditional likelihood of T +
c (t?

i)

t?

i

Tc(si)

T +
c (t?

i)

T

LD(w) =
∏

i

Pw(T+
c (t?

i)|Tc(si))

=
∏

i

∑
t∈T +

c (t?) expw · f(t)
∑

t∈Tc(si)
expw · f(t)

• ∂ log L/∂wj is a difference in expectations over T +
c (t?) and Tc(si)

21

Features for ranking parses

• Features can be any real-valued function of parse trees

• In these experiments the features come in two kinds:

– The logarithm of the tree’s probability estimated by the Charniak

parser

– The number of times a particular configuration appears in the parse

Which ones improve parsing accuracy the most?

22

Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Ancestor annotation provides a little “vertical context”

• Context annotation indicates constructions that only occur in main clause

(c.f., Emonds)

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

Heads

Ancestor

Context

Rule

23

Functional and lexical heads

• There are at least two sensible notions of head (c.f., Grimshaw)

– Functional heads: determiners of NPs, auxilary verbs of VPs, etc.

– Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.

• In a Maxent model, it is easy to use both!

S

DT

A

NN

record

NN

date

VP

VBZ

has

RB

n’t

VP

VBN

been

VP

VBN

set

.

.

NP

functional

functional

lexical

24

Functional-lexical head dependencies

• The SynSemHeads features collect pairs of functional and lexical heads

of phrases

• This captures number agreement in NPs and aspects of other

head-to-head dependencies

• Parameterized by lexicalization

ROOT

S

NP

DT

The

NNS

rules

VP

VBP

force

S

NP

NNS

executives

VP

TO

to

VP

VB

report

NP

NNS

purchases

.

.

25

n-gram rule features generalize rules

• Collects adjacent constituents in a local tree

• Also includes relationship to head (e.g., adjacent? left or right?)

• Parameterized by ancestor-annotation, lexicalization and head-type

ROOT

S

NP

DT

The

NN

clash

VP

AUX

is

NP

NP

DT

a

NN

sign

PP

IN

of

NP

NP

DT

a

JJ

new

NN

toughness

CC

and

NN

divisiveness

PP

IN

in

NP

NP

NNP

Japan

POS

’s

JJ

once-cozy

JJ

financial

NNS

circles

.

.

Left of head, non-adjacent to head

26

Head to head dependencies

• Head-to-head dependencies track the function-argument dependencies

in a tree

• Co-ordination leads to phrases with multiple heads or functors

• Parameterized by head type, number of governors and lexicalization

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

27

Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and

(optionally) all of the siblings of these nodes

• correspond roughly to TAG elementary trees

• parameterized by head type, number of sister nodes and lexicalization

ROOT

S

NP

PRP

They

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

.

.

28

Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the right-most

branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English

• Only 2 different features, but very useful in final model!

ROOT

WDT

That went

over

DT

the

JJ

permissible

NN

line

IN

for

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.PP

VP

S

NP

PP

NP

NP

VBD

IN

NP

ADJP

29

Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size and

(binned) closeness to the end of the sentence

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words =1 punctuation

30

Coordination parallelism (1)

• A CoPar feature indicates the depth to which adjacent conjuncts are

parallel

ROOT

S

NP

PRP

They

VP

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

CC

and

VP

VDB

were

VP

VBN

surprised

PP

IN

at

NP

NP

DT

the

NN

action

VP

VBN

taken

.

.

Isomorphic trees to depth 4

31

Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in adjacent

conjuncts and whether this pair contains the last conjunct.

ROOT

S

NP

PRP

They

VP

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

CC

and

VP

VDB

were

VP

VBN

surprised

PP

IN

at

NP

NP

DT

the

NN

action

VP

VBN

taken

.

.

4 words

6 wordsCoLenPar feature: (2,true)

32

Word

• A Word feature is a word plus n of its parents (c.f., Klein and

Manning’s non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal projection) parents,

up to its governor’s maximal projection

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

33

Neighbours

• A Neighbours feature indicates the node’s category, its binned length

and j left and k right POS tags for j, k ≤ 1

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words

34

Tree n-gram

• A tree n-gram feature is a tree fragment that connect sequences of

adjacent n words, for n = 2, 3, 4 (c.f. Bod’s DOP models)

• lexicalized and non-lexicalized variants

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

35

Experimental setup

• Feature tuning experiments done using Collins’ split:

sections 2-19 as train, 20-21 as dev and 24 as test

• Tc(s) computed using Charniak 50-best parser

• Features which vary on less than 5 sentences pruned

• Optimization performed using LMVM optimizer from Petsc/TAO

optimization package

• Regularizer constant c adjusted to maximize f-score on dev

36

f-score vs. n-best beam size

Beam size

O
ra

cl
e

f-
sc

or
e

50403020100

0.98

0.96

0.94

0.92

0.9

• F-score of Charniak’s most probable parse = 0.896

• Oracle f-score of Charniak’s 50-best parses = 0.965 (66% redn)

• oracle f-score continues to rise at wide beam widths

• no guarantee that reranker performance improves with beam width!

37

Rank of best parse

Rank of best parse in n-best list

F
ra

ct
io

n
of

se
n
te

n
ce

s

50403020100

0.5

0.4

0.3

0.2

0.1

0

• Charniak parser’s most likely parse is the best parse 41% of the time

• Reranker picks Charniak parser’s most likely parse 58% of the time

38

Evaluating features

• The feature weights are not that indicative of how important a feature is

• The MaxEnt ranker with regularizer tuning takes approx 1 day to train

• The averaged perceptron algorithm takes approximately 2 minutes

– used in experiments comparing different sets of features

– all closest parses T +
c (t?) count as “correct”

– Used to compare models with the following features:

NLogP Rule NGram Word WProj RightBranch Heavy

NGramTree HeadTree Heads Neighbours CoPar CoLenPar

39

Adding one feature class

• Averaged perceptron baseline with only base parser log prob feature

– section 20–21 f-score = 0.894913

– section 24 f-score = 0.889901
40

Subtracting one feature class

• Averaged perceptron baseline with all features

– section 20–21 f-score = 0.906806

– section 24 f-score = 0.902782

41

Feature selection is hard

Averaged perceptron feature selection

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.9110.910.9090.9080.9070.9060.9050.9040.9030.9020.901

0.908

0.906

0.904

0.902

0.9

0.898

0.896

0.894

0.892

• Greedy feature selection using averaged perceptron optimizing f-score on

sec 20–21

• All models also evaluated on section 24

42

Comparing estimators

• Training on sections 2–19, regularizer tuned on 20–21, evaluate on 24

Estimator # features sec 20-21 sec 24

exponential model, p = 2 670,688 0.9085 0.9037

exponential model, p = 1 14,549 0.9078 0.9024 (p = 0.137)

averaged perceptron 523,374 0.9068 0.9028 (p = 0.528)

expected f-score 670,688 0.9084 0.9029 (p = 0.313)

• Because the exponential model with p = 2 is usually the first model I

test a new feature on, the features may be biased to work well with it.

43

Averaged perceptron vs Exponentional model

Exponentional model, tuning regularizer constant c
Averaged perceptron w/ randomized data

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.910.90950.9090.90850.9080.90750.9070.90650.9060.90550.9050.9045

0.907

0.906

0.905

0.904

0.903

0.902

0.901

0.9

0.899

• Multiple runs of averaged perceptron on data in random order

• Exponentional model p = 2 adjusting regularizer weight c

44

Class scaling with averaged perceptron

Averaged perceptron with scaled feature values

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.9120.910.9080.9060.9040.9020.90.8980.8960.8940.892

0.915

0.91

0.905

0.9

0.895

0.89

0.885

0.88

• Every feature class is associated with its own scaling factor

• Scaling factors adjusted to maximize av perceptron f-score on sec 20-21

• (Different features to other experiments)

45

Expected f-score

• The expected f-score is computed by calculating the expected number of

nodes and the expected number of correct nodes of the parse trees in the

corpus under the exponential model

• This should take the size of the sentence into account during training

• The expected f-score can be calculated and differentiatiated wrt to w

section 24
sections 20-21

regularizer constant c

f-
sc

or
e

1.4e-061.2e-061e-068e-076e-074e-072e-070

0.912

0.91

0.908

0.906

0.904

0.902

0.9

46

Results on all training data

• Features must vary on parses of at least 5 sentences in training data

• In this experiment, 730,134 features

• Exponential model trained on sections 2-21

• Gaussian regularization p = 2, constant selected to optimize f-score on

section 24

• On section 23: recall = 90.78, precision = 91.51, f-score = 91.15

• Will be available on the web this week

47

Conclusion and future work

• Good features and a good machine learning algorithm can produce a

state-of-the-art parser

• Good candidate trees are a big help!

• The parse ranking framework lets us explore lots of different kinds of

features

– what a pity it’s not clear which ones are important

• Future work

– different kinds of information (prosody, morphology, word classes)

– richer representations (empty nodes, predicate-argument structures)

– build discriminatively-estimated features back into Charniak parser

48

Sample parser errors

S

NP

PRP

He

‘‘

‘‘

VP

MD

will

RB

not

VP

AUX

be

VP

VBN

shaken

PRT

RP

out

PP

IN

by

NP

JJ

external

NNS

events

,

,

ADVP

RB

however

S

ADJP

JJ

surprising

,

,

JJ

alarming

CC

or

JJ

vexing

:

...

.

.

S

NP

PRP

He

‘‘

‘‘

VP

MD

will

RB

not

VP

AUX

be

VP

VBN

shaken

PRT

RP

out

PP

IN

by

NP

NP

JJ

external

NNS

events

,

,

ADJP

RB

however

JJ

surprising

,

,

JJ

alarming

CC

or

JJ

vexing

:

...

.

.

49

S

NP

JJ

Soviet

NNS

leaders

VP

VBD

said

SBAR

S

NP

PRP

they

VP

MD

would

VP

VB

support

NP

PRP$

their

NNP

Kabul

NNS

clients

PP

IN

by

NP

NP

DT

all

NNS

means

ADJP

JJ

necessary

:

--

CC

and

AUX

did

.

.

S

NP

JJ

Soviet

NNS

leaders

VP

VP

VBD

said

SBAR

S

NP

PRP

they

VP

MD

would

VP

VB

support

NP

PRP$

their

NNP

Kabul

NNS

clients

PP

IN

by

NP

NP

DT

all

NNS

means

ADJP

JJ

necessary

:

--

CC

and

VP

AUX

did

.

.

50

S

NP

NNP

Kia

VP

AUX

is

NP

NP

DT

the

ADJP

RBS

most

JJ

aggressive

PP

IN

of

NP

NP

DT

the

NNP

Korean

NNP

Big

NNP

Three

PP

IN

in

NP

NN

offering

NN

financing

.

.

S

NP

NNP

Kia

VP

AUX

is

NP

NP

DT

the

RBS

most

JJ

aggressive

PP

IN

of

NP

DT

the

NNP

Korean

NNP

Big

NNP

Three

PP

IN

in

S

VP

VBG

offering

NP

NN

financing

.

.

51

S

ADVP

NP

CD

Two

NNS

years

RB

ago

,

,

NP

DT

the

NN

district

VP

VBD

decided

S

VP

TO

to

VP

VB

limit

NP

DT

the

NNS

bikes

S

VP

TO

to

VP

VB

fire

NP

NNS

roads

PP

IN

in

NP

PRP$

its

CD

65,000

JJ

hilly

NNS

acres

.

.

S

ADVP

NP

CD

Two

NNS

years

IN

ago

,

,

NP

DT

the

NN

district

VP

VBD

decided

S

VP

TO

to

VP

VB

limit

NP

DT

the

NNS

bikes

PP

TO

to

NP

NP

NN

fire

NNS

roads

PP

IN

in

NP

PRP$

its

CD

65,000

JJ

hilly

NNS

acres

.

.

52

S

NP

DT

The

NN

company

ADVP

RB

also

VP

VBD

pleased

NP

NNS

analysts

PP

IN

by

S

VP

VBG

announcing

NP

NP

CD

four

JJ

new

NN

store

NNS

openings

VP

VBN

planned

PP

IN

for

NP

JJ

fiscal

CD

1990

,

,

S

VP

VBG

ending

NP

JJ

next

NNP

August

.

.

S

NP

DT

The

NN

company

ADVP

RB

also

VP

VBD

pleased

NP

NNS

analysts

PP

IN

by

S

VP

VBG

announcing

NP

NP

CD

four

JJ

new

NN

store

NNS

openings

VP

VBN

planned

PP

IN

for

NP

NP

JJ

fiscal

CD

1990

,

,

VP

VBG

ending

NP

JJ

next

NNP

August

.

.

53

S

CC

But

NP

NNS

funds

ADVP

RB

generally

VP

AUX

are

VP

ADVP

RB

better

VBN

prepared

NP

DT

this

NN

time

RP

around

.

.

S

CC

But

NP

NNS

funds

ADVP

RB

generally

VP

AUX

are

ADJP

RBR

better

JJ

prepared

ADVP

NP

DT

this

NN

time

RB

around

.

.

54

S

NP

DT

The

NNP

U.S.

VP

VBD

said

SBAR

S

NP

PRP

it

VP

MD

would

ADVP

RB

fully

VP

VP

VB

support

NP

DT

the

NN

resistance

:

--

CC

and

VP

AUX

did

RB

n’t

.

.

S

NP

DT

The

NNP

U.S.

VP

VP

VBD

said

SBAR

S

NP

PRP

it

VP

MD

would

VP

ADVP

RB

fully

VB

support

NP

DT

the

NN

resistance

:

--

CC

and

VP

AUX

did

RB

n’t

.

.

55

Significance testing (av. perceptron)

comparing exponential model p = 2 with averaged perceptron

nsentences = 1345 in test corpus.

model 1 nfeatures = 670688, corpus f-score = 0.9037

model 2 nfeatures = 670688, corpus f-score = 0.902782

permutation test significance of corpus f-score difference = 0.58234

model 1 better on 214 = 15.9108% sentences

model 2 better on 170 = 12.6394% sentences

models 1 and 2 tied on 961 = 71% sentences

binomial 2-sided significance of sentence-by-sentence comparison = 0.0280806

bootstrap 95% confidence interval for model 1 f-scores = (0.897672 0.9096)

bootstrap 95% confidence interval for model 2 f-scores = (0.896832 0.908697)

56

Significance testing (p=1)

comparing exponential models p = 2 with p = 1

nsentences = 1345 in test corpus.

model 1 nfeatures = 670688, corpus f-score = 0.9037

model 2 nfeatures = 670688, corpus f-score = 0.902357

permutation test significance of corpus f-score difference = 0.22695

model 1 better on 121 = 8.99628% sentences

model 2 better on 98 = 7.28625% sentences

models 1 and 2 tied on 1126 = 83% sentences

binomial 2-sided significance of sentence-by-sentence comparison = 0.136934

bootstrap 95% confidence interval for model 1 f-scores = (0.897672 0.9096)

bootstrap 95% confidence interval for model 2 f-scores = (0.896315 0.908321)

57

Significance testing (expected f-score)

comparing exponential model p = 2 with expected f-score

nsentences = 1345 in test corpus.

model 1 nfeatures = 670688, corpus f-score = 0.9037

model 2 nfeatures = 670688, corpus f-score = 0.902865

permutation test significance of corpus f-score difference = 0.59533

model 1 better on 169 = 12.5651% sentences

model 2 better on 150 = 11.1524% sentences

models 1 and 2 tied on 1026 = 76% sentences

binomial 2-sided significance of sentence-by-sentence comparison = 0.313546

bootstrap 95% confidence interval for model 1 f-scores = (0.897672 0.9096)

bootstrap 95% confidence interval for model 2 f-scores = (0.89686 0.908797)

58

Features from correct/incorrect parses only

• Features that varied on less than 5 sentences were pruned

• Exponential model, p = 2

Source # features 20-21 f-score 24 f-score

All parses 670,688 0.9085 0.9037

Correct parses 173,409 0.9087 0.9043

Incorrect parses 670,544 0.9085 0.9036

59

	Outline
	Features for accurate parsing
	Why not a generative statistical parser?
	Linear ranking framework
	Linear ranking example
	Linear ranking, statistics and machine learning
	PCFGs are exponential models
	Features in linear ranking models
	Getting the feature weights
	Conditional ML estimation of w
	(Joint) MLE for exponential models is hard
	Conditional MLE is easier
	Conditional vs joint estimation
	Conditional vs joint MLE for PCFGs
	Regularization
	If candidate parses don't include correct parse
	Multiple closest parses
	Likelihood of multiple best parses
	Features for ranking parses
	Lexicalized and parent-annotated rules
	Functional and lexical heads
	Functional-lexical head dependencies
	n-gram rule features generalize rules
	Head to head dependencies
	Head trees record all dependencies
	Rightmost branch bias
	Constituent Heavyness and location
	Coordination parallelism (1)
	Coordination parallelism (2)
	Word
	Neighbours
	Tree n-gram
	Experimental setup
	f-score vs. n-best beam size
	Rank of best parse
	Evaluating features
	Adding one feature class
	Subtracting one feature class
	Feature selection is hard
	Comparing estimators
	Averaged perceptron vs Exponentional model
	Class scaling with averaged perceptron
	Expected f-score
	Results on all training data
	Conclusion and future work
	Sample parser errors
	Significance testing (av. perceptron)
	Significance testing (p=1)
	Significance testing (expected f-score)
	Features from correct/incorrect parses only

