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Talk outline

• Who cares about parsing?

• PCFGs, maximum likelihood estimation and (lack of)

independence

• Dependence, arbitrary features and exponential parsing models

• Joint vs. conditional maximum likelihood estimation of

exponential models

• Features of an exponential parsing model
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Why parsing?

• Applications

– Recovering syntactic structure

∗ Information extraction

∗ Question answering

∗ Machine translation

– Language modeling (distinguishing likely from unlikely

sentences)

∗ Speech recognition

∗ Speech error detection and correction

• Science

– First step on the path to meaning
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Short history of parsing

• (1960s–1970s) basic dynamic programming algorithms, ATNs

– inspired by linguistic theory (transformational grammar)

• (1980s–1990s) “unification” grammar (no deep structure)

– parsers provably implement a specific linguistic grammar

– grammar ∼ axioms, UG ∼ logic, parsing ∼ deduction

– emphasis on grammar formalisms

• (1980s–??) direct statistical models (e.g., n-gram models)

– revolutionized speech recognition, practical applications

• (1990s–??) statistical models of linguistic structure

– “curse of dimensionality” limits direct statistical models

– emphasis on frequent constructions
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N-gram models of strings

• Model dependencies between n adjacent words (n-gram models)

– predict a word based on the n − 1 preceding words

$ → the → man → in → the → hat → drinks → red → wine → $

n = 1 : P(hat); n = 2 : P(hat |the); n = 3 : P(hat |in, the)

• N-gram models are universal approximators as n → ∞

• Probabilities estimated from real corpora

• Probability distinguishes “good” from “bad” sentences

• These simple models work surprisingly well because they are

lexicalized and most dependencies are local
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Limitations of n-gram models

• Curse of dimensionality: the number of possible n-grams

(sequences of n words) grows exponentially with n

– n = 1 ⇒ Vn ≈ 1, 000

– n = 2 ⇒ Vn ≈ 1, 000, 000

– n = 3 ⇒ Vn ≈ 1, 000, 000, 000

• Bias-variance dilemma: As n gets larger . . .

– the model becomes more accurate (lower bias)

– more data is needed to learn the model (higher variance)

• Structured models collect statistics on linguistic structures

– only model linguistic dependencies (strong bias)

– ignore other dependencies (lower variance)
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Probabilistic Context Free Grammars
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. . .

• Rules are associated with probabilities

• Tree probability is the product of rule probabilities

• Most probable tree is “best guess” at correct syntactic structure
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Treebank corpora
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• The Penn treebank contains hand-annotated parse trees for

∼ 50, 000 sentences

• Treebanks also exist for the Brown corpus, the Switchboard

corpus (spontaneous telephone conversations) and Chinese and

Arabic corpora
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Estimating a grammar from a treebank

• Maximum likelihood principle: Choose the grammar and rule

probabilities that make the trees in the corpus as likely as

possible

– read the rules off the trees

– for PCFGs, set rule probabilities to the relative frequency of

each rule in the treebank

P(VP → V NP) =
Number of times VP → V NP occurs

Number of times VP occurs

• If the language is generated by a PCFG and the treebank trees

are its derivation trees, the estimated grammar converges to the

true grammar.
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Estimating PCFGs from visible data
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Non-local constraints and PCFG MLE
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Dividing by partition function Z
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Other values do better!
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Make dependencies local – GPSG-style
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“Head to head” dependencies
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. . .

• Lexicalization captures syntactic and semantic dependencies

• Lexicalized structural preferences may be most important
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Summary so far

• Maximum likelihood is a good way of estimating a grammar

• Maximum likelihood estimation of a PCFG from a treebank is

easy if the trees are accurate

• But real language has many more dependencies than treebank

grammar describes

⇒ relative frequency estimator not MLE

– Make non-local dependencies local by splitting categories

⇒ Astronomical number of possible categories

• Or find some way of dealing with non-local dependencies . . .
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Exponential models

• Rules are not independent ⇒ in general Z 6= 1

• Models with dependencies between features are called

exponential models

– Universe T (set of all possible parse trees)

– Features f = (f1, . . . , fm) (fj(t) = value of j feature on

t ∈ T )

– Feature weights w = (w1, . . . , wm)

P(t) =
1

Z
exp w · f(t)

Z =
∑

t ′∈T

exp w · f(t ′)

Hint: Think of exp w · f(t) as unnormalized probability of t
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PCFGs are exponential models

T = set of all trees generated by PCFG G

fj(t) = number of times the jth rule is used in t ∈ T

p(rj) = probability of jth rule in G

Set weight wj = log p(rj)
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So a PCFG is just a special kind of exponential model with Z = 1.
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Advantages of exponential models

• Exponential models are very flexible . . .

• Features f can be any function of parses . . .

– whether a particular structure occurs in a parse

– conjunctions of prosodic and syntactic structure

• Parses t need not be trees, but can be anything at all

– Feature structures (LFG, HPSG)

– Minimalist derivations

• Exponential models are related to other popular models

– Harmony theory and optimality theory

– Maxent models
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Modeling dependencies

• It’s usually difficult to design a PCFG model that captures a

particular set of dependencies

– probability of the tree must be broken down into a product

of conditional probability distributions

– non-local dependencies must be expressed in terms of

GPSG-style feature passing

• It’s easy to make exponential models sensitive to new

dependencies

– add a new feature functions to existing feature functions

– figuring out what the right dependencies are is hard, but

incorporating them into an exponential model is easy
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MLE of exponential models is hard

• An exponential model associates features

f(t) = (f1(t), . . . , fm(t)) with weights w = (w1, . . . , wm)

P(t) =
1

Z
exp w · f(t)

Z =
∑

t ′∈T

exp w · f(t ′)

• Given treebank (t1, . . . , tn), MLE chooses w to maximize

P(t1) × . . . × P(tn), i.e., make the treebank as likely as possible

• Computing P(t) requires the partition function Z

• Computing Z requires a sum over all parses T for all sentences

⇒ computing MLE of an exponential parsing model seems very

hard
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Conditional ML estimation

• Conditional ML estimation chooses feature weights to

maximize P(t1|s1) × . . . × P(tn|sn), where si is string for ti

– choose feature weights to make ti most likely relative to

parses T (si) for si

⇒ CMLE doesn’t involve other sentences

P(t|s) =
1

Z(s)
expw · f(t)

Z(s) =
∑

t ′∈T (s)

exp w · f(t ′)

• CMLE “only” involves repeatedly parsing training data

• With “wrong” models, CMLE often produces a more accurate

parser than joint MLE

22



Conditional vs joint MLE
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Conditional ML estimation

s f(t̄) {f(t) : t ∈ T (s), t 6= t̄(s)}

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)

sentence 2 (7, 2, 1) (2, 5, 5)

sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

. . . . . . . . .

• Parser designer specifies feature functions f = (f1, . . . , fm)

• A parser produces trees T (s) for each sentence s

• Treebank tells us correct tree t̄(s) ∈ T (s) for sentence s

• Feature functions f apply to each tree t ∈ T (s), producing

feature values f(t) = (f1(t), . . . , fm(t))

• MCLE estimates feature weights w = (w1, . . . , wm)
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Coarse-to-fine parsing

• Z(s) is still hard to compute ⇒ make T (s) even smaller!

• Restrict attention to 50-best parses produced by Charniak

parser (a good PCFG-based parser)

• Exponential model is trained using CMLE to pick out best

parse from Charniak’s 50-best parses

s

. . .

. . .

. . .w · f(t1) w · f(t50)

f(t1)

t1 t50
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Charniak parser

Parse scores

Features
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Sentence
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Parser evaluation

• A node’s edge is its label and beginning and ending string positions

• E(t) is the set of edges associated with a tree t

• If t is a parse tree and t̄ is the correct tree, then

precision Pt̄(t) = |E(t)|/|E(t) ∩ E(t̄)|

recall Rt̄(t) = |E(t̄)|/|E(t) ∩ E(t̄)|

f-score Ft̄(t) = 2/(Pt̄(t)
−1 + Rȳ(t)−1) (geometric mean of P and R)
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Performance of Charniak parser

• F-score of Charniak’s most probable parse = 0.896

(cross-validated on PTB sections 2-19)

• Oracle f-score of Charniak’s 50-best parses = 0.965 (66% redn)
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Expt 1: Only “old” features

• Features: 1 log Charniak probability, 10, 124 Rule features

• Charniak’s parser already conditions on local trees!

• Feature selection: features must vary on 5 or more sentences

• Results: f-score = 0.894; baseline = 0.890; ≈ 4% error reduction

⇒ discriminative training alone can improve accuracy
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Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Ancestor annotation provides a little “vertical context”

• Context annotation indicates constructions that only occur in

main clause (c.f., Emonds)
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Functional and lexical heads

• There are at least two sensible notions of head (c.f., Grimshaw)

– Functional heads: determiners of NPs, auxilary verbs of

VPs, etc.

– Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.

• In a Maxent model, it is easy to use both!
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Functional-lexical head dependencies

• The SynSemHeads features collect pairs of functional and

lexical heads of phrases

• This captures number agreement in NPs and aspects of other

head-to-head dependencies
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n-gram rule features generalize rules

• Collects adjacent constituents in a local tree

• Also includes relationship to head

• Constituents can be ancestor-annotated and lexicalized
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Head to head dependencies

• Head-to-head dependencies track the function-argument

dependencies in a tree

• Co-ordination leads to phrases with multiple heads or functors

• Parameterized by head type and number of governors to include
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Subject-Verb Agreement

• The SubjVerbAgr features are the POS of the subject NP’s

lexical head and the VP’s functional head
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Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and

(optionally) all of the siblings of these nodes

• These correspond roughly to TAG elementary trees
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Tree n-gram

• A tree n-gram are tree fragments that connect sequences of

adjacent n words
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Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation)

• Reflects the tendancy toward right branching in English

• Only 2 different features, but very useful in final model!
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence
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Coordination parallelism (1)

• The CoPar feature indicates the depth to which adjacent

conjuncts are parallel
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Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in

adjacent conjuncts and whether this pair contains the last

conjunct.
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Experimental results with all features

• Features must vary on parses of at least 5 sentences in training

data

• In this experiment, 724,550 features

• Gaussian regularization, adjusted via cross-validation on

section 23

• f-score on section 23 = 0.912 (15% error reduction over

Charniak parser)
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Conclusion

• It’s possible to build (moderately) accurate, broad-coverage

parsers

• Generative parsing models are easy to estimate, but make

questionable independence assumptions

• Exponential models don’t assume independence, so it’s easy to

add new features, but are difficult to estimate

• Coarse-to-fine conditional MLE for exponential models is a

compromise

– flexibility of exponential models

– possible to estimate from treebank data

• Gives the currently best-reported parsing accuracy results
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Sample parser errors
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