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Why is parsing speech difficult?

I Speech is rarely segmented into words, phrases or even sentences

I Word identity is not as clear as in text

I Speech often contains disfluencies

I Conversational speech poses additional problems
I overlapping turns
I turns don’t correspond to phrases or sentences
I much higher disfluency rate

I but prosodic cues provide additional information

Hirschberg (2002)
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Acoustic ambiguity and word lattices

. . . recognize speech . . .
. . . wreck a nice beach . . .
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“Noisy channel” model of speech recognition

Source signal
. . . recognize speech . . .

Acoustic features
[ r e k o g n ay z s p i ch ]

Channel model P(Acoustics|Words)

Language model P(Words)
(trigram model, statistical parser)

I Bayes rule permits us to invert the channel

P(Words|Acoustics) ∝ P(Acoustics|Words)︸ ︷︷ ︸
Acoustic model

P(Words)︸ ︷︷ ︸
Language model

Jelinek (1997) “Statistical methods for speech recognition”
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n-gram language models

I A language model estimates the probability of strings of words in a
language

I used to distinguish likely from unlikely paths in the lattice

I n-gram language model predicts each word based on the n − 1
preceding words

I most commonly n = 3 (trigrams) or n = 4 (quadgrams)

P(this is a test sentence)

≈ P(this) P(is|this) P(a|is) P(test|a) P(sentence|test)

I These conditional probabilities can be estimated from raw text

I speech recognizer language models often estimated from billions of
words of text

I computationally simple and efficient

I surprisingly effective at distinguishing English from word salad
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Generative statistical parsers

I Probabilistic model associates trees and probabilities to all possible

sequences of words

I Tree predicted node by node using function-argument dependencies

I A statistical parser returns the most probable tree for Words

T̂ree = argmax
Tree

P(Tree |Words)

I A parser language model returns the probability of Words

P(Words) =
∑

Tree

P(Tree, Words)

I Parser language models can work directly from lattices
I Parser language models can do better than n-gram models trained

on the same data

Charniak (2001), Chelba and Jelinek (1998), Collins (2003), Hall and Johnson

(2003), Roark (2001)
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Treebank training data for statistical parsers

S

INTJ

UH

Uh

,

,

NP-SBJ

PRP

they

VP

VBP

term

NP

PRP

it

PP

RB

as

ADJP

JJR

more

,

,

INTJ

UH

uh

,

,

JJ

creative

.

.

I The Switchboard corpus contains 1.2 million words of telephone
conversational speech with syntactic and disfluency annotation

Marcus, Santorini and Marcinkiewicz (1993)
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Generative language model (Charniak 2001)
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Discriminative reranking parsers
Words

generative statistical parser

Tree1 Tree50

discriminative reranker

best parse (e.g., Tree17)

. . .

I Generative parser produces 50 most likely trees per sentence
I Discriminative reranker selects best tree using much wider range of

features than generative parser
I cannot be used for language modeling

Charniak and Johnson (2005), Collins (2000), Johnson et al (1999) 18 / 48



Features for discriminative reranking

I Discriminative rerankers use machine-learning techniques to select
best parse tree from set of candidate parses

I Features can be any real-valued function of parse trees (generative
parsers use function-argument dependencies)

I Our discriminative reranker has two kinds of features:
I The tree’s probability estimated by generative parser
I The number of times particular configurations appear in the parse

I Rerankers can have hundreds of thousands of features

I Improves parsing significantly
I best generative parsers’ accuracy = 0.90
I discriminative reranker accuracy > 0.92 (20% error reduction)

Collins and Koo (2005), Johnson (2005)

19 / 48



Tree n-gram
I A tree n-gram feature is a tree fragment that connect sequences of

adjacent n words, for n = 2, 3, 4 (c.f. Bod’s DOP models, TAG
local trees)

I lexicalized and non-lexicalized variants
ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

Bod (1998), Joshi and Schabes (1997)
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Rightmost branch feature
I The RightBranch feature indicates whether a node lies on the

rightmost branch
I Reflects the tendancy toward right branching in English
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Charniak (2000)
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Constituent Heavyness and location
I Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence
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Coordination parallelism

I A CoPar feature indicates the depth to which adjacent conjuncts
are parallel
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Neighbours
I A Neighbours feature indicates the node’s category, its binned

length and j left and k right POS tags for j , k ≤ 1
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Accuracy improvement adding one feature class

I Parse accuracy measured using f-score on two development
sections of WSJ treebank

I Generative parser’s accuracy on sections 20–21 = 0.895 and on
section 24 = 0.890
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Accuracy decrease removing one feature class

I Accuracy with all features on sections 20–21 = 0.9068 and on
section 24 = 0.9028

I Features are highly redundant and interact in complex ways

⇒ difficult to tell just which features are most important
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Parsing, punctuation and prosody – a first attempt

I Punctuation significantly improves parsing accuracy
I no punctuation = 0.869, with punctuation = 0.882

I Prosody is strongly correlated with constituent boundaries

I Perhaps inserting prosodic information into tree mimicking
punctuation will improve parsing?

I Prosodic features used (from Ferrer 2002 at SRI)
I normalized pause duration
I normalized last rhyme duration
I log F0 deviation
I F0 slope

Ferrer (2002), Hirschberg and Nakatani (1998)
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“Prosody as pseudo-punctuation” example
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“Prosody as pseudo-punctuation” results

I All of the different combinations of prosodic features we tried
decreased parsing accuracy

I accuracy with punctuation = 0.882
I accuracy with no punctuation or prosody = 0.869
I accuracy with prosody = 0.848–0.867 (depending on details)

⇒ Our prosodic features do not contain the same information that
punctuation does

I Inserting extra pseudo-terminals may interfere with generative
parser’s limited conditioning window

I prosody pseudo-punctuation is crowding-out real lexical items?

I Might work better with real speech (rather than transcripts)

Gregory, Johnson and Charniak (2004)
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Speech errors in (transcribed) speech

I Restarts and repairs

Why didn’t he, why didn’t she stay at home?
I want a flight to Boston, uh, to Denver on Friday

I Filled pauses

I think it’s, uh, refreshing to see the, uh, support . . .

I Parentheticals

But, you know, I was reading the other day . . .

I “Ungrammatical” constructions

Bear, Dowding and Schriberg (1992), Charniak and Johnson (2001), Core and

Schubert (1999), Heeman and Allen (1999), Nakatani and Hirschberg (1994),

Stolcke and Schriberg (1996)
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The structure of repairs

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Correction

a system . . .

I The Reparandum is often not a syntactic phrase

I The Interregnum is usually lexically and prosodically marked, but
can be empty

I The Reparandum is often a “rough copy” of the Correction
I Repairs are typically short
I Correction can sometimes be completely different to Reparandum

Shriberg 1994 “Preliminaries to a Theory of Speech Disfluencies”
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Treebank representation of repairs
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I The Switchboard treebank contains the parse trees for 1M words
of spontaneous telephone conversations

I Each reparandum is indicated by an EDITED node
(interregnum and repair are also annotated)

I But generative parsers are very poor at finding them!
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The “true model” of repairs (?)

. . . and you get,︸ ︷︷ ︸
Reparandum

uh,︸︷︷︸
Interregnum

you can get︸ ︷︷ ︸
Correction

a system . . .

I Speaker generates intended “conceptual representation”

I Speaker incrementally generates syntax and phonology,
I recognizes that what is said doesn’t mean what was intended,
I “backs up”, i.e., partially deconstructs syntax and phonology, and
I starts incrementally generating syntax and phonology again

I but without a good model of “conceptual representation”, this
may be hard to formalize . . .
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Approximating the “true model” (1)
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I Approximate semantic representation by syntactic structure

I Tree with reparandum and interregnum excised is what speaker
intended to say

I Reparandum results from attempt to generate Correction structure

I Dependencies are very different to those in “normal” language!
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Approximating the “true model” (2)

I want a flight to Boston,

︸ ︷︷ ︸
Reparandum

uh, I mean,

︸ ︷︷ ︸
Interregnum

to Denver

︸ ︷︷ ︸
Correction

on Friday

I Use Correction string as approximation to intended meaning

I Reparandum string is “rough copy” of Correction string
I involves crossing (rather than nested) dependencies
I explains why standard (PCFG-based) generative parsers are bad at

finding them

I String with reparandum and interregnum excised is well-formed
I after correcting the error, what’s left should have high probability
I use model of normal language to identify ill-formed input

⇒ Use a noisy channel model to analyse repairs
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A noisy channel model for speech repairs

Source signal
. . . and you can get a system . . .

Surface signal
. . . and you get, you can get a system . . .

Source model P(Source)
(n-gram, statistical parser)

Repair channel P(Surface|Source)

I Noisy channel model combines language model and repair model
I Bayes rule describes how to invert the channel

P(Source|Surface) ∝ P(Surface|Source)P(Source)
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The TAG channel model for repairs

I want a flight to Boston,

︸ ︷︷ ︸
Reparandum

uh, I mean,

︸ ︷︷ ︸
Interregnum

to Denver

︸ ︷︷ ︸
Correction

on Friday

I Channel model is a probabilistic transducer producing
source:output pairs

. . . a:a flight:flight ∅:to ∅:Boston ∅:uh ∅:I ∅:mean to:to Denver:Denver . . .

I Reparandum is “rough copy” of Correction
I We need a probabilistic model of rough copies
I FSMs and CFGs can’t generate copy dependencies . . .
I but Tree Adjoining Grammars can
I the TAG does not describe familiar linguistic dependencies

Johnson and Charniak (2004)
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Schematic TAG channel derivation

. . . a flight to Boston uh I mean to Denver on Friday . . .

Boston:∅

to:to

to:∅

flight:flight

a:a

Denver:Denver

on:on

Friday:Friday

uh:∅

I:∅ mean:∅
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Evaluation of model’s performance

Classifier Bigram Parser
Precision 0.974 0.781 0.810
Recall 0.600 0.737 0.778
F-score 0.743 0.758 0.794

I We can run the noisy channel with different language models
I “Bigram” is the TAG channel model with a bigram language model
I “Parser” is the TAG channel model with a generative parser

language model
I Classifier is a word-by-word classifier using machine-learning

techniques
I Machine-learning classifier uses lots of local features ⇒ more

accurate on short repairs
I Noisy channel model is more accurate on longer repairs

Charniak and Johnson (2001)
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Discriminative reranking for speech repairs

speech transcript
. . . a flight to Boston uh to Denver on Friday . . .

TAG noisy channel repair model

Source1
. . . a flight to Denver on Friday . . .

Source25
. . . a flight on Friday . . .. . .

generative statistical parser

Tree1 Tree25

discriminative reranker

best parse (e.g. Tree12)

. . .

43 / 48



Prosody in discriminative reranking for repairs
I Input to discriminative reranker can contain

I TAG channel model probabilities
I generative parser probabilities
I local features (e.g., the ones used in “machine learning” classifier)
I location and syntactic context of each repair
I prosodic features supplied by M. Ostendorf (normalized pause

duration in reparandum and normalized pause duration elsewhere)

Features used Speech Human

recognizer transcript

Local + Parser + TAG + Prosody 75.8% 52.8%
Local + Parser + TAG 76.4% 54.3%
Local + TAG + Prosody 76.7% 55.0%
Local + Parser + Prosody 81.0% 56.5%

Edited word detection error rate on RT04 data

Johnson, Charniak and Lease (2005)
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Prosody in discrimative reranking for parsing
I Output of the repair detector → discriminative reranking parser
I Reranker incorporates prosody × syntax features

I Cooccurence of binned “break probability” and right edge of
phrasal category

No repair TAG repair True
detector detector repairs

Parser 0.844 0.850 0.869
Parser + Prosody 0.850 0.856 0.876
Parser + Syntax 0.859 0.864 0.884
All features 0.860 0.866 0.886

Parsing accuracy on Switchboard speech data

with varying reranker features

Kahn, Lease, Charniak, Johnson and Ostendorf (2005)
45 / 48



Outline

Why is speech difficult?

Statistical parser language models

Discriminative reranking

Parsing, punctuation and prosody

Detecting and correcting speech repairs

Discriminative reranking for speech

Conclusion

46 / 48



Conclusion

I Speech presents a lot of problems (ambiguity, turns, disfluencies,
etc.) and some opportunities (prosody) relative to text

I Generative parsing algorithms model “function argument”
dependencies in language

I Discriminative rerankers can incorporate a much wider set of
dependencies

I Even though prosody seems analagous to punctuation, treating
prosody as punctuation doesn’t work

I Disfluencies involve “rough copy” rather than “function argument”
dependencies

⇒ TAG noisy-channel model and parser language model

I Discriminative rerankers can combine parser, TAG channel model
and prosody to optimize repair detection and parse accuracy
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