
Parsing and Learning

International Workshop on Parsing Technology

Mark Johnson

Brown University / Macquarie University

October 2009

1 / 88

Parsing and Learning

• Parsing and grammar induction traditionally viewed as distinct
I Unknown words and phrases ⇒ parser must be prepared to

adapt

• Most grammar learning systems are error-driven
I parsing is a central component of most learning algorithms

• Traditional statistical learning algorithms learn rule probabilities

• Learning grammar rules
I via “generate and test”
I via non-parametric Bayes ⇒ adaptor grammars

2 / 88

Talk outline

• Learning PCFG rule probabilities from terminal strings
I collapsed Gibbs samplers explictly sample parses, but don’t

explicitly represent rule probabilities

• Non-parametric extensions to PCFGs with unboundedly many
possible rules

I adaptor grammars learn probabilities of arbitrary subtrees
I collapsed Gibbs sampler only needs to represent sample

parses, and not probabilities of infinitely many rules

• Adaptor grammars can be used to learn:
I simple concatenative morphology
I unsupervised word segmentation
I collocations in topic models
I structure in names

3 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

4 / 88

Probabilistic context-free grammars
• Rules in Context-Free Grammars (CFGs) expand nonterminals into

sequences of terminals and nonterminals

• A Probabilistic CFG (PCFG) associates each nonterminal with a
multinomial distribution over the rules that expand it

• Probability of a tree is the product of the probabilities of the rules
used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Sam 0.75 NP → Sandy 0.25
VP → barks 0.6 VP → snores 0.4

P


Sam

NP

S

VP

barks

 = 0.45 P


Sandy

NP

S

VP

snores

 = 0.1

5 / 88

Maximum likelihood estimation from visible parses

• Each rule expansion is sampled from parent’s multinomial

⇒ Maximum Likelihood Estimator (MLE) is rule’s relative frequency

Sam

NP

S

VP

barks Sam

NP

S

VP

snores Sandy

NP

S

VP

snores

Rule r nr θr Rule r nr θr

S → NP VP 3 1.0
NP → Sam 2 0.66 NP → Sandy 1 0.33
VP → barks 1 0.33 VP → snores 2 0.66

• But MLE is often overly certain, especially with sparse data
I E.g., “accidental zeros” nr = 0⇒ θr = 0.

6 / 88

Bayesian estimation from visible parses
• Bayesian estimators estimate a distribution over rule probabilities

P(θ | n)︸ ︷︷ ︸
Posterior

∝ P(n | θ)︸ ︷︷ ︸
Likelihood

P(θ)︸︷︷︸
Prior

• Dirichlet distributions are conjugate priors for multinomials
I A Dirichlet distribution over (θ1, . . . , θm) is specified by

positive parameters (α1, . . . , αm)
I If Prior = Dir(α) then Posterior = Dir(α+ n)

 0
 1
 2
 3
 4
 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (3,2)

α = (21,11)

7 / 88

Sparse Dirichlet priors
• As α→ 0, Dirichlet distributions become peaked around 0

“Grammar includes some of these rules, but we don’t know which!”

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)

8 / 88

Estimating rule probabilities from strings alone

• Input: terminal strings and grammar rules

• Output: rule probabilities θ

• In general, no closed-form solution for θ
I iterative algorithms usually involving repeatedly reparsing

training data

• Expectation Maximization (EM) procedure generalizes visible data
ML estimators to hidden data problems

• Inside-Outside algorithm is a cubic-time EM algorithm for PCFGs

• Bayesian estimation of θ via:
I Variational Bayes or
I Markov Chain Monte Carlo (MCMC) methods such as Gibbs

sampling

9 / 88

Gibbs sampler for parse trees and rule probabilities

• Input: terminal strings (x1, . . . , xn), grammar rules and Dirichlet
prior parameters α

• Output: stream of sample rule probabilities θ and parse trees
t = (t1, . . . , tn)

• Algorithm:

Assign parse trees to the strings somehow (e.g., randomly)
Repeat forever:

Compute rule counts n from t
Sample θ from Dir(α+ n)
For each string xi :

replace ti with a tree sampled from P(t|xi ,θ).

• After burn-in, (θ, t) are distributed according to Bayesian posterior

• Sampling parse tree from P(t|xi ,θ) involves parsing string xi .

10 / 88

Collapsed Gibbs samplers

• Integrate out rule probabilities θ to obtain predictive distribution
P(ti |xi , t−i) of parse ti for sentence xi given other parses t−i

• Collapsed Gibbs sampler

For each sentence xi in training data:

Replace ti with a sample from P(t|xi , t−i)

• A problem: P(ti |xi , t−i) is not a PCFG distribution

⇒ no dynamic-programming sampler (AFAIK)

S

NP

cats

VP

V

chase

NP

dogs

S

NP

dogs

VP

V

chase

NP

dogs

11 / 88

Metropolis-Hastings samplers

• Metropolis-Hastings (MH) acceptance-rejection procedure uses
samples from a proposal distribution to produce samples from a
target distribution

• When sentence size � training data size, P(ti |xi , t−i) is almost a
PCFG distribution

I use a PCFG approximation based on t−i as proposal
distribution

I apply MH to transform proposals to P(ti |xi , t−i)

• To construct a Metropolis-Hastings sampler you need to be able
to:

I efficiently sample from proposal distribution
I calculate ratios of parse probabilities under proposal

distribution
I calculate ratios of parse probabilities under target distribution

12 / 88

Collapsed Metropolis-within-Gibbs sampler for

PCFGs

• Input: terminal strings (x1, . . . , xn), grammar rules and Dirichlet
prior parameters α

• Output: stream of sample parse trees t = (t1, . . . , tn)

• Algorithm:

Assign parse trees to the strings somehow (e.g., randomly)
Repeat forever:

For each sentence xi in training data:
Compute rule counts n−i from t−i

Compute proposal grammar probabilities θ from n−i

Sample a tree t from P(t|xi ,θ)
Replace ti with t according to

Metropolis-Hastings accept-reject formula

13 / 88

Q: Are there efficient local-move tree samplers?

• DP PCFG samplers require O(n3) time per sample; are there faster
samplers?

• For HMMs, a point-wise sampler resamples the state labeling one
word at a time

I All state sequences reachable by one or more such moves
I Transition probabilities don’t require dynamic programming ⇒

no need for MH

• Question: Are there efficiently-computable local moves that can
transform any parse into any other parse of same string?

I for HMMs, DP sampler generally more effective than
point-wise sampler

I point-wise samplers could be more effective for grammars with
complex DP parsing algorithms (e.g., TAG, CCG, LFG, HPSG)

14 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

15 / 88

Learning grammar rules

• Input: terminal strings

• Output: grammar rules and rule probabilities θ

• “Generate and test” approach (Carroll and Charniak, Stolcke)

Guess an initial set of rules
Repeat:

re-estimate rule probabilities from strings
prune low probability rules
propose additional potentially useful rules

• Non-parametric Bayesian methods seem to provide a more
systematic approach

16 / 88

Non-parameteric Bayesian extensions to PCFGs

• Non-parametric ⇒ no fixed set of parameters

• Two obvious non-parametric extensions to PCFGs:
I let the set of non-terminals grow unboundedly

– given an initial grammar with coarse-grained categories,
split non-terminals into more refined categories
S12 → NP7 VP4 instead of S→ NP VP.

– PCFG generalization of “infinite HMM”.
I let the set of rules grow unboundedly ⇒ adaptor grammars

– use a (meta-)grammar to generate potential rules
– learn subtrees and their probabilities

i.e., tree substitution grammar, where we learn the
fragments as well as their probabilities

• No reason both can’t be done at once . . .

17 / 88

Learning syntax is hard!

• Can formulate learning syntax as Bayesian estimation

• On toy data, Bayesian estimators do well

• Results are disappointing on “real” data
I wrong algorithm?
I wrong kind of grammar?
I wrong type of training data?

• This paper focuses on learning grammars for simpler phenomena:
I Morphological segmentation (e.g., walking = walk+ing)
I Word segmentation of unsegmented phoneme sequences
I Learning collocations in topic models
I Learning internal structure of named-entity NPs

18 / 88

A CFG for stem-suffix morphology

Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .
Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent any
segmentation of words into stems
and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

19 / 88

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
I not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

20 / 88

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

21 / 88

Forcing generalization using Dirichlet priors

• Maximum Likelihood solution analyses each word as a separate
stem

I fails to generalize
I one non-zero probability rule per word type in data

• Dirichlet prior prefers θ = 0 when α→ 0
I use Dirichlet prior to prefer sparse rule probability vectors

• Following experiments use orthographic verbs from U Penn. WSJ
treebank

22 / 88

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report
reports report s report s report s

reported reported reported reported
reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed
transporting transport ing transport ing transport ing

downsize downsiz e downsiz e downsiz e
downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted

23 / 88

Log posterior for models on token data

-1.2e+06

-1e+06

-800000

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Posterior

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!
24 / 88

Relative frequencies of inflected verb forms

25 / 88

Types and tokens
• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens eliminates
(most) frequency variation

I 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology from
word types

• Goldwater et al investigated a morphology-learning model that
learnt from an interpolation of types and tokens

26 / 88

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

27 / 88

Log posterior of models on type data

-400000

-200000

 0

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Optimal suffixes

• Correct solution is close to optimal at α = 10−3

28 / 88

Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

I context-free rules generate types
I another process replicates types to produce tokens

• Adaptor grammars:
I learn probability of entire subtrees (how a nonterminal

expands to terminals)
I use grammatical hierarchy to define a Bayesian hierarchy, from

which type-based inference emerges
I inspired by Sharon Goldwater’s models

29 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

30 / 88

From Dirichlet-multinomials to Chinese Restaurant

Processes
• Observations z = (z1, . . . , zn) ranging over outcomes 1, . . . ,m
• Outcome k observed nk(z) times in data z
• Predictive distribution with uniform Dirichlet prior:

P(Zn+1 = k | z) ∝ nk(z) + α/m

• Let m→∞

P(Zn+1 = k | z) ∝ nk(z) if k appears in z

P(Zn+1 6∈ z | z) ∝ α

• If outcomes are exchangable ⇒ number in order of occurence
⇒ Chinese Restaurant Process

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

31 / 88

Chinese Restaurant Process (0)

• Customer→ table mapping z =

• P(z) = 1

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

32 / 88

Chinese Restaurant Process (1)

α

• Customer→ table mapping z = 1

• P(z) = α/α

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

33 / 88

Chinese Restaurant Process (2)

1 α

• Customer→ table mapping z = 1, 1

• P(z) = α/α× 1/(1 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

34 / 88

Chinese Restaurant Process (3)

2 α

• Customer→ table mapping z = 1, 1, 2

• P(z) = α/α× 1/(1 + α)× α/(2 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

35 / 88

Chinese Restaurant Process (4)

2 1 α

• Customer→ table mapping z = 1, 1, 2, 1

• P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

36 / 88

Labeled Chinese Restaurant Process (0)

• Table→ label mapping y =

• Customer→ table mapping z =

• Output sequence x =

• P(x) = 1

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

37 / 88

Labeled Chinese Restaurant Process (1)

fish

α

• Table→ label mapping y = fish

• Customer→ table mapping z = 1

• Output sequence x = fish

• P(x) = α/α× P0(fish)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

38 / 88

Labeled Chinese Restaurant Process (2)

fish

1 α

• Table→ label mapping y = fish

• Customer→ table mapping z = 1, 1

• Output sequence x = fish,fish

• P(x) = P0(fish)× 1/(1 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

39 / 88

Labeled Chinese Restaurant Process (3)

fish

2

apple

α

• Table→ label mapping y = fish,apple

• Customer→ table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple

• P(x) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

40 / 88

Labeled Chinese Restaurant Process (4)

fish

2

apple

1 α

• Table→ label mapping y = fish,apple

• Customer→ table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple,fish

• P(x) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

41 / 88

Summary: Chinese Restaurant Processes

• Chinese Restaurant Processes (CRPs) generalize
Dirichlet-Multinomials to an unbounded number of outcomes

I concentration parameter α controls how likely a new outcome
is

I CRPs exhibit a rich get richer power-law behaviour

• Pitman-Yor Processes (PYPs) generalize CRPs by adding an
additional parameter (each PYP has a and b parameters)

I PYPs can describe a wider range of distributions than CRPs

• Labeled CRPs and PYPs use a base distribution to label each table
I base distribution can have infinite support
I concentrates mass on a countable subset

42 / 88

Labeled Chinese restaurants and Dirichlet processes

• A labeled Chinese restaurant processes maps a base distribution PB

to a stream of samples from a different distribution with the same
support

• CRPs specify the conditional distribution of the next outcome
given the previous ones

• Each CRP run can produce a different distribution over labels

• It defines a mapping from α and PB to a distribution over
distributions DP(α,PB)

• DP(α,PB) is called a Dirichlet process (DP) with concentration
parameter α and base distribution PB

• The base distribution PB can itself be defined by a DP
⇒ hierarchy of DPs

43 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

44 / 88

Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG

• A subset of the nonterminals are adapted
I each adapted nonterminal A has a concentration parameter αA

• An unadapted nonterminal A expands using A→ β with
probability θA→β

• An adapted nonterminal A expands:
I to a subtree τ rooted in A with probability proportional to the

number of times τ was previously generated
I using A → β with probability proportional to αAθA→β

45 / 88

Adaptor grammar for stem-suffix morphology (0)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
46 / 88

Adaptor grammar for stem-suffix morphology (1a)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
47 / 88

Adaptor grammar for stem-suffix morphology (1b)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
48 / 88

Adaptor grammar for stem-suffix morphology (1c)

Word→ Stem Suffix

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words:
49 / 88

Adaptor grammar for stem-suffix morphology (1d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
50 / 88

Adaptor grammar for stem-suffix morphology (2a)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
51 / 88

Adaptor grammar for stem-suffix morphology (2b)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
52 / 88

Adaptor grammar for stem-suffix morphology (2c)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats
53 / 88

Adaptor grammar for stem-suffix morphology (2d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs
54 / 88

Adaptor grammar for stem-suffix morphology (3)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs, cats
55 / 88

Adaptor grammars as generative processes
• Unadapted nonterminals expand by picking a rule and recursively

expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
I by picking a rule and recursively expanding its children, or
I by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Each adapted nonterminal A has a CRP (or PYP) that caches
previously generated subtrees rooted in A

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs/PYPs

• The trees generated by an adaptor grammar are not independent
I if an adapted subtree has been used frequently in the past, it’s

more likely to be used again
⇒ an adaptor grammar learns from the trees it generates

• but the sequence of trees is exchangable (important for sampling)
56 / 88

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of adapted nonterminal A expanding to subtree τ is
proportional to:

I the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

I plus αA times prob. of generating it via PCFG expansion
⇒ nonzero but decreasing probability of novel structures

⇒ Useful compound structures can be more probable than their parts

• Base PCFG rule probabilities estimated from table labels
⇒ learns from types, not tokens

57 / 88

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed of
a Stem and a Suffix, which are
composed of Chars

• To generate a new Word from an
adaptor grammar

I reuse an old Word, or
I generate a fresh one from the base

distribution, i.e., generate a Stem
and a Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

58 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

59 / 88

Estimating adaptor grammars

• Need to estimate:
I parse trees t = (t1, . . . , tn) for strings x = (x1, . . . , xn)
I cached subtrees τ for adapted nonterminals
I DP parameters α for adapted nonterminals
I probabilities θ of base grammar rules

• Collapsed Metropolis-within-Gibbs sampler for parse trees
I sample parse tree ti from P(t | xi , t−i)

where t−i = (t1, . . . , ti−1, ti+1, . . . , tn)
I sampling directly from conditional distribution of parses seems

intractable (just as for PCFGs)
I construct PCFG proposal grammar G ′(t−i) on the fly

G ′(t−i) contains a rule for each cached subtree τ
⇒ grammar rules change while sampling

I MH accept/reject determines whether to update ti

60 / 88

Collapsed Metropolis-within-Gibbs sampling

• Input: terminal strings x = (x1, . . . , xn)

• Output: stream of sample parse trees t = (t1, . . . , tn)

• Metropolis-within-Gibbs sampling algorithm:

initialize t somehow (e.g., random trees)
repeat forever:

pick a sentence xi at random
construct PCFG proposal grammar G ′(t−i) on the fly
sample parse tree t from P(t | xj ,G

′(t−i))
update ti with t according to MH accept-reject procedure

• After burn-in the samples t are distributed according to P(t | x)

61 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

62 / 88

Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU Mk

• Useful cues for word segmentation:
I Phonotactics (Fleck)
I Inter-word dependencies (Goldwater)

63 / 88

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ Phoneme+

which abbreviates

Sentence→ Words
Words→ Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• PCFG trees are adequate for representing word segmentation, but
PCFG rules are too small a unit of generalization to learn words

64 / 88

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ all possible phoneme strings

• But now there are an infinite number of
PCFG rules!

I once we see our (finite) training data,
only finitely many are useful

⇒ the set of parameters (rules) should be
chosen based on training data

Words

Word

D 6

Words

Word

b U k

65 / 88

Unigram word segmentation adaptor grammar

Sentence→ Word+

Word→ Phoneme+

• Adapted nonterminals
indicated by underlining

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• Adapting Words means that the grammar learns the probability of
each Word subtree independently

• Unigram word segmentation on Brent corpus: 56% token f-score

66 / 88

Unigram adaptor grammar after learning
• Given the Brent corpus and the unigram adaptor grammar

Words→ Word+

Word→ Phon+

the learnt adapted grammar contains 1,712 rules such as:

15758 Words →Word Words
9791 Words →Word
1660 Word→ Phon+

402 Word→ y u
137 Word→ I n
111 Word→ w I T
100 Word→ D 6 d O g i
45 Word→ I n D 6
20 Word→ I n D 6 h Q s

67 / 88

unigram: Words

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

68 / 88

colloc: Collocations ⇒ Words

Sentence→ Colloc+

Colloc→ Word+

Word→ Phon+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words

• Both Words and Collocs are adapted (learnt)

• Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)

69 / 88

colloc-syll: Collocations ⇒ Words ⇒ Syllables
Sentence→ Colloc+ Colloc→ Word+

Word→ SyllableIF Syllable→ (Onset) Rhyme
Word→ SyllableI (Syllable) (Syllable) SyllableF
Onset→ Consonant+ Rhyme→ Nucleus (Coda)
Nucleus→ Vowel+ Coda→ Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• With 2 Collocation levels, f-score = 87%

70 / 88

colloc-syll: Collocations ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

71 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

72 / 88

LDA topic models as PCFGs

• Each document i generates a
distribution over m topics

• Each topic j generates a
(unigram) distribution over
vocabulary X .

• Preprocess input by prepending a
document id to every sentence

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m; x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

73 / 88

Estimated PCFG for LDA topic model

Rule Count
Doc3 → Doc3 Topic4 737
Doc3 → Doc3 Topic3 392
Doc3 → Doc3 Topic9 263
Doc3 → Doc3 Topic7 254
. . .
Topic4 → function 3576
Topic4 → functions 2195
Topic4 → error 1614
Topic4 → algorithm 1588
. . .
Topic7 → network 13018
Topic7 → input 6716
Topic7 → training 6078
Topic7 → learning 5176
. . . 74 / 88

Finding topic collocations with adaptor grammars

• Let each Topicj expand to a
sequence of words

• Adapt each Topicj

⇒ learn topic’s likely collocations

Sentence→ Doci

Doci → i

Doci → Doci Topicj

Topicj → Words
Words→ Word
Words→ Words Word

Sentence

Doc3

Doc3

Doc3

Doc3

_3

Topic1

Words

Words

Word

shallow

Word

circuits

Topic1

Words

Word

compute

Topic0

Words

Word

faster

• Would be easy to make a hierarchical adaptor grammar model that
shares collocations between topics

75 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

76 / 88

Learning structure in names

• Many different kinds of names
I Person names, e.g., Mr. Sam Spade Jr.
I Company names, e.g., United Motor Manufacturing Corp.
I Other names, e.g., United States of America

• At least some of these are structured; e.g., Mr is an honorific, Sam
is first name, Spade is a surname, etc.

• Penn treebanks assign flat structures to base NPs (including
names)

• Data set: 10,787 unique lowercased sequences of base NP proper
nouns, containing 23,392 words

• Can we automatically learn the structure of these names?

77 / 88

Adaptor grammar for names
NP→ (A0) (A1) . . . (A6) NP→ (B0) (B1) . . . (B6)
A0→ Word+ B0→ Word+

.
A6→ Word+ B6→ Word+

NP→ Unordered+ Unordered→ Word+

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

• See Elsner et al (2009) for details
78 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

79 / 88

Summary and future work

• Parsing and learning are intimately related
I most methods for grammar learning involve repeated parsing

• Non-parametric generalizations of PCFGs introduce an infinite
number of potential rules

I Adaptor Grammars learn entire subtrees
I can define a range of interesting models

• Collapsed Gibbs samplers are a natural method for non-parametric
inference

I a finite number of samples can only involve a finite number of
structures

I efficient sampling using Metropolis-within-Gibbs with PCFG
proposals

• Non-parametric Bayesian approaches provide a principled approach
to learning grammar rules as well as their probabilities

80 / 88

Outline

Learning rule probabilities

Learning grammar rules (not just probabilities)

Chinese Restaurant Processes

Adaptor grammars

Bayesian inference for adaptor grammars

Adaptor grammars for unsupervised word segmentation

Topic Collocation models using adaptor grammars

Adaptor grammars for named entities

Conclusion

Extending Adaptor Grammars

81 / 88

Issues with adaptor grammars

• Recursion through adapted nonterminals seems problematic
I New tables are created as each node is encountered top-down
I But the tree labeling the table is only known after the whole

subtree has been completely generated
I If adapted nonterminals are recursive, might pick a table

whose label we are currently constructing. What then?

• Extend adaptor grammars so adapted fragments can end at
nonterminals a la DOP (currently always go to terminals)

I Adding “exit probabilities” to each adapted nonterminal
I In some approaches, fragments can grow “above” existing

fragments, but can’t grow “below” (O’Donnell)

• Adaptor grammars conflate grammatical and Bayesian hierarchies
I Might be useful to disentangle them with meta-grammars

82 / 88

Context-free grammars
A context-free grammar (CFG) consists of:
• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N ,
• a finite set R of rules A→ β, where A ∈ N and β ∈ (N ∪W)?

• a start symbol S ∈ N .
Each A ∈ N ∪W generates a set TA of trees.
These are the smallest sets satisfying:
• If A ∈ W then TA = {A}.
• If A ∈ N then:

TA =
⋃

A→B1...Bn∈RA

TreeA(TB1 , . . . , TBn)

where RA = {A→ β : A→ β ∈ R}, and

TreeA(TB1 , . . . , TBn) =

{
�� PP

A

t1 tn. . .
:

ti ∈ TBi
,

i = 1, . . . , n

}
The set of trees generated by a CFG is TS . 83 / 88

Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector θ,
where:

• θA→β is the probability of expanding the nonterminal A using the
production A→ β.

It defines distributions GA over trees TA for A ∈ N ∪W :

GA =


δA if A ∈ W∑
A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . ,Gn)

(
�� PP

A

t1 tn. . .

)
=

n∏
i=1

Gi(ti).

TDA(G1, . . . ,Gn) is a distribution over TA where each subtree ti is
generated independently from Gi .

84 / 88

DP adaptor grammars

An adaptor grammar (G ,θ,α) is a PCFG (G ,θ) together with a
parameter vector α where for each A ∈ N , αA is the parameter of the
Dirichlet process associated with A.

GA ∼ DP(αA,HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)

The grammar generates the distribution GS .
One Dirichlet Process for each adapted non-terminal A (i.e., αA > 0).

85 / 88

Recursion in adaptor grammars

• The probability of joint distributions (G,H) is defined by:

GA ∼ DP(αA,HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . ,GBn)

• This holds even if adaptor grammar is recursive

• Question: when does this define a distribution over (G,H)?

86 / 88

Adaptive fragment grammars
• Disentangle syntactic and Bayesian hierarchy

I Adaptive metagrammar generates fragment distributions
I which plug together as in tree substitution grammar

• Tree fragment sets PA,A ∈ N are smallest sets satisfying:

PA =
⋃

A→B1...Bn∈RA

TreeA({B1} ∪ PB1 , . . . , {Bn} ∪ PBn)

• Grammar’s distributions GA over TA defined using fragment
distributions FA over PA (generalized PCFG rules)

GA =
∑
�� PP
A

B1 Bn. . .
∈PA

FA(�� PP
A

B1 Bn. . .
) TD

�� PP
A

B1 Bn. . .

(GB1 , . . . ,GBn)

• A fragment grammar generates the distribution GS

87 / 88

Adaptive fragment distributions

• HA is a PCFG distribution over PA

HA =
∑

A→B1...Bn∈RA

θA→B1...BnTDA(η δB1 + (1− η)HB1 , . . .)

where η is the fragment exit probability

• Obtain FA by adapting the HA distribution

FA ∼ DP(αA,HA)

• This construction can be iterated, i.e., replace θ with another
fragment distribution

• Question: if we iterate this, when does the fixed point exist, and
what is it?

88 / 88

	Learning rule probabilities
	Learning grammar rules (not just probabilities)
	Chinese Restaurant Processes
	Adaptor grammars
	Bayesian inference for adaptor grammars
	Adaptor grammars for unsupervised word segmentation
	Topic Collocation models using adaptor grammars
	Adaptor grammars for named entities
	Conclusion
	Extending Adaptor Grammars

